
An Extensible Test Framework for

the Microsoft StreamInsight Query Processor
Alex Raizman

1
, Asvin Ananthanarayan

1
, Anton Kirilov

1
, Badrish Chandramouli

2
, Mohamed Ali

1

1
Microsoft SQL Server, {alexr, asvina, antonk, mali }@microsoft.com

2
Microsoft Research, {badrishc}@ microsoft.com

ABSTRACT

Microsoft StreamInsight (StreamInsight, for brevity) is a platform

for developing and deploying streaming applications.

StreamInsight adopts a deterministic stream model that leverages

a temporal algebra as the underlying basis for processing long-

running continuous queries. In most streaming applications,

continuous query processing demands the ability to cope with

high input rates that are characterized by imperfections in event

delivery (i.e., incomplete or out-of-order data). StreamInsight is

architected to handle imperfections in event delivery, to generate

real-time low-latency output, and to provide correctness

guarantees on the resultant output.

On one hand, streaming operators are similar to their well-

understood relational counterparts - with a precise algebra as the

basis of their behavior. On the other hand, streaming operators are

unique in their non-blocking nature, which guarantees low-latency

and incremental result delivery. While our deterministic temporal

algebra paves the way towards easier testing of the streaming

system, one unique challenge is that as the field evolves with

more customers adopting streaming solutions, the semantics,

behavior, and variety of operators is constantly under churn. This

paper overviews the test framework for the StreamInsight query

processor and highlights the challenges in verifying the functional

correctness of its operators. The paper discusses the extensibility

and the reusability of the proposed streaming test infrastructure,

as the research and industrial communities address new and

constantly evolving challenges in stream query processing.

Categories and Subject Descriptors

H.2.4 [DATABASE MANAGEMENT]: Systems – Query

Processing, Relational databases.

General Terms

Algorithms, Design, Verification.

Keywords

Data Streaming, SQL Server, StreamInsight, Testing, Verification.

1. INTRODUCTION
Recent advances in sensor network technologies, GPS devices,

RFIDs, and wireless communications have resulted in wide-

spread real-time stream data acquisition. Example data streaming

applications include network monitoring, web-click analytics,

telecommunications data management, intrusion detections,

manufacturing, geosensing, traffic management, and online stock

trading. While the amount of streamed data acquired from sensors

has increased substantially, the inability to process, mine, and

analyze this data in a timely manner prevented researchers from

making full use of the incoming stream data. Consequently, an

ongoing effort in both research and industry has been established

to develop data stream systems that are capable of processing

hundreds of thousands of events per second.

Microsoft StreamInsight [4] (StreamInsight, for brevity) is a

platform for developing and deploying streaming applications that

run continuous queries over high-rate streaming events.

StreamInsight is an event stream processing system featured by its

declarative query language and its multiple consistency levels of

stream processing. StreamInsight adopts a temporal stream model,

where a data stream is modeled as a time-varying relation. This

paper introduces the ongoing effort at Microsoft SQL Server to

build a test framework to verify the functional correctness of

StreamInsight. The paper presents the challenges in testing data

stream systems, discusses the design principles originated by the

nature of streaming applications, and delves into the architecture

of the proposed test infrastructure.

1.1 Challenges
There are three main aspects in which data stream systems differ

in terms of surface area from their traditional relational (DBMS)

counterparts. We next summarize these differences and explain

how each surface area difference poses a challenge against the

data stream test framework.

First, a data stream system is characterized by its expected and

frequent imperfections in the delivery of stream events. Due to the

nature of sensing devices, stream events are continuously

transmitted over the network to the data stream system. Taking

network delays and the unreliable nature of the transmission

channels into consideration, some stream events are expected to

arrive late, to be out of order, or to be duplicated on their way to

the system. Hence, the test space needs to be augmented by an

additional dimension for the event arrival pattern.

Second, data stream systems generate output in real time. An

incoming event gets processed immediately by the query pipeline

its effect gets reflected in the output immediately. As a result,

streaming queries may produce output that may require

compensation (deletion or modification) in the future, e.g., due to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

DBTest'10, June 7, 2010, Indianapolis, Indiana, USA.

Copyright © 2010 ACM 978-1-4503-0190-9/10/06... $10.00.

out-of-order events in the stream, errors that are subsequently

corrected at the source, or upstream operators that modify their

output. We refer to the generation of output that may require

subsequent correction as speculation. As a consequence, the test

framework needs mechanisms to verify the functional correctness

of operators in the presence of speculative input and output.

Third, the data streaming domain is a new area compared to

traditional databases that have matured over decades. While some

efforts have been made recently [8, 9], there are as yet no

standards or semantics that have gained consensus across the

community. As a result, the streaming test infrastructure has to be

extensible and well-prepared for the new challenges in this area.

As a concrete example, test scenarios need to be declaratively

described by their intent, with functional descriptions of scenarios

and dependencies on query languages kept to a minimum.

1.2 Design Principles
The proposed test framework has been architected with several

design principles in mind. These design principles are crucial for

traditional database testing. However, these principles are

stretched along different dimensions as the focus is shifted from

traditional database systems to data stream systems. We

summarize the design principles as follows:

 Declarative scenario description and language

independence. Given the lack of standardization in the

relatively new streaming domain, test scenarios are expressed

in a declarative language with the possibility of mapping the

declared intent across multiple languages.

 Composability. Streaming operators are characterized by the

stream-in/stream-out feature, i.e., the output of an operator is

a stream that is of similar nature to the input stream. Hence,

single-operator tests are composed to form composed test

scenarios. More interestingly, composed test scenarios are

grouped iteratively to form complex testing scenarios.

 Leveraging existing test infrastructures. Data stream

systems share the relational basis with traditional database

systems. A test framework for data stream systems is

expected to reuse the enormous effort that has been

conducted in database testing and augment it with the proper

components for stream-oriented workloads.

 Extensibility and reusability. This principle addresses how

the test infrastructure scales as new challenges are being

addressed by the research community and as more customers

adopt the data streaming technologies.

The remainder of this paper is organized as follows. Section 2

introduces some basic concepts in the StreamInsight query

processor. Section 3 presents the overall architecture of the test

framework. Declarative intent-based generation of test scenarios is

described in Section 4 while the stream event generator is

described in Section 5. Result verification is described in Section

6. Section 7 discusses the extensibility and reusability of the test

framework. Section 8 concludes the paper.

2. Background
A streaming system [4, 6, 7, 10] allows applications to execute

long-running continuous queries (CQs) that monitor and process

data streams. While the core concepts are generalizable to any

streaming system, this paper focuses on Microsoft StreamInsight,

which is based on the CEDR [2, 3] research project.

2.1 Logical and Physical Streams and Events
A physical stream is a sequence {e1, e2, …, } of events. An event

ei = <p, c> is a notification from the outside world that contains:

(1) a payload p = <p1, …, pk>, and (2) a control parameter c that

provides event metadata. While the exact set of control parameters

associated with events varies across systems [2, 11, 12], two

common notions are: (1) an event generation time, and (2) a

duration, which indicates the period of time over which an event

can influence output. We capture these by defining c = <LE, RE>,

where the interval [LE, RE) specifies the period (or lifetime) over

which the event contributes to output. The left endpoint (LE) of

this interval, also called start time, is the application time of event

generation, also called the event timestamp. Assuming the event

lasts for x time units, the right endpoint of an event, also called

end time, is simply RE = LE + x.

Compensations StreamInsight allows users to issue

compensations (or corrections) for earlier reported events, by the

notion of retractions [2, 13, 14], which indicates a modification

of the lifetime of an earlier event. This is supported by an optional

third control parameter REnew, that indicates the new right

endpoint of the corresponding event. Event deletion (called a full

retraction) is expressed by setting REnew=LE (i.e., zero lifetime).

Canonical History Table (CHT) This is the logical

representation of a stream. Each entry in a CHT consists of a

lifetime (LE and RE) and the payload. All times are application

times, as opposed to system times. Thus, StreamInsight models a

data stream as a time-varying relation, motivated by early work on

temporal databases by Snodgrass et al. [17]. Table 1 shows an

example CHT. This CHT can be derived from the actual physical

events (either new inserts or retractions) with control parameter c

= <LE, RE, REnew>. For example, Table 2 shows one possible

physical stream with an associated logical CHT shown in Table 1.

Note that a retraction event includes the new right endpoint of the

modified event. The CHT (Table 1) is derived by matching each

retraction in the physical stream (Table 2) with its corresponding

insertion (i.e., matching by event ID) and adjusting the RE point

of the event accordingly.

Table 1 – Example of a CHT

ID LE RE Payload

E0 1 5 P1

E1 4 9 P2

Table 2 – Example of a physical stream

ID Type LE RE REnew Payload

E0 Insertion 1 ∞ - P1

E0 Retraction 1 ∞ 10 P1

E0 Retraction 1 10 5 P1

E1 Insertion 4 9 - P2

2.2 Event Classes
Users can use lifetimes to model different application scenarios.

For instantaneous events with no lifetime, RE is set to LE+h

where h is a chronon, the smallest possible time-unit. We refer to

such events as point events. On the other hand, there may be

events that model an underlying continuous signal being sampled

at intervals. In this case, each event samples a particular value,

and has a lifetime until the beginning of the next event sample.

We refer to such events as edge events. The most general form of

events have arbitrary endpoints depending on when the modeled

event came into and went out of existence – these events are

referred to as interval events.

2.3 Detecting Progress of Time
We need a way to ensure that an event is not arbitrarily out-of-

order, which is realized using time-based punctuations [2, 15, 16].

A time-based punctuation is a special event that is used to indicate

time progress. These punctuations are called Current Time

Increments (or CTIs) in StreamInsight. A CTI is associated with a

timestamp t and indicates that there will be no future event in the

stream that modifies any part of the time axis that is earlier than t.

Note that we could still see retractions for events with LE less

than t, as long as both RE and REnew are greater than or equal to t.

2.4 Streaming Queries and Operators
A streaming continuous query (CQ) consists of a tree of operators,

each of which performs some transformation on its input streams

and produces an output stream. Queries are expressed in a high-

level language such as StreamSQL or, in case of StreamInsight,

using LINQ. LINQ queries are converted into an equivalent XML

representation of the stream query plan, and users can also

directly submit queries in XML format. StreamInsight operators

are well-behaved and have clear semantics in terms of their effect

on the CHT. This makes the underlying temporal operator algebra

deterministic, even when data arrives out-of-order.

Data enters the streaming system via input adapters, which

convert external sources into events that can be processed by the

streaming system. Output events exit the system via output

adapters. There are two main classes of operators: span-based

and window-based.

Span-based operators A span-based operator accepts events

from an input, performs some computation for each event, and

produces output for that event with the same or possibly altered

output event lifetime. Examples of single-input span-based

operators include filter (to select events that match a specified

condition) and project (to select certain input columns or

expressions over columns from the input stream). A two-input

span-based operator is temporal join, which correlates events

across the two streams. The lifetime of the output event is

equivalent to the entire “span” of the input event’s lifetime for

single-input operators, or the intersection of contributing event

lifetimes in case of multi-input operators.

Window-based operators Aggregation operators such as Count,

Top-K, Sum, etc. work by reporting a result (or set of results) for

every unique window. The result is computed using all events that

belong to that window. StreamInsight supports several types of

windows: snapshot (equivalent to sliding), hopping, tumbling,

and count-based windows.

Other Operators One stream can be output to multiple

operators using an operator called multicast, while multiple

streams are merged using a union operator. StreamInsight allows

per-group computation using an operation called Group&Apply,

where the same subplan (called the apply branch) to be applied in

parallel for every group (defined by a grouping key) in a stream.

The results of all the groups are merged (using the union operator)

as the final operator output. In addition, StreamInsight supports

user-defined operators that users can use to express custom

computations (span-based and window-based) on streaming data.

3. Architecture of the Test Framework
Figure 1 depicts the architecture of the proposed test framework.

Test scenarios are represented by a declarative testing approach

that describes the scenario intent for both queries and stream

event data. As discussed in [1], declarative testing approaches

focus on “what” to accomplish rather than on the imperative

details of “how” to manipulate the state of the system. Testers

describe their queries and the nature of the generated input data

through an intent tree. An example intent tree would read

“Execute an equi-join query over out-of-order stream events”.

(Formal examples are presented in Section 4.)

Figure 1: System architecture.

The intent tree goes through an Intent Transformer to fill in the

omitted elements that are required to execute the test. The

outcome of the Intent Transformer is called a concrete tree.

Concrete trees are still expressed in declarative form but, unlike

intent tree, has no omitted elements left. An example concrete tree

would read “Execute an equi-join query between Stream1 and

Stream2 using an equality join expression Stream1.Fielda ==

Stream2.Fieldb over highly out-of-order stream events”. Note

that the concrete tree has hints that control certain aspects or

properties of the event data generator. These properties are used

by the Stream Event Generator to generate stream events. The

Stream Event Generator is described in section 5.

The concrete tree then is translated into one of the supported

StreamInsight interface languages. Note that StreamInsight is

designed to support multiple language interfaces. Figure 1 shows

XML and LINQ as two example languages that are supported by

the StreamInsight interface. The resultant query (either XML or

LINQ) is shipped and executed within the StreamInsight engine.

Meanwhile, the stream event generator output is transformed into

a time varying relation and is inserted into relational tables in an

SQL Server database. Also, the concrete tree is transformed to an

SQL-equivalent query using techniques described in recent work

[18], and is shipped to SQL Server to be executed over the time-

varying relation. The output stream from StreamInsight is finally

shipped to SQL Server for verification purposes. The Canonical

Results Verifier checks that the StreamInsight output is equivalent

to the SQL Server output from a canonical perspective, and the

Property Validator performs additional checks. Result verification

is covered in the technical report [18], while its application in the

test framework is briefly summarized in Section 6.

4. Intent-based Testing
In this section, we present an example test scenario that is

expressed in a declarative format and how it gets transformed

from an intent tree to a concrete tree. To construct the intent tree,

we write a test scenario using a C# code snippet. An equijoin

scenario is expressed as follows:

 var q = left.Join(right).On(

 leftExpression.Equals(

 rightExpression));

Figure 2: An example intent tree.

The test framework transforms the test scenario (expressed in C#)

into an intent tree (see Figure 2). An intent tree represents a wide

test space constrained by the intent definition. Concrete trees are

specific test instances or points that fall in the test space that is

defined by the intent tree. Figure 3 depicts two examples of

possible concrete trees for the intent tree depicted in Figure 2.

These concrete trees are obtained by filling in the omitted

elements in the intent tree. For example, the “left”, “right”,

“leftExpression”, and “rightExpression” in Figure 2 are examples

of such omitted elements. These elements are replaced by the

actual input streams and expressions to yield a concrete tree.

Numerous concrete trees are constructed from the same intent tree

by intelligently sampling the test space constrained by the intent

tree. The test scenario now consists of all the concrete trees.

The intent tree also describes the expected nature of the input

stream events declaratively, e.g., out-of-orderness, event

durations, event overlap, etc. The Intent Transformer formalizes

the declarative description of the intent input data into concrete

parameters, decorates the concrete trees with these parameters and

passes these values to the Stream Event Generator.

5. Stream Event Generation
Traditional data generators for testing relational database systems

focus primarily on data distributions to generate payload values.

As described in Section 2, data generators for data stream systems

need to be augmented (1) by temporal attributes that represent the

event’s endpoints (i.e., LE and RE) and (2) by an event type (i.e.,

insertions and retractions) that is crucial to represent the

imperfections in event delivery. In the remainder of this section,

we describe the generation of the event’s temporal attributes and

the generation of the event type. For payload generation, we

simply leverage the available payload generators in the current

SQL Server test infrastructure.

5.1 Temporal Aspect Generation
Event generation in the proposed test framework follows the

declarative concepts outlined in the Section 3. Testers specify

their intent to the generator by declaratively expressing various

properties for the temporal aspects. The event generator examines

these properties and transforms them into a sequence of timestamp

pairs. Each timestamp pair represents the endpoints (LE and RE)

of the event. We support the following aspects in our generator.

Figure 3: Concrete tree examples.

Event duration – StreamInsight events are point, interval or edge

events. We need to test the entire space that ranges from very

short lived events (e.g., point events) to events that span the entire

temporal space (LE = -∞ and RE = ∞). Testers express their intent

by specifying the maximum life time of an event which is

described in terms of Point, Short, Long, Infinite. Event generator

then translates this property into a timestamp that is used to

generate the end time of the event.

Event overlap – Overlap between events is another important test

dimension. This controls behavior of operators such as Join as

well as window based operators. Testers describe their intent by

specifying a subset of overlap space. The overlap space currently

include: High, Medium and Low.

Controlling liveliness – Liveliness of a query in StreamInsight is

governed by CTI events. As described in Section 2, a CTI event

guarantees that no events will arrive earlier than the CTI’s

timestamp. Hence, CTIs advance the time forward and places

stability guarantees on the input streams. Testers describe their

intent by providing a property that specifies how eager the event

generator should be in generating CTIs.

User defined temporal patterns – For the sake of extensibility,

the event generator exposes an interface that enables testers to

explicitly control the shapes and patterns of the interval events

that are generated. The details are omitted due to lack of space.

Simulation of typical and boundary cases - The event generator

produces events to test a wide range of temporal cases that

include:

- Non overlapping events, where none of the events overlap

with each other. This is a typical case for low-rate sensors

that intermittently produce events.

- Highly-overlapping events, where the event endpoints can be

as close to each other as one tick, e.g. ei.LE = ej.RE±1. This

is a typical case for high-rate sensors or large sensor

networks that generate a dense sample set of the surrounding

environment.

- Back-to-back events, where the event endpoints (LE/RE) are

aligned to the same point in time, e.g., ei.LE = ej.RE. This is

a typical case for fixed-rate sensors that reads a sample every

t time unites (e.g., one sample per minute).

- Duplicate events, where multiple sensors or RFID readers

acquire readings for the same event or RFID tag. Duplicate

events are also common in unreliable networks due to

repeated transmission in response to lost acknowledgements.

5.2 Imperfections in Event Delivery
The tester’s intent that describes imperfections in event delivery is

represented by two facets:

Out-of-orderness – The proposed test framework supports the

following values for the out-of-orderness facet: In-order,

Slightly-out-of-order, Out-of-order and Higly-out-of-order. The

stream event generator uses specified property value to control the

degree of out of orderness. Although a finer and a more granular

specification of the property value is possible, the proposed four

values seems good enough in practice to cover the test space.

Figure 4. MakeSpeculative query transformation.

Speculation - As described in section 2, speculation causes a

previous event to be retracted. In order to test that individual

operators behave correctly with retraction events, we use an

innovative approach to generate retractions. We create a query

fragment, called MakeSpeculative, which uses existing streaming

operators. MakeSpeculative uses TopK and Group and Apply

operators (refer to Section 2 for background on Group and Apply)

in a combination with out of order events to generate speculative

output. The group and apply operator gives us events that overlap

with each other. The Top K operator generates “speculated

output” based on the set of events it received and, then, retracts

the speculated output and generates compensation output as late

and out-of-order events are received. The result of this fragment is

a rich event stream that contains insertion and retraction events

with high degree of overlap. This approach has the advantage that

the test framework makes use of the stream-in stream-out feature

of streaming operator and avoids the need of writing specialized

modules. Testers leverage this construct in their tests by

specifying their intent as “testing with speculative input”, which is

data property to begin with. The event generator applies a

transform on the concrete tree and introduces the

MakeSpeculative query construct above the import operator.

Figure 4 is an example query where the tester’s intent is to

validate the SUM aggregate. The test framework transforms the

concrete tree as shown.

This demonstrates an interesting paradigm of “influencing data by

manipulating the query shape” using a declarative approach. We

also use this paradigm to generate duplicate events. By applying a

multicast-union query fragment above the MakeSpeculative

fragment we can generate duplicate retraction events.

6. Canonical Result Verification

6.1 Query Translation
We test the functional correctness of the StreamInsight engine by

first executing the generated streaming query over the generated

event stream. In order to verify the result of the streaming query,

technical report [18] leverages the CEDR temporal algebra and

operator semantics that StreamInsight is based on. Briefly, the

well-defined operator semantics and our use of application time

instead of system time enable us to translate any StreamInsight

query into a sequence of SQL queries with the following property:

Given a streaming query operating on a physical stream S1 and

producing physical stream S2 as result, the corresponding

sequence of SQL queries applied to CHT(S1) produces table

CHT(S2).

Here, CHT(S) refers to the canonical history table (see Section 2)

corresponding to the event stream S. Note that any physical

stream can be converted into its canonical form by removing all

CTIs and applying retractions to the corresponding insert events.

It has been shown [18] that any streaming query can be converted

into an equivalent sequence of SQL queries.

6.2 Expression Translation
This step translates all expressions (if any) that are part of the

streaming query. For example, in case of the join operator, the

join predicate expression and the project expressions are

translated. The test framework could have attempted to translate

every streaming expression into a corresponding SQL expression

using the SQL expression services and type system. However, this

would create a disparity because StreamInsight is based on the

CLR (Common Language Runtime) type system whereas SQL

defines its own type system. Additionally, certain types like

System.TimeSpan are not available in SQL Server.

Instead, we leverage SQL CLR for this purpose. Every primitive

StreamInsight type is wrapped into a SQL CLR User Defined

Type (UDT) and provisioned in SQL Server. A Data property on

the UDT returns the actual C# primitive type. Any expression in

StreamInsight can be represented as a C# expression because it

uses CLR as the basis of its expression services. The abstract

expression tree from the declarative component is transformed

into a C# expression. This C# expression is wrapped into a SQL

CLR User Defined function and provisioned in SQL Server. The

payload fields in the expression become input parameters to the

SQL CLR user defined function and the return type of the UDF is

the C# return type of the expression. The SQL CLR UDF is then

used in its parent operator in the appropriate context. For

example, if it is a join operator, the UDF is the join predicate and

if it is a select operator, the UDF is the filter predicate.

This technique of using SQL CLR UDFs allows the test

framework to avoid issues involved with translating arbitrary C#

expressions into SQL expressions using the SQL type system.

Although SQL CLR UDFs are used for payload fields, the

datetime2 SQL type is used for representing the application time

of StreamInsight events. This is because datetime2 is equivalent

to the CLR System.DateTime type.

6.3 Output Stream Verification
The event stream generated by StreamInsight is persisted in the

SQL Server table by the output adapter. The output stream verifier

is a collection of SQL stored procedures which are executed over

the persisted table. The following properties are verified:

- Absence of any CTI violations (i.e., an event that modifies a

time t that is earlier than the most recent CTI).

- Stream shape, i.e., whether the shape (point, edge, interval)

is identical the one specified by the tester

- Stream ordering, i.e., whether the events are fully ordered

(by LE) or ordering is assured only across an insert and its

subsequent lifetime modifications.

We verify the correctness of the output stream using the following

steps:

1. Transform the input stream into a CHT C1

2. Translate the streaming query and the expressions into a

sequence of SQL queries D1

3. Run the streaming query S1 on StreamInsight and generate

the corresponding output stream CHT C2

4. Execute query sequence D1 (on SQL Server) over a database

table T1 corresponding to C1, to generate an output table T2

5. Finally, test the table T2 for equivalence with CHT C2. A

mismatch in the results indicates a bug in StreamInsight,

assuming no errors in either the SQL Server query processor

or our SQL query generator.

7. Extensibility and Reusability
In this section, we describe three major themes in the proposed

test framework that promote extensibility and reusability of the

framework for future scenarios. First, the adoption of the

declarative testing approach was one of the main aspects which

enabled us to design robust workflow that is able to keep up with

growing demands and complexity of the StreamInsight engine

during its development. As the streaming language constructs

mature over years and as the operator semantics are agreed upon,

the declarative approach secures the test scenarios from the need

to be edited or changed. Moreover, additional languages (other

than XML and LINQ) can be supported by adding additional

language transformers to the test architecture.

Second, thanks to the canonical result verifier, more operators can

be added to the StreamInsight engine and integrated in the test

framework without the need to worry about the verification of the

operator’s functional correctness. As long as the new operator is

expressed in an equivalent SQL sequence of statements, the SQL

Language Transformer is augmented to include these statements

and other components in the test framework remain intact.

Third, the proposed framework is capable of composing

declarative test scenarios to formulate complex test scenarios.

Thanks to the stream-in/stream-out feature of streaming operators.

The output of one test scenario is fed as input to another test

scenario. Alternatively, one test scenario can be embedded as a

node in another test scenario. This approach tests the cross

interaction among streaming operators as more operators are

added to the system. It also facilitates implementation of rich test

models which can be used both to create intent trees and enrich

Intent Transformer to generate multiple concrete trees within

constraints of initial intent tree.

8. Conclusions
In this paper we presented a declarative testing approach to

transform the tester’s intent into a streaming query. We elaborated

the challenges that face the testing of a data streaming system that

include the real time nature of stream events with a likelihood of

late and out-of-order events. The proposed test framework has

been designed to cope with differences between traditional

database systems and data stream systems. The notions of

extensibility and reusability have been given a priority to foresee

the expected growth in the requirements and semantics of

continuous query processing as it gets more popular amongst

database vendors.

9. REFERENCES
[1] Ed Triou, Zafar Abbas, Sravani Kothapalle, "Declarative Testing: A Paradigm

for Testing Software Applications," itng, pp.769-773, 2009 Sixth International

Conference on Information Technology: New Generations, 2009.

[2] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong.

Consistent Streaming Through Time: A Vision for Event Stream Processing. In

CIDR, 2007.

[3] Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and Roger Barga.

Consistency Sensitive Streaming Operators in CEDR. Technical Report, MSR-

TR-2007-158, Microsoft Research, Dec 2007.

[4] Mohamed Ali et al.: Microsoft CEP Server and Online Behavioral Targeting. In

VLDB 2009.

[5] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly Progress Detection in

Iterative Stream Queries. In VLDB, 2009.

[6] Arvind Arasu, Shivnath Babu, Jennifer Widom: CQL: A Language for

Continuous Queries over Streams and Relations. DBPL 2003: 1-19.

[7] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, Oliver

Spatscheck: A Heartbeat Mechanism and Its Application in Gigascope. In

VLDB, 2005.

[8] Irina Botan et al, "A Demonstration of the MaxStream Federated Stream

Processing System", Demonstration, In ICDE, 2010.
[9] N. Jain et al. Towards a Streaming SQL Standard. In VLDB, 2008.

[10] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo and C. Venkatramani.

Design, Implementation, and Evaluation of the Linear Road Benchmark on the

Stream Processing Core. In SIGMOD 2006.

[11] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore

Johnson, David Maier: Out-of-order Processing: A New Architecture for High-

Performance Stream Systems. PVLDB 1(1):274-288 (2008).

[12] Moustafa A. Hammad et al.: Nile: A Query Processing Engine for Data

Streams. In ICDE, 2004.

[13] E. Ryvkina et al. Revision processing in a stream processing engine: a high-

level design. In ICDE, 2006.

[14] R. Motwani et al. Query processing, approximation, and resource management

in a DSMS. In CIDR, 2003.

[15] Peter Tucker, David Maier, Tim Sheard, Leonidas Fegaras: Exploiting

Punctuation Semantics in Continuous Data Streams. IEEE TKDE 15(3): 555-

568 (2003).

[16] Utkarsh Srivastava, Jennifer Widom. Flexible Time Management in Data

Stream Systems. In PODS, 263-274, 2004

[17] C. Jensen and R. Snodgrass. Temporal Specialization. In ICDE, 1992.

[18] J. Goldstein et al. Historic Stream Query Processing in SQL. Technical Report,

Microsoft Research.

[19] Rathakrishnan, B. et al. Using CLR Integration in SQL Server 2005. SQL

Server Books Online. http://msdn2.microsoft.com/en-us/library/ms345136.aspx.

