
An Extensible Test Framework for  

the Microsoft StreamInsight Query Processor 
Alex Raizman

1
, Asvin Ananthanarayan

1
, Anton Kirilov

1
, Badrish Chandramouli

2
, Mohamed Ali

1
 

1
Microsoft SQL Server, {alexr, asvina, antonk, mali }@microsoft.com 

2
Microsoft Research, {badrishc}@ microsoft.com 

  

ABSTRACT 

Microsoft StreamInsight (StreamInsight, for brevity) is a platform 

for developing and deploying streaming applications. 

StreamInsight adopts a deterministic stream model that leverages 

a temporal algebra as the underlying basis for processing long-

running continuous queries. In most streaming applications, 

continuous query processing demands the ability to cope with 

high input rates that are characterized by imperfections in event 

delivery (i.e., incomplete or out-of-order data). StreamInsight is 

architected to handle imperfections in event delivery, to generate 

real-time low-latency output, and to provide correctness 

guarantees on the resultant output. 

On one hand, streaming operators are similar to their well-

understood relational counterparts - with a precise algebra as the 

basis of their behavior. On the other hand, streaming operators are 

unique in their non-blocking nature, which guarantees low-latency 

and incremental result delivery. While our deterministic temporal 

algebra paves the way towards easier testing of the streaming 

system, one unique challenge is that as the field evolves with 

more customers adopting streaming solutions, the semantics, 

behavior, and variety of operators is constantly under churn. This 

paper overviews the test framework for the StreamInsight query 

processor and highlights the challenges in verifying the functional 

correctness of its operators. The paper discusses the extensibility 

and the reusability of the proposed streaming test infrastructure, 

as the research and industrial communities address new and 

constantly evolving challenges in stream query processing. 

Categories and Subject Descriptors 

H.2.4 [DATABASE MANAGEMENT]: Systems – Query 

Processing, Relational databases.  

General Terms 

Algorithms, Design, Verification.  

Keywords 

Data Streaming, SQL Server, StreamInsight, Testing, Verification.  

1. INTRODUCTION 
Recent advances in sensor network technologies, GPS devices, 

RFIDs, and wireless communications have resulted in wide-

spread real-time stream data acquisition. Example data streaming 

applications include network monitoring, web-click analytics, 

telecommunications data management, intrusion detections, 

manufacturing, geosensing, traffic management, and online stock 

trading. While the amount of streamed data acquired from sensors 

has increased substantially, the inability to process, mine, and 

analyze this data in a timely manner prevented researchers from 

making full use of the incoming stream data. Consequently, an 

ongoing effort in both research and industry has been established 

to develop data stream systems that are capable of processing 

hundreds of thousands of events per second. 

Microsoft StreamInsight [4] (StreamInsight, for brevity) is a 

platform for developing and deploying streaming applications that 

run continuous queries over high-rate streaming events. 

StreamInsight is an event stream processing system featured by its 

declarative query language and its multiple consistency levels of 

stream processing. StreamInsight adopts a temporal stream model, 

where a data stream is modeled as a time-varying relation. This 

paper introduces the ongoing effort at Microsoft SQL Server to 

build a test framework to verify the functional correctness of 

StreamInsight. The paper presents the challenges in testing data 

stream systems, discusses the design principles originated by the 

nature of streaming applications, and delves into the architecture 

of the proposed test infrastructure.  

1.1 Challenges 
There are three main aspects in which data stream systems differ 

in terms of surface area from their traditional relational (DBMS) 

counterparts. We next summarize these differences and explain 

how each surface area difference poses a challenge against the 

data stream test framework. 

First, a data stream system is characterized by its expected and 

frequent imperfections in the delivery of stream events. Due to the 

nature of sensing devices, stream events are continuously 

transmitted over the network to the data stream system. Taking 

network delays and the unreliable nature of the transmission 

channels into consideration, some stream events are expected to 

arrive late, to be out of order, or to be duplicated on their way to 

the system. Hence, the test space needs to be augmented by an 

additional dimension for the event arrival pattern.  

Second, data stream systems generate output in real time. An 

incoming event gets processed immediately by the query pipeline 

its effect gets reflected in the output immediately. As a result, 

streaming queries may produce output that may require 

compensation (deletion or modification) in the future, e.g., due to 
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out-of-order events in the stream, errors that are subsequently 

corrected at the source, or upstream operators that modify their 

output. We refer to the generation of output that may require 

subsequent correction as speculation. As a consequence, the test 

framework needs mechanisms to verify the functional correctness 

of operators in the presence of speculative input and output. 

Third, the data streaming domain is a new area compared to 

traditional databases that have matured over decades. While some 

efforts have been made recently [8, 9], there are as yet no 

standards or semantics that have gained consensus across the 

community. As a result, the streaming test infrastructure has to be 

extensible and well-prepared for the new challenges in this area. 

As a concrete example, test scenarios need to be declaratively 

described by their intent, with functional descriptions of scenarios 

and dependencies on query languages kept to a minimum. 

1.2 Design Principles 
The proposed test framework has been architected with several 

design principles in mind. These design principles are crucial for 

traditional database testing. However, these principles are 

stretched along different dimensions as the focus is shifted from 

traditional database systems to data stream systems. We 

summarize the design principles as follows: 

 Declarative scenario description and language 

independence. Given the lack of standardization in the 

relatively new streaming domain, test scenarios are expressed 

in a declarative language with the possibility of mapping the 

declared intent across multiple languages. 

 Composability. Streaming operators are characterized by the 

stream-in/stream-out feature, i.e., the output of an operator is 

a stream that is of similar nature to the input stream. Hence, 

single-operator tests are composed to form composed test 

scenarios. More interestingly, composed test scenarios are 

grouped iteratively to form complex testing scenarios. 

 Leveraging existing test infrastructures. Data stream 

systems share the relational basis with traditional database 

systems. A test framework for data stream systems is 

expected to reuse the enormous effort that has been 

conducted in database testing and augment it with the proper 

components for stream-oriented workloads. 

 Extensibility and reusability. This principle addresses how 

the test infrastructure scales as new challenges are being 

addressed by the research community and as more customers 

adopt the data streaming technologies. 

The remainder of this paper is organized as follows. Section 2 

introduces some basic concepts in the StreamInsight query 

processor. Section 3 presents the overall architecture of the test 

framework. Declarative intent-based generation of test scenarios is 

described in Section 4 while the stream event generator is 

described in Section 5. Result verification is described in Section 

6. Section 7 discusses the extensibility and reusability of the test 

framework. Section 8 concludes the paper. 

2. Background 
A streaming system [4, 6, 7, 10] allows applications to execute 

long-running continuous queries (CQs) that monitor and process 

data streams. While the core concepts are generalizable to any 

streaming system, this paper focuses on Microsoft StreamInsight, 

which is based on the CEDR [2, 3] research project. 

2.1 Logical and Physical Streams and Events 
A physical stream is a sequence {e1, e2, …, } of events. An event 

ei = <p, c> is a notification from the outside world that contains: 

(1) a payload p = <p1, …, pk>, and (2) a control parameter c that 

provides event metadata. While the exact set of control parameters 

associated with events varies across systems [2, 11, 12], two 

common notions are: (1) an event generation time, and (2) a 

duration, which indicates the period of time over which an event 

can influence output. We capture these by defining c = <LE, RE>, 

where the interval [LE, RE) specifies the period (or lifetime) over 

which the event contributes to output. The left endpoint (LE) of 

this interval, also called start time, is the application time of event 

generation, also called the event timestamp. Assuming the event 

lasts for x time units, the right endpoint of an event, also called 

end time, is simply RE = LE + x. 

Compensations StreamInsight allows users to issue 

compensations (or corrections) for earlier reported events, by the 

notion of retractions [2, 13, 14], which indicates a modification 

of the lifetime of an earlier event. This is supported by an optional 

third control parameter REnew, that indicates the new right 

endpoint of the corresponding event. Event deletion (called a full 

retraction) is expressed by setting REnew=LE (i.e., zero lifetime). 

Canonical History Table (CHT) This is the logical 

representation of a stream. Each entry in a CHT consists of a 

lifetime (LE and RE) and the payload. All times are application 

times, as opposed to system times. Thus, StreamInsight models a 

data stream as a time-varying relation, motivated by early work on 

temporal databases by Snodgrass et al. [17]. Table 1 shows an 

example CHT. This CHT can be derived from the actual physical 

events (either new inserts or retractions) with control parameter c 

= <LE, RE, REnew>. For example, Table 2 shows one possible 

physical stream with an associated logical CHT shown in Table 1. 

Note that a retraction event includes the new right endpoint of the 

modified event. The CHT (Table 1) is derived by matching each 

retraction in the physical stream (Table 2) with its corresponding 

insertion (i.e., matching by event ID) and adjusting the RE point 

of the event accordingly. 

Table 1 – Example of a CHT 

ID LE RE Payload 

E0 1 5 P1 

E1 4 9 P2 

 

Table 2 – Example of a physical stream 

ID Type LE RE REnew Payload 

E0 Insertion 1 ∞ - P1 

E0 Retraction 1 ∞ 10 P1 

E0 Retraction 1 10 5 P1 

E1 Insertion 4 9 - P2 

 

2.2 Event Classes 
Users can use lifetimes to model different application scenarios. 

For instantaneous events with no lifetime, RE is set to LE+h 

where h is a chronon, the smallest possible time-unit. We refer to 

such events as point events. On the other hand, there may be 



events that model an underlying continuous signal being sampled 

at intervals. In this case, each event samples a particular value, 

and has a lifetime until the beginning of the next event sample. 

We refer to such events as edge events. The most general form of 

events have arbitrary endpoints depending on when the modeled 

event came into and went out of existence – these events are 

referred to as interval events. 

2.3 Detecting Progress of Time 
We need a way to ensure that an event is not arbitrarily out-of-

order, which is realized using time-based punctuations [2, 15, 16]. 

A time-based punctuation is a special event that is used to indicate 

time progress. These punctuations are called Current Time 

Increments (or CTIs) in StreamInsight. A CTI is associated with a 

timestamp t and indicates that there will be no future event in the 

stream that modifies any part of the time axis that is earlier than t. 

Note that we could still see retractions for events with LE less 

than t, as long as both RE and REnew are greater than or equal to t. 

2.4 Streaming Queries and Operators 
A streaming continuous query (CQ) consists of a tree of operators, 

each of which performs some transformation on its input streams 

and produces an output stream. Queries are expressed in a high-

level language such as StreamSQL or, in case of StreamInsight, 

using LINQ. LINQ queries are converted into an equivalent XML 

representation of the stream query plan, and users can also 

directly submit queries in XML format. StreamInsight operators 

are well-behaved and have clear semantics in terms of their effect 

on the CHT. This makes the underlying temporal operator algebra 

deterministic, even when data arrives out-of-order. 

Data enters the streaming system via input adapters, which 

convert external sources into events that can be processed by the 

streaming system. Output events exit the system via output 

adapters. There are two main classes of operators: span-based 

and window-based. 

Span-based operators   A span-based operator accepts events 

from an input, performs some computation for each event, and 

produces output for that event with the same or possibly altered 

output event lifetime. Examples of single-input span-based 

operators include filter (to select events that match a specified 

condition) and project (to select certain input columns or 

expressions over columns from the input stream). A two-input 

span-based operator is temporal join, which correlates events 

across the two streams. The lifetime of the output event is 

equivalent to the entire “span” of the input event’s lifetime for 

single-input operators, or the intersection of contributing event 

lifetimes in case of multi-input operators. 

Window-based operators  Aggregation operators such as Count, 

Top-K, Sum, etc. work by reporting a result (or set of results) for 

every unique window. The result is computed using all events that 

belong to that window. StreamInsight supports several types of 

windows: snapshot (equivalent to sliding), hopping, tumbling, 

and count-based windows. 

Other Operators   One stream can be output to multiple 

operators using an operator called multicast, while multiple 

streams are merged using a union operator. StreamInsight allows 

per-group computation using an operation called Group&Apply, 

where the same subplan (called the apply branch) to be applied in 

parallel for every group (defined by a grouping key) in a stream. 

The results of all the groups are merged (using the union operator) 

as the final operator output. In addition, StreamInsight supports 

user-defined operators that users can use to express custom 

computations (span-based and window-based) on streaming data. 

3. Architecture of the Test Framework 
Figure 1 depicts the architecture of the proposed test framework. 

Test scenarios are represented by a declarative testing approach 

that describes the scenario intent for both queries and stream 

event data. As discussed in [1], declarative testing approaches 

focus on “what” to accomplish rather than on the imperative 

details of “how” to manipulate the state of the system. Testers 

describe their queries and the nature of the generated input data 

through an intent tree. An example intent tree would read 

“Execute an equi-join query over out-of-order stream events”. 

(Formal examples are presented in Section 4.) 

 

Figure 1: System architecture. 

The intent tree goes through an Intent Transformer to fill in the 

omitted elements that are required to execute the test. The 

outcome of the Intent Transformer is called a concrete tree. 

Concrete trees are still expressed in declarative form but, unlike 

intent tree, has no omitted elements left. An example concrete tree 

would read “Execute an equi-join query between Stream1 and 

Stream2 using an equality join expression Stream1.Fielda == 

Stream2.Fieldb over highly out-of-order stream events”.  Note 

that the concrete tree has hints that control certain aspects or 

properties of the event data generator. These properties are used 

by the Stream Event Generator to generate stream events. The 

Stream Event Generator is described in section 5. 

The concrete tree then is translated into one of the supported 

StreamInsight interface languages. Note that StreamInsight is 



designed to support multiple language interfaces. Figure 1 shows 

XML and LINQ as two example languages that are supported by 

the StreamInsight interface. The resultant query (either XML or 

LINQ) is shipped and executed within the StreamInsight engine. 

Meanwhile, the stream event generator output is transformed into 

a time varying relation and is inserted into relational tables in an 

SQL Server database. Also, the concrete tree is transformed to an 

SQL-equivalent query using techniques described in recent work 

[18], and is shipped to SQL Server to be executed over the time-

varying relation. The output stream from StreamInsight is finally 

shipped to SQL Server for verification purposes. The Canonical 

Results Verifier checks that the StreamInsight output is equivalent 

to the SQL Server output from a canonical perspective, and the 

Property Validator performs additional checks. Result verification 

is covered in the technical report [18], while its application in the 

test framework is briefly summarized in Section 6. 

4. Intent-based Testing 
In this section, we present an example test scenario that is 

expressed in a declarative format and how it gets transformed 

from an intent tree to a concrete tree. To construct the intent tree, 

we write a test scenario using a C# code snippet. An equijoin 

scenario is expressed as follows: 

    var q = left.Join(right).On( 

                leftExpression.Equals( 

                    rightExpression)); 

 

Figure 2: An example intent tree. 

The test framework transforms the test scenario (expressed in C#) 

into an intent tree (see Figure 2). An intent tree  represents a wide 

test space constrained by the intent definition. Concrete trees are 

specific test instances or points that fall in the test space that is 

defined by the intent tree. Figure 3 depicts two examples of 

possible concrete trees for the intent tree depicted in Figure 2. 

These concrete trees are obtained by filling in the omitted 

elements in the intent tree. For example, the “left”, “right”, 

“leftExpression”, and “rightExpression” in Figure 2 are examples 

of such omitted elements. These elements are replaced by the 

actual input streams and expressions to yield a concrete tree. 

Numerous concrete trees are constructed from the same intent tree 

by intelligently sampling the test space constrained by the intent 

tree. The test scenario now consists of all the concrete trees. 

The intent tree also describes the expected nature of the input 

stream events declaratively, e.g., out-of-orderness, event 

durations, event overlap, etc. The Intent Transformer formalizes 

the declarative description of the intent input data into concrete 

parameters, decorates the concrete trees with these parameters and 

passes these values to the Stream Event Generator. 

5. Stream Event Generation 
Traditional data generators for testing relational database systems 

focus primarily on data distributions to generate payload values. 

As described in Section 2, data generators for data stream systems 

need to be augmented (1) by temporal attributes that represent the 

event’s endpoints (i.e., LE and RE) and (2) by an event type (i.e., 

insertions and retractions) that is crucial to represent the 

imperfections in event delivery. In the remainder of this section, 

we describe the generation of the event’s temporal attributes and 

the generation of the event type. For payload generation, we 

simply leverage the available payload generators in the current 

SQL Server test infrastructure. 

5.1 Temporal Aspect Generation 
Event generation in the proposed test framework follows the 

declarative concepts outlined in the Section 3. Testers specify 

their intent to the generator by declaratively expressing various 

properties for the temporal aspects.  The event generator examines 

these properties and transforms them into a sequence of timestamp 

pairs. Each timestamp pair represents the endpoints (LE and RE) 

of the event. We support the following aspects in our generator.  

 

 

Figure 3: Concrete tree examples. 

Event duration – StreamInsight events are point, interval or edge 

events. We need to test the entire space that ranges from very 

short lived events (e.g., point events) to events that span the entire 

temporal space (LE = -∞ and RE = ∞). Testers express their intent 

by specifying the maximum life time of an event which is 

described in terms of Point, Short, Long, Infinite. Event generator 

then translates this property into a timestamp that is used to 

generate the end time of the event. 

Event overlap – Overlap between events is another important test 

dimension. This controls behavior of operators such as Join as 

well as window based operators. Testers describe their intent by 

specifying a subset of overlap space. The overlap space currently 

include: High, Medium and Low.  

Controlling liveliness – Liveliness of a query in StreamInsight is 

governed by CTI events. As described in Section 2, a CTI event 

guarantees that no events will arrive earlier than the CTI’s 

timestamp. Hence, CTIs advance the time forward and places 

stability guarantees on the input streams. Testers describe their 

intent by providing a property that specifies how eager the event 

generator should be in generating CTIs.  

User defined temporal patterns – For the sake of extensibility, 

the event generator exposes an interface that enables testers to 

explicitly control the shapes and patterns of the interval events 

that are generated. The details are omitted due to lack of space. 

Simulation of typical and boundary cases - The event generator 

produces events to test a wide range of temporal cases that 

include: 



- Non overlapping events, where none of the events overlap 

with each other. This is a typical case for low-rate sensors 

that intermittently produce events. 

- Highly-overlapping events, where the event endpoints can be 

as close to each other as one tick, e.g. ei.LE = ej.RE±1. This 

is a typical case for high-rate sensors or large sensor 

networks that generate a dense sample set of the surrounding 

environment. 

- Back-to-back events, where the event endpoints (LE/RE) are 

aligned to the same point in time, e.g., ei.LE = ej.RE. This is 

a typical case for fixed-rate sensors that reads a sample every 

t time unites (e.g., one sample per minute). 

- Duplicate events, where multiple sensors or RFID readers 

acquire readings for the same event or RFID tag. Duplicate 

events are also common in unreliable networks due to 

repeated transmission in response to lost acknowledgements.  

5.2 Imperfections in Event Delivery  
The tester’s intent that describes imperfections in event delivery is 

represented by two facets: 

Out-of-orderness – The proposed test framework supports the 

following values for the out-of-orderness facet:  In-order, 

Slightly-out-of-order, Out-of-order and Higly-out-of-order. The 

stream event generator uses specified property value to control the 

degree of out of orderness. Although a finer and a more granular 

specification of the property value is possible, the proposed four 

values seems good enough in practice to cover the test space. 

 

Figure 4. MakeSpeculative query transformation. 

Speculation - As described in section 2, speculation causes a 

previous event to be retracted. In order to test that individual 

operators behave correctly with retraction events, we use an 

innovative approach to generate retractions. We create a query 

fragment, called MakeSpeculative, which uses existing streaming 

operators.  MakeSpeculative uses TopK and Group and Apply 

operators (refer to Section 2 for background on Group and Apply) 

in a combination with out of order events to generate speculative 

output. The group and apply operator gives us events that overlap 

with each other. The Top K operator generates “speculated 

output” based on the set of events it received and, then, retracts 

the speculated output and generates compensation output as late 

and out-of-order events are received. The result of this fragment is 

a rich event stream that contains insertion and retraction events 

with high degree of overlap.  This approach has the advantage that 

the test framework makes use of the stream-in stream-out feature 

of streaming operator and avoids the need of writing specialized 

modules. Testers leverage this construct in their tests by 

specifying their intent as “testing with speculative input”, which is 

data property to begin with. The event generator applies a 

transform on the concrete tree and introduces the 

MakeSpeculative query construct above the import operator. 

Figure 4 is an example query where the tester’s intent is to 

validate the SUM aggregate. The test framework transforms the 

concrete tree as shown. 

This demonstrates an interesting paradigm of “influencing data by 

manipulating the query shape” using a declarative approach. We 

also use this paradigm to generate duplicate events. By applying a 

multicast-union query fragment above the MakeSpeculative 

fragment we can generate duplicate retraction events.  

6. Canonical Result Verification 

6.1 Query Translation 
We test the functional correctness of the StreamInsight engine by 

first executing the generated streaming query over the generated 

event stream. In order to verify the result of the streaming query, 

technical report [18] leverages the CEDR temporal algebra and 

operator semantics that StreamInsight is based on. Briefly, the 

well-defined operator semantics and our use of application time 

instead of system time enable us to translate any StreamInsight 

query into a sequence of SQL queries with the following property: 

Given a streaming query operating on a physical stream S1 and 

producing physical stream S2 as result, the corresponding 

sequence of SQL queries applied to CHT(S1) produces table 

CHT(S2). 

Here, CHT(S) refers to the canonical history table (see Section 2) 

corresponding to the event stream S. Note that any physical 

stream can be converted into its canonical form by removing all 

CTIs and applying retractions to the corresponding insert events. 

It has been shown [18] that any streaming query can be converted 

into an equivalent sequence of SQL queries. 

6.2 Expression Translation 
This step translates all expressions (if any) that are part of the 

streaming query. For example, in case of the join operator, the 

join predicate expression and the project expressions are 

translated. The test framework could have attempted to translate 

every streaming expression into a corresponding SQL expression 

using the SQL expression services and type system. However, this 

would create a disparity because StreamInsight is based on the 

CLR (Common Language Runtime) type system whereas SQL 

defines its own type system. Additionally, certain types like 

System.TimeSpan are not available in SQL Server.  

Instead, we leverage SQL CLR for this purpose. Every primitive 

StreamInsight type is wrapped into a SQL CLR User Defined 

Type (UDT) and provisioned in SQL Server. A Data property on 

the UDT returns the actual C# primitive type.  Any expression in 

StreamInsight can be represented as a C# expression because it 

uses CLR as the basis of its expression services. The abstract 

expression tree from the declarative component is transformed 

into a C# expression. This C# expression is wrapped into a SQL 

CLR User Defined function and provisioned in SQL Server. The 

payload fields in the expression become input parameters to the 

SQL CLR user defined function and the return type of the UDF is 

the C# return type of the expression. The SQL CLR UDF is then 

used in its parent operator in the appropriate context. For 

example, if it is a join operator, the UDF is the join predicate and 

if it is a select operator, the UDF is the filter predicate.  

This technique of using SQL CLR UDFs allows the test 

framework to avoid issues involved with translating arbitrary C# 

expressions into SQL expressions using the SQL type system. 



Although SQL CLR UDFs are used for payload fields, the 

datetime2 SQL type is used for representing the application time 

of StreamInsight events. This is because datetime2 is equivalent 

to the CLR System.DateTime type. 

6.3 Output Stream Verification 
The event stream generated by StreamInsight is persisted in the 

SQL Server table by the output adapter. The output stream verifier 

is a collection of SQL stored procedures which are executed over 

the persisted table. The following properties are verified: 

- Absence of any CTI violations (i.e., an event that modifies a 

time t that is earlier than the most recent CTI).  

- Stream shape, i.e., whether the shape (point, edge, interval) 

is identical the one specified by the tester 

- Stream ordering, i.e., whether the events are fully ordered 

(by LE) or ordering is assured only across an insert and its 

subsequent lifetime modifications. 

We verify the correctness of the output stream using the following 

steps: 

1. Transform the input stream into a CHT C1 

2. Translate the streaming query and the expressions into a 

sequence of SQL queries D1 

3. Run the streaming query S1 on StreamInsight and generate 

the corresponding output stream CHT C2 

4. Execute query sequence D1 (on SQL Server) over a database 

table T1 corresponding to C1, to generate an output table T2 

5. Finally, test the table T2 for equivalence with CHT C2. A 

mismatch in the results indicates a bug in StreamInsight, 

assuming no errors in either the SQL Server query processor 

or our SQL query generator. 

7. Extensibility and Reusability 
In this section, we describe three major themes in the proposed 

test framework that promote extensibility and reusability of the 

framework for future scenarios. First, the adoption of the 

declarative testing approach was one of the main aspects which 

enabled us to design robust workflow that is able to keep up with 

growing demands and complexity of the StreamInsight engine 

during its development. As the streaming language constructs 

mature over years and as the operator semantics are agreed upon, 

the declarative approach secures the test scenarios from the need 

to be edited or changed. Moreover, additional languages (other 

than XML and LINQ) can be supported by adding additional 

language transformers to the test architecture. 

Second, thanks to the canonical result verifier, more operators can 

be added to the StreamInsight engine and integrated in the test 

framework without the need to worry about the verification of the 

operator’s functional correctness. As long as the new operator is 

expressed in an equivalent SQL sequence of statements, the SQL 

Language Transformer is augmented to include these statements 

and other components in the test framework remain intact. 

Third, the proposed framework is capable of composing 

declarative test scenarios to formulate complex test scenarios. 

Thanks to the stream-in/stream-out feature of streaming operators. 

The output of one test scenario is fed as input to another test 

scenario. Alternatively, one test scenario can be embedded as a 

node in another test scenario. This approach tests the cross 

interaction among streaming operators as more operators are 

added to the system. It also facilitates implementation of rich test 

models which can be used both to create intent trees and enrich 

Intent Transformer to generate multiple concrete trees within 

constraints of initial intent tree. 

8. Conclusions 
In this paper we presented a declarative testing approach to 

transform the tester’s intent into a streaming query. We elaborated 

the challenges that face the testing of a data streaming system that 

include the real time nature of stream events with a likelihood of 

late and out-of-order events.  The proposed test framework has 

been designed to cope with differences between traditional 

database systems and data stream systems. The notions of 

extensibility and reusability have been given a priority to foresee 

the expected growth in the requirements and semantics of 

continuous query processing as it gets more popular amongst 

database vendors. 
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