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1 Introduction 
This document contains the cryptographic specification for the U-Prove technology. It allows developers to 

create interoperable implementations of U-Prove protocol participants. See [UPTO] for an overview of the U-

Prove technology, and [Brands] for background information about the cryptographic protocols. Application-

specific behavior such as U-Prove token contents and encoding, and protocol extensions, must be defined in 

external documents. 

1.1 Notation 
The following notation is used throughout the document. 

𝑎 ∈ 𝐴 Indicates that element 𝑎 is in set 𝐴. If 𝑎 is a list, then all its elements are in 𝐴. 

𝐴 ⊆ 𝐵 Indicates that the set 𝐴 is a subset of or equal to set 𝐵. 

𝐴 ∪ 𝐵 The union of the sets 𝐴 and 𝐵. 

𝐴 − 𝐵 When 𝐴 and 𝐵 are sets, this represents the set of elements present in 𝐴 but not 

in 𝐵. 

 

{0,1}∗ The set of all octet strings with a minimum length of 0 (the empty string) up to a 

maximum length of 232 − 1. 

 

{0, 1, … , 𝑛, 𝑡} A set of index values from 0 to 𝑛, plus a special last value labeled 𝑡. The number 

𝑛 could be 0, in which case the set is equal to {0, 𝑡}. In an implementation, it is 

safe to assume that 𝑡 = 𝑛 + 1. 

 

ℤ𝑞 The set of integers modulo 𝑞, i.e., {0, 1, … , 𝑞 − 1}. In this document, 𝑞 is always 

a large prime number. 

 

ℤ𝑞
∗  The multiplicative subgroup of ℤ𝑞. For a prime number 𝑞 this is {1, … , 𝑞 − 1}. 

𝐺𝑞  An algebraic group of prime order 𝑞. This document defines two group 

constructions: one based on a subgroup of a finite field and one based on 

elliptic curves over a prime field, see Section 2.1. For uniformity, the 

multiplicative notation of the subgroup construction is used throughout; as such, 

when using the elliptic curve construction it should be understood that 𝑎𝑏 

represents the group addition of points 𝑎 and 𝑏, and that 𝑎𝑏 represents the 

scalar multiplication of point 𝑎 by the integer 𝑏. 

 

Ø The null value, a zero-length octet string. 

0x Prefix of a hexadecimal value. For example, 0x39c3 represents the two octet 

values 39 and c3 in sequence. 

 

𝐝 A Boolean value used to indicate whether or not a token is Device-protected. 

𝐝 ̅ Negation of the Boolean value 𝐝. 

𝑎𝑏 Group operation of elements 𝑎 and 𝑏. For elements of ℤ𝑞, 𝑎𝑏 means 𝑎 ×

𝑏 mod 𝑞; for clarity, we write mod 𝑞 explicitly in this case. For elements of 𝐺𝑞 , 

the meaning of 𝑎𝑏 depends on the group construction (Section 2.1): for the 

subgroup construction, it means 𝑎 × 𝑏 mod 𝑝; for the elliptic curve construction, 

it means the group addition of points 𝑎 and 𝑏.  
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𝑎−𝑏 If 𝑏 = 1, then this represents the group inverse of element 𝑎. If 𝑏 > 1, this is 

equivalent to (𝑎𝑏)−1. In this document, this operation is always performed in 𝐺𝑞  

or in ℤ𝑞. 

 

𝑎 ∶= 𝑏 Assign value 𝑏 to element 𝑎. 

𝑎||𝑏 The binary concatenation of 𝑎 and 𝑏. 

ℋ(…) Hash the input data represented by the ellipsis in a fixed order, see Section 2.2 

for hash input formatting. 

 

ℋ𝑟𝑎𝑤(𝑋) Hash the octet string 𝑋 directly without formatting (meaning without prepending 

its length). 

 

ℋ(…) → ℤ𝑞 Transform the outcome of a hash operation into an element of ℤ𝑞, see Section 

2.2. 

 

∏ 𝑎𝑖𝑖∈𝐼   Multiply all the values 𝑎𝑖 for which 𝑖 ∈ 𝐼. 

[𝑋]𝐚 Represents an optional operation (perform action 𝑋 only if Boolean 𝐚 is true) or 

an optional parameter (𝑋 is present only if Boolean 𝐚 is true). 

 

〈… 〉 A list of values to be hashed, see Section 2.2. 

 

In protocol descriptions, the statement “Verify X” indicates that an error should be returned and the protocol 

aborted if X does not hold. 

The key words “MUST”, “MUST NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document 

are to be interpreted as described in [RFC 2119]. 

1.2 Technology overview 
The following is a brief summary of the U-Prove Technology Overview document [UPTO], which elaborates on 

the nature and strength of the security and privacy properties of U-Prove tokens.  

A U-Prove token is a digitally signed container of attribute information of any type. It is issued to a Prover by an 

Issuer via an issuance protocol, and is subsequently presented by the Prover to a Verifier via a presentation 

protocol. The Prover can also non-interactively use U-Prove tokens to sign data and documents. 

Each U-Prove token corresponds to a unique private key that the Prover generates in the issuance protocol. 

When using a U-Prove token, the Prover applies the token’s private key to a message to create a presentation 

proof. This proof is a proof-of-possession of the private key as well as a digital signature of the Prover on the 

message. When presenting the token to a Verifier, the message can be used as a presentation challenge to 

prevent replay attacks. When the Prover uses the token non-interactively, the signed message can later be 

verified by any Verifier. The U-Prove token, the presentation proof, and the message can be kept in an audit log 

for later verification. 

The use of a U-Prove token does not reveal its private key; this ensures that the token cannot be stolen 

through eavesdropping or phishing and prevents unauthorized replay by legitimate Verifiers. Arbitrarily many 

presentation proofs or signatures may be created with the same U-Prove token. 
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A U-Prove token can be made more informative at issuance time by encoding application-specific attribute 

information of any type into any of the following token fields: 

 The token information field contains a value 𝑇𝐼 encoded by the Issuer that is always disclosed when 

the Prover uses the U-Prove token. A typical use of this field is to encode token metadata, such as a 

validity period. 

 The attribute fields contain values (Α1, … , Α𝑛) encoded by the Issuer; the Prover can selectively hide or 

disclose the value of each field when using the U-Prove token. 

 The Prover information field contains a value 𝑃𝐼 encoded by the Prover; it is invisible to the Issuer, but 

is always disclosed when using the U-Prove token. 

A universally unique token identifier can be computed from each U-Prove token. The Issuer cannot learn any 

information about this value at issuance time; as a result, it cannot be used to correlate a presented U-Prove 

token to its specific issuance instance. Token identifiers are particularly useful to identify repeat visitors and 

for token revocation. 

The verification of a U-Prove token and a corresponding presentation proof requires only an authentic copy of 

the Issuer parameters under which the U-Prove token was issued. The Issuer parameters are generated and 

distributed by the Issuer. 

An Issuer can issue a U-Prove token to a Prover in such a manner that the Prover cannot use the token without 

the assistance of a trusted Device (e.g., a smartcard, a mobile phone, or an online server). The Device can 

efficiently protect multiple tokens issued by any number of Issuers, and can dynamically (i.e., at token use 

time) enforce policies on behalf of the Issuer, Verifiers, or third parties — all without being able to compromise 

the Prover’s privacy and without needing to interact with the Issuer. 

The Prover can present a pseudonym derived from one token attribute that is unique to a particular scope. This 

allows Verifiers to recognize repeat visitors even if they present different U-Prove tokens, as long as they 

encode the same attribute. 

The features included in this specification have been selected to support the majority of today’s identity 

scenarios. There are, however, many extensions compatible with the U-Prove technology that can be 

implemented externally. At presentation time, a Prover can generate cryptographic commitments to encoded 

attributes, allowing external modules to provide additional functionality to this core specification, such as 

revocation, identity escrow, and advanced predicate proofs on the attributes. 

In contrast to PKI certificates and other conventional authentication technologies, U-Prove tokens do not 

contain any unnecessary “correlation handles;” the degree to which the use of a U-Prove token can be traced 

to its issuance instance or linked to other uses of tokens of the same Prover is determined solely by the 

application-specific attribute information disclosed by the Prover. This privacy property holds even in the face 

of collusion between Verifiers and the Issuer. 

Issuer, Prover, Verifier, and Device are basic roles. In practice, multiple roles may be performed by the same 

entity or a role may be split across several entities. 
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2 Protocol specification 
The U-Prove protocols and their related artifacts are specified in this section. A conforming implementation 

MAY implement any combination of the Issuer, Prover, Verifier, and Device roles. 

All protocol participants MUST check that all externally received mathematical elements belong to their 

corresponding algebraic structures prior to relying on or computing with them; failure to do so may result in 

critical security or privacy problems. For an element 𝑥 ∈ ℤ𝑞, this means verifying that 0 ≤ 𝑥 < 𝑞. For an 

element 𝑥 ∈ 𝐺𝑞 , it is sufficient for the purpose of this specification to verify that 0 < 𝑥 < 𝑝 when using the 

subgroup construction, and to make sure the curve equation holds when using the elliptic curve 

constructions.1 

Test vectors from [UPCTV] can be used to validate implementations of the cryptographic protocols. 

2.1 Group description 
This document defines two constructions2 for the group 𝐺𝑞  in which it is infeasible to compute discrete 

logarithms.3 Either constructions MAY be used for the U-Prove protocols. Each construction is specified by a 

description desc(𝐺𝑞): 

 Subgroup construction: The description desc(𝐺𝑞) = (𝑝, 𝑞, 𝑔) specifies a subgroup 𝐺𝑞  of prime order 𝑞 of a 

finite field of order 𝑝. Both 𝑝 and 𝑞 are prime numbers, 𝑞 divides 𝑝 − 1, and 𝑔 is a generator of 𝐺𝑞 . It is 

RECOMMENDED to use the method defined in Appendix A of [FIPS186-3] to generate the group 

description (𝑝, 𝑞, 𝑔); an implementation SHOULD support the values defined in [UPRPP] generated using 

this procedure. An element 𝑎 is in 𝐺𝑞  (𝑎 ∈ 𝐺𝑞) if 1 < 𝑎 < 𝑝 and 𝑎𝑞  mod 𝑝 = 1. 

 Elliptic curve construction: The description desc(𝐺𝑞) = (𝑝, 𝑎, 𝑏, 𝑔, 𝑞, 1) specifies an elliptic curve over a 

finite field 𝔽𝑝, where 𝑝 is a prime number, 𝑎 and 𝑏 are two field elements defining the elliptic curve, 𝑔 is a 

base point (𝑔𝑥, 𝑔𝑦) of prime-order 𝑞 on the curve (and the generator of 𝐺𝑞), 𝑞 is the order of the group, and 

1 is the cofactor of the curve. An implementation SHOULD support the elliptic curve construction, and if it 

does, it MUST support the curves over prime fields defined in [UPRPP]. An element 𝑎 is in 𝐺𝑞 (𝑎 ∈ 𝐺𝑞) if the 

curve equation holds and 𝑎𝑞 = 1.4 

2.2 Hash algorithm 
To prevent ambiguous interpretations of the inputs to a hash algorithm, input data MUST be encoded as 

follows, depending on its type: 

 A byte (a.k.a. an octet): the value is encoded directly. 

 The length of an octet string, the length of a list, and the index of an attribute: the binary value is 

conditionally zero-extended to a length of 32 bits. The four bytes forming the extended value are then 

                                                           
1 The proper test is to verify that 𝑥𝑞 mod 𝑝 = 1. Since this is an expensive operation, it is explicitly specified 

when needed in the protocols; otherwise, non-group elements are detected by the receiving party’s protocol 

verification procedures. 
2 See Section 2.2.2 of [Brands] for more information on these group constructions. 
3 The security properties of U-Prove tokens rely on this assumption. The privacy properties, on the other hand, 

hold unconditionally, limited only by the quality of the Prover-generated random numbers. 
4 Only curves with prime order are allowed by this specification. Since the cofactor is 1 for curves of prime 

order, all curve points are part of the group, and therefore checking that the curve equation holds is enough to 

verify that a point is part of the group. 
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encoded, leading with the most-significant byte (e.g., the value 11588062 is encoded as 

0x00b0d1de). Such values are therefore in the range {0, … , 232 − 1}; larger values MUST be rejected. 

 An octet string: the length of the string is encoded followed by the contents of the string (e.g., the 

string 0x01fe is encoded as 0x0000000201fe). 

 An element of ℤ𝑞, an element of 𝐺𝑞 , the values 𝑝 and 𝑞 in desc(𝐺𝑞) for a subgroup construction, and 

the values 𝑝, 𝑎, 𝑏 and 𝑞 in desc(𝐺𝑞) for an elliptic curve construction: the binary value is conditionally 

zero-extended to make its length a multiple of 8 bits (the value 0 is zero-extended to a full 8 bits). The 

bytes forming the extended value are then encoded as an octet string, leading with the most-

significant byte (e.g., the number 254666256150 is encoded as 0x000000053b4b4aaf16). 

 A list (delimited with 〈… 〉): the length of the list is encoded followed by the recursive encoding of the 

list elements, in order. 

 The null value (Ø): a zero-length octet string is encoded, yielding the sequence 0x00000000. 

 A point 𝑒 = (𝑒𝑥 , 𝑒𝑦) on an elliptic curve (all elements of 𝐺𝑞  when using the elliptic curve construction): 

the point is converted to an octet string following the procedure described in Section 2.3.3 of [SEC1], 

without using point compression.  

To transform the outcome of a hash operation into an element of ℤ𝑞, when ℋ(…) → ℤ𝑞 is used, the hash 

digest bytes are interpreted as an unsigned integer in big-endian byte-order modulo 𝑞. 

The security of the protocols critically depends on the choice of the hash function, see section 3.2. 

2.3 Basic primitives 
In this section, we provide the mathematical specification of all artifacts related to U-Prove tokens. 

2.3.1 Issuer parameters 
An instance of the Issuer parameters is of the form 

UIDP, 𝑑𝑒𝑠𝑐(𝐺𝑞),UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆 

where: 

 UIDP is an octet string that holds an application-specific unique identifier for the Issuer parameters, 

the value of which MUST be unique across the application realm.5 

 desc(𝐺𝑞) specifies a group 𝐺𝑞  of prime order 𝑞 in which it is infeasible to compute discrete logarithms. 

Two constructions are supported in this specification: the subgroup construction and the elliptic curve 

construction, see Section 2.1. 

 UIDℋ is an identifier of a cryptographically secure hash algorithm, see Section 3.2 for details on the 

security requirements for the hash algorithm. 

 (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) is the Issuer’s public key. To generate 𝑔0, the Issuer generates a private key 𝑦0 at 

random from ℤ𝑞
∗  and computes 𝑔0 ≔ 𝑔𝑦0 . The private key 𝑦0 needs to be protected appropriately. The 

remaining 𝑔𝑖 values MUST be random generators of 𝐺𝑞 . An implementation SHOULD support the pre-

generated (𝑔1, … , 𝑔50) values defined in [UPRPP] for the group constructions it supports. 

 (e1, … , e𝑛) is a list of byte values indicating whether or not the attribute values (Α1, … , Α𝑛) are hashed 

when computing a U-Prove token public key ℎ, see Section 2.3.5. 

 S is an octet string that holds an application-specific specification for the Issuer parameters and the U-

Prove tokens issued using them. 

                                                           
5 For example, an application MAY choose to make the UIDP the digest of the other fields using UIDℋ as a 

hash function. 
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The application-specific value 𝑛 specifies the number of attributes encoded into each U-Prove token that will 

be issued using these Issuer parameters. If no attributes are to be encoded, then the Issuer’s public key 

becomes (𝑔0, 𝑔𝑡), and the list of 𝑒𝑖 values is empty. 

The same group description 𝑑𝑒𝑠𝑐(𝐺𝑞), hash algorithm identifier UIDℋ, and the public values (𝑔1, … , 𝑔𝑛, 𝑔𝑡) 

MAY be reused in different instances of Issuer parameters, even by different Issuers.6 Each Issuer SHOULD, 

however, generate its own private key 𝑦0 and its own 𝑔0. 

To be assured of the privacy properties of U-Prove tokens,7 Provers and Verifiers SHOULD verify any Issuer 

parameters they rely on.8 This verification, specified in Figure 1, involves verifying that the group 𝐺𝑞  (if using 

the subgroup construction) and the Issuer public key (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) are well-formed.9 Verification of the 

group 𝐺𝑞  and generators (𝑔1, … , 𝑔𝑛, 𝑔𝑡) MAY be skipped when using the recommended values defined in 

[UPRPP]. 

 

Figure 1: Verify the Issuer parameters 

In addition, Provers and Verifiers SHOULD ensure that the application-specific specification 𝑆 complies with 

their own policy. The distribution and trust management of the Issuer parameters are outside the scope of this 

document, see Section 3.6. 

2.3.2 Device parameters 
When U-Prove tokens are Device-protected, protocol participants require additional setup data: 

 𝑔𝑑 ∈ 𝐺𝑞  is the Device generator. It MUST be a generator of 𝐺𝑞 . This value is either generated by the 

Issuer when creating the Issuer parameters or specified in a profile and shared by many Issuers and 

Devices. An implementation SHOULD support the pre-generated 𝑔𝑑 values defined in [UPRPP]. 

 𝑥𝑑 ∈ ℤ𝑞
∗  is the Device private key. It MUST only be known to the Device. It can either be generated at 

random, or derived from a secret using a strong derivation method (such as secure hash function). 

                                                           
6 In case Issuers don’t trust each other, they should verify that the values have been generated “verifiably at 

random” to ensure no Issuer knows any relative discrete logarithm of a generator with respect to any other 

generator. Using the values in [UPRPP] is recommended. 
7 See Section 4 of [UPTO]. 
8 The privacy properties of U-Prove tokens are guaranteed only if the Issuer parameters are valid; in particular, 

an Issuer that can get away with an invalid group might be able to trace or link issued U-Prove tokens with 

significant success probability. 
9 The verification procedure involves verifying that 𝑝 and 𝑞 are odd prime numbers. See Appendix C.3 of 

[FIPS186-3] for recommendations on how to achieve this (DSA uses the same type of group description). 

 

Input 

Group description: desc(𝐺𝑞) 

Public generators: (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞  

 

Verify 𝐺𝑞   (if 𝐺𝑞  is of the subgroup construction)  

Verify that 𝑝 and 𝑞 are odd prime numbers 

Verify that 𝑞 divides 𝑝 − 1 

Verify that 𝑔 ∈ 𝐺𝑞  and that 𝑔 ≠ 1 

 

Verify public key elements 

For each 𝑖 ∈ { 0,1, … , 𝑛, 𝑡} 

Verify that 𝑔𝑖 ∈ 𝐺𝑞 and that 𝑔𝑖 ≠ 1 
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The latter method is useful to generate a unique key pair per Issuer, to provide “Device 

unlinkability”.10 The Device MUST NOT, however, apply its private key on values from different groups 

𝐺𝑞 . 

 ℎ𝑑 = 𝑔𝑑
𝑥𝑑 ∈ 𝐺𝑞   is the Device public key. It is computed by the Device and made available to the Prover 

and the Issuer in the issuance protocol. The Issuer and Prover MUST check that the Device public key 

is a valid element of 𝐺𝑞 , see Section 2.1. 

The distribution and trust management of the Device parameters are outside the scope of this document, see 

Section 3.6. 

2.3.3 U-Prove token 
A U-Prove token is of the form 

UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝 

where: 

 UIDP is the unique identifier of the Issuer parameters under which the U-Prove token was issued, see 

Section 2.3.1. 

 ℎ ∈ 𝐺𝑞  is the public key of the U-Prove token, see Section 2.3.5. 

 𝑇𝐼 ∈ {0,1}∗ is the value of the token information field. The token information field is used to encode 

token-specific information that is always disclosed to Verifiers, such as token usage restrictions, a 

validity period (see Section 3.3), or token metadata. 

 𝑃𝐼 ∈ {0,1}∗ is the value of the Prover information field. The Prover information field is used to encode 

Prover-asserted information hidden from the Issuer, such as contact information, an encryption key, or 

a Verifier-supplied nonce to guarantee freshness of the U-Prove token (see Section 3.3). 𝑃𝐼 is always 

revealed during token presentation. 

 𝜎𝑧
′ ∈ 𝐺𝑞  and (𝜎𝑐

′, 𝜎𝑟
′) ∈ ℤ𝑞 form the Issuer’s signature on all the other token contents, see Section 

2.3.6. 

 Boolean 𝐝 indicates if the token is protected by a Device (true) or not (false). 

For the cryptographic specification of the issuance protocol in which these elements are processed or 

generated, see Section 2.4. 

2.3.4 U-Prove token private key 

The private key of the U-Prove token, corresponding to its public key ℎ, is the value 𝛼−1 ∈ ℤ𝑞
∗ , the modular 

multiplicative inverse of a secret value 𝛼 ∈ ℤ𝑞
∗  that the Prover generates in the issuance protocol; see Section 

2.4. 

The application-specific attribute values (Α1, … , Α𝑛) ∈ {0,1}∗ encoded into the U-Prove token are not part of the 

private key per se; they are typically shared among multiple U-Prove tokens and are selectively disclosed to 

Verifiers. However, since they are all needed to use the U-Prove token and may contain confidential user 

information, they SHOULD be kept secret and be handled with similar care as the private key. 

2.3.5 U-Prove token public key 

The public key ℎ ∈ 𝐺𝑞  of a U-Prove token is of the form 

                                                           
10 The Device’s public key acts as a unique identifier for the Prover if reused across multiple Issuers (although 

this is value is never seen by Verifiers). Using a per-Issuer value prevents Issuers from determining that they 

are issuing tokens to the same Prover based on the Device’s public key. 
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ℎ = (𝑔0𝑔1
𝑥1 …𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[𝑔𝑑

𝑥𝑑]
𝐝
)𝛼  

where: 

 (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞  is the Issuer’s public key, taken from the Issuer parameters under which the U-

Prove token was issued; see Section 2.3.1. 

 𝛼 ∈ ℤ𝑞
∗  is a secret value generated by the Prover to randomize the public key ℎ, see Section 2.4. 

 𝑥𝑡 ∈ ℤ𝑞  is computed by hashing the issuance protocol version 0x01, a digest of the Issuer parameters, 

and the token information field value 𝑇𝐼; see Figure 2. 

 The optional 𝑔𝑑 ∈ 𝐺𝑞 , present if the token is protected by a Device (𝐝 = 𝐭𝐫𝐮𝐞), is the public Device 

generator. 𝑥𝑑 ∈ ℤ𝑞 is the Device private key, known only by the Device. The Device public key ℎ𝑑 =

𝑔𝑑
𝑥𝑑  allows the Prover to compute the token public key ℎ. See Section 2.3.2. 

 𝑥𝑖 ∈ ℤ𝑞 (1 ≤ 𝑖 ≤ 𝑛) is obtained from the corresponding attribute value Α𝑖 either by hashing it (if the 

Issuer parameters value e𝑖  is equal to 0x01) or by encoding it directly (if e𝑖  is equal to 0x00). In this 

latter case, the value Α𝑖 is interpreted as the binary encoding of an unsigned integer in big-endian 

byte-order, which must be smaller than 𝑞 to be a valid element of ℤ𝑞.11 For efficiency reasons, 𝑥𝑖 is set 

to zero if the value Α𝑖 is null (Ø) and e𝑖  is equal to 0x01. See Figure 3. 

 

ComputeXt(   ) 

 

Input 

Issuer parameter fields: UIDP, desc(𝐺𝑞), UIDℋ,(𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡),(e1, … , e𝑛), 𝑆 

Token information field:  𝑇𝐼 ∈ {0,1}∗ 
Device-protected Boolean: 𝐝  

[Device generator: 𝑔𝑑]𝐝 
 

Computation 

𝑃 ∶=  ℋ(UIDP, desc(𝐺𝑞), 〈𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡 , [𝑔𝑑]𝐝〉, 〈𝑒1, … , 𝑒𝑛〉, 𝑆) 

Return 𝑥𝑡 ≔ ℋ(0x01, 𝑃, 𝑇𝐼) → ℤ𝑞 

 

Figure 2: Function ComputeXt 

                                                           
11 Not hashing the value of an attribute may improve computational performance since the efficiency of 

computing a modular exponentiation depends on the exponent size: the hash digest is typically a large number 

in ℤ𝑞 even if the preimage is small. Not hashing the value is also preferred when encoding confidential 

information serving as a lending disincentive; see Section 3.5. 
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ComputeXi(   ) 

 

Input 

Issuer parameter fields:  𝑞,  UIDℋ , 𝑒𝑖 
Attribute value: Α𝑖 ∈ {0,1}∗ 

 

Computation 

If e𝑖  = 0x01 

If Α𝑖 =  Ø then 𝑥𝑖 ≔ 0 

Else 𝑥𝑖 ≔ ℋ(Α𝑖) → ℤ𝑞  

Else if e𝑖  = 0x00 

Verify that 0 ≤ Α𝑖 < 𝑞 

𝑥𝑖 ≔ Α𝑖 
Else return an error 

Return 𝑥𝑖 
 

Figure 3: Function ComputeXi 

The public key of a U-Prove token is computed by the Prover in the issuance protocol, see Section 2.4. It is 

never seen by the Issuer and therefore it cannot be used to correlate a presented U-Prove token to its specific 

issuance instance. 

2.3.6 Issuer’s signature 

The Issuer’s signature in the U-Prove token is composed of the values 𝜎𝑧
′ ∈ 𝐺𝑞  and (𝜎𝑐

′, 𝜎𝑟
′) ∈ ℤ𝑞. Its verification 

is specified in Figure 4. 

 

VerifyTokenSignature(   ) 

 

Input 

Issuer parameter fields:  desc(𝐺𝑞), UIDℋ , 𝑔0 

U-Prove token fields:  ℎ, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′ 

 

Verification 

Verify that ℎ ≠ 1 

Verify that 𝜎𝑐
′ = ℋ(ℎ, 𝑃𝐼,  𝜎𝑧

′,  𝑔𝜎𝑟
′
𝑔0
−𝜎𝑐

′

, ℎ𝜎𝑟
′
(𝜎𝑧

′)−𝜎𝑐
′
)  → ℤ𝑞 

 

Figure 4: Function VerifyTokenSignature 

The Issuer never sees the value of its signature and therefore it cannot be used to correlate a presented U-

Prove token to its specific issuance instance. 

2.3.7 Token identifier 

The token identifier UID𝒯 of a U-Prove token is computed by hashing the U-Prove token’s public key and the 

Issuer’s signature; see Figure 5. 
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ComputeTokenID(   ) 

 

Input 

Issuer parameters field:  UIDℋ 

U-Prove token fields: ℎ, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′ 

 

Computation 

Return UID𝒯 ∶=  ℋ(ℎ, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′) 

 

Figure 5: Function ComputeTokenID 

Owing to the security properties of the hash algorithm (see Section 3.2) and the fact that its inputs are 

generated mutually at random in the issuance protocol by the Prover and the Issuer (see Section 2.4), the 

token identifier of a U-Prove token is a unique random number (assuming the Issuer’s signature is correct). To 

be convinced of the uniqueness of the token identifier, participants SHOULD only accept Issuer parameters 

that specify hash algorithms they trust to be secure. 

2.4 Creating verifiable generators 
The protocols require that some group elements be generated verifiably without known relationships to other 

group elements. To achieve this, the derivation methods specified in the following sections are used. 

[UPRPP] defines pre-generated groups and associated generators that can be reused by many Issuers. The 

generators were created with the following procedures and this can be verified using these derivation methods. 

2.4.1 Subgroup construction 
Figure 6 describes the method to generate a verifiably random group element when the subgroup construction 

is used. The method is equivalent to the procedure defined in Appendix A.2.312 of [FIPS186-3] when 1) the 

subgroup was generated using the procedure defined in Appendix A.1.1.2 of the same document, 2) 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is 

set to the 𝑑𝑜𝑚𝑎𝑖𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑒𝑑 value resulting from that group generation procedure, and 3) UIDℋ 

identifies a FIPS-approved hash function also used to generate the group. 

 

ComputeVerifiablyRandomElement(   ) 

 

Input 

Issuer parameters fields:  UIDℋ , 𝑝, 𝑞 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {0,1}∗ 
𝑖𝑛𝑑𝑒𝑥 ∈ {0, … ,255} 
 

Computation 

𝑒 ≔ (𝑝 − 1)/𝑞 
byte 𝑐𝑜𝑢𝑛𝑡 ≔ 0 

𝑔 ≔ 0 
While 𝑔 < 2 

Verify that 𝑐𝑜𝑢𝑛𝑡 < 255 

𝑐𝑜𝑢𝑛𝑡 ≔ 𝑐𝑜𝑢𝑛𝑡 + 1 

𝑊 = ℋ𝑟𝑎𝑤(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 || 0𝑥6767656𝐸 || 𝑖𝑛𝑑𝑒𝑥 || 𝑐𝑜𝑢𝑛𝑡) 
𝑔 ≔ 𝑊𝑒mod 𝑝 

Return 𝑔 

 

Figure 6: Function ComputeVerifiablyRandomElement (subgroup construction) 

                                                           
12 The constant 0x6767656E parameters in the computation of 𝑊 comes from that procedure. 
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2.4.2 Elliptic curve construction 
Figure 7 describes the method to generate a random group element when the elliptic curve construction is 

used. The method was adapted from the procedure described in case I of section D.3.1 of [ANSI X9.62], with 

modified steps 1 and 5.13 Note that two 𝑦 values can be returned when computing the square root of 𝛼, so to 

insure interoperability between implementations, the smaller square root value is used. 14 

 

ComputeVerifiablyRandomElement(   ) 

 

Input 

Issuer parameters fields:  UIDℋ , 𝑝, 𝑎, 𝑏 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {0,1}∗ 
𝑖𝑛𝑑𝑒𝑥 ∈ {0, … ,255} 
 

Computation 

byte 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ∶=  0 

byte numIteration ≔ ⌈ bit length of  p / output bit length of ℋ⌉ 
While 𝑦 ≠ Ø 

For 0 ≤ byte 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≔ ℋ𝑟𝑎𝑤(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 || index || counter || iteration) 

𝑥 ≔ 𝑥0 || … || 𝑥𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 mod 𝑝 

𝑧 ≔ 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 

If 𝑧 = 0 then 𝑦 ≔ 0 

Else 

𝑦 ≔ √𝑧 mod 𝑝 

Verify that 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 255 

If 𝑦 =  Ø then 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≔ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

Return point (𝑥, min (𝑦, 𝑝 − 𝑦)) 
 

Figure 7: Function ComputeVerifiablyRandomElement (elliptic curve construction) 

2.5 Issuing U-Prove tokens 
The protocol for issuing a single U-Prove token is specified in Figure 8. Some clarifications are in order: 

 How the Issuer and Prover agree on the contents of the issued U-Prove token is outside the scope of 

this specification. 

 How the Device public key is provided to the Issuer and Prover is outside the scope of this 

specification. If the Issuer gets this value from the Prover, then it SHOULD be authenticated to make 

sure the Prover has access to the Device, and that the key corresponds to a valid Device. 

 The Prover’s and the Issuer’s precomputation steps MAY be performed as soon as the protocol inputs 

are known. 

 Multiple U-Prove tokens generated using identical common inputs MAY be issued in parallel, in which 

case the three exchanged protocol messages contain values for all the parallel issuance instances. 

When doing so, the Prover MAY specify different values for the Prover information field. The Prover 

SHOULD use fresh random numbers for each issuance instance. The computation of the Prover's 𝛾 

and 𝜎𝑧, and the Issuer's 𝛾 can be shared among all parallel protocol executions. To improve 

performance, the token signature validation can be batched using a probabilistic15 method: suppose 

                                                           
13 The modification enables the generation of a verifiably random 𝑥-coordinate, and iteration over a counter if 

the procedure fails. 
14 An algorithm to compute the square root modulo 𝑝 can be found in Annex D.1.4 of [ANSI X9.62]. 
15 The probability that the Prover accepts if one of the tokens is invalid is 2−ℓ, for a parameter ℓ. 
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we have 𝑘 tokens, and let 𝛼𝑖 , 𝜎𝑟𝑖
′ , 𝜎𝑐𝑖

′ , 𝜎𝑎𝑖
′ , 𝜎𝑏𝑖

′  be values from the 𝑖th token, and 𝛾, 𝑔, 𝑔0, 𝜎𝑧 be values that 

are shared across all the tokens. 

1. Choose 𝑛 random integers 𝑠1, … , 𝑠𝑘 from {1, … , 2ℓ} , for ℓ such that 2ℓ < 𝑞 

2. Compute 𝜌𝛼𝑟 ≔ ∑ 𝑠𝑖𝛼𝑖𝜎𝑟𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞  

3. 𝜌𝑟 ≔ ∑ 𝑠𝑖𝜎𝑟𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞  

4. 𝜌𝛼𝑐 ≔ ∑ 𝑠𝑖𝛼𝑖𝜎𝑐𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞  

5. 𝜌𝑐 ≔ ∑ 𝑠𝑖𝜎𝑐𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞 

6. Verify that ∏ (𝜎𝑎𝑖
′ 𝜎𝑏𝑖

′ )𝑠𝑖𝑘
1  = 𝑔𝜌𝑟𝛾𝜌𝛼𝑟𝑔0

−𝜌𝑐𝜎𝑧
−𝜌𝛼𝑐     

 If the Prover and the Issuer use different protocol inputs, or if one of them deviates from the issuance 

protocol, the protocol will result in a U-Prove token with an invalid Issuer’s signature. Signature 

verification by the Prover at the end of the issuance protocol ensures that issued U-Prove tokens are 

valid. In the interest of improved performance, however, the Prover MAY skip verification of the 

Issuer’s response 𝜎𝑟 and instead verify the Issuer’s signature before using the U-Prove token (see 

Figure 4). 

 The issuance protocol cannot be implemented in a stateless manner. Concretely, the Issuer MUST 

NOT export the value 𝑤 (even in encrypted form) to the Prover when sending the first issuance 

message since doing so would allow an attacker to compute its private key. 

 Upon completion of the protocol, the Issuer MUST delete the value 𝑤; its leakage would allow the 

computation of its private key. Similarly, the value 𝑤 MUST NOT be reused. The Prover SHOULD delete 

the values , 𝛽1, 𝛽2, 𝑡𝑎, and 𝑡𝑏. 

 Apart from the token information value 𝑇𝐼 and any Prover-disclosed values Α𝑖, there is nothing in a U-

Prove token that can be used to trace its use to its issuance or to link it to other U-Prove tokens of the 

same Prover. If an application relies on the untraceability and unlinkability of U-Prove tokens, 

precautions should be put in place to prevent information leakage through these fields. Specifically, 

the possible field values SHOULD be clearly defined in the Issuer parameters’ specification 𝑆, and the 

Prover SHOULD have a means to inspect and boycott inappropriate values. 

 The Issuer MUST make sure Device public key ℎ𝑑 is well-formed and is associated with the Prover. 

 This protocol is based on the techniques described in Section 4.5.2 of [Brands]. 
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Common input 

Issuer parameters: 𝐼𝑃 = UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆 

Application-specific attribute information: (Α1, … , Α𝑛), 𝑇𝐼 ∈ {0,1}∗ 
Device-protected Boolean: 𝐝 

[Device parameters: 𝑔𝑑 , ℎ𝑑]𝐝 
  

   

Prover  Issuer 

Input  Input 

𝑥𝑡 ∶=  ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝) 𝑥𝑡 ∶=  ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝) 
For each 𝑖 ∈ {1, … , 𝑛},  𝑥𝑖 ∶=  ComputeXi(𝐼𝑃, Α𝑖) For each 𝑖 ∈ {1, … , 𝑛},  𝑥𝑖 ∶=  ComputeXi(𝐼𝑃, Α𝑖) 

𝛾 ≔ 𝑔0𝑔1
𝑥1 …𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[ℎ𝑑]𝐝 𝛾 ≔ 𝑔0𝑔1

𝑥1 …𝑔𝑛
𝑥𝑛𝑔𝑡

𝑥𝑡[ℎ𝑑]𝐝  
Prover information field value: 𝑃𝐼 ∈ {0,1}∗ Private key: 𝑦0 ∈ ℤ𝑞 

 𝜎𝑧 ≔ 𝛾𝑦0  

  

Precomputation  Precomputation 

Generate 𝛼 at random from ℤ𝑞
∗   Generate 𝑤 at random from ℤ𝑞 

Generate 𝛽1 and 𝛽2 at random from ℤq 𝜎𝑎 ≔ 𝑔𝑤  

ℎ ≔ 𝛾𝛼  𝜎𝑏 ≔ 𝛾𝑤  

𝑡1 = 𝑔0
𝛽1𝑔𝛽2   

𝑡2 = ℎ𝛽2   

Compute 𝛼−1 mod 𝑞  First message 

          𝜎𝑧,   𝜎𝑎, 𝜎𝑏                
←                 

 

   

Second message   

𝜎𝑧
′ ≔ 𝜎𝑧

𝛼     

𝜎𝑎
′ ≔ 𝑡1𝜎𝑎    

𝜎𝑏
′ ≔ (𝜎𝑧

′)𝛽1𝑡2𝜎𝑏
𝛼     

𝜎𝑐
′ ≔ ℋ(ℎ, 𝑃𝐼, 𝜎𝑧

′, 𝜎𝑎
′ , 𝜎𝑏

′) → ℤ𝑞   

𝜎𝑐 ≔ 𝜎𝑐
′ + 𝛽1 mod 𝑞   

                  𝜎𝑐                  
→              

 

  Third message 

  𝜎𝑟 ≔ 𝜎𝑐𝑦0 +𝑤 mod 𝑞 
  Delete 𝑤 

                 𝜎𝑟                
←             

 

U-Prove token generation   

𝜎𝑟
′ ≔ 𝜎𝑟 + 𝛽2 mod 𝑞   

Verify that 𝜎𝑎
′𝜎𝑏

′ = (𝑔ℎ)𝜎𝑟
′
(𝑔0𝜎𝑧

′)−𝜎𝑐
′
 (RECOMMENDED) 

Delete 𝛽0, 𝛽1, 𝛽2, 𝑡1, 𝑡2 

Return   

U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝 

Private key: 𝛼−1 

 
Figure 8: Issuance protocol 

2.6 Presenting U-Prove tokens 
To present an issued U-Prove token 𝒯, the Prover transmits 𝒯 itself, the subset of the attribute values it 

expressly wants to disclose to the Verifier, and a presentation proof generated by applying its token private key 

to a message and the non-disclosed attribute values. Figure 9 specifies the generation by the Prover of a 
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presentation proof. Verification by the Verifier of the U-Prove token and the presentation proof is specified in 

Figure 10. Some clarifications are in order: 

 How the Prover, the Verifier and the optional Device agree on the protocol inputs and, more generally, 

the requirements to be met by the presented U-Prove token is outside the scope of this specification. 

 How the Prover invokes the Device if the token is Device-protected is outside the scope of this 

specification. 

 The presentation proof serves two security purposes: it proves the integrity and source authenticity of 

the Prover-disclosed attribute values, and establishes that the Prover owns the private key associated 

with the presented U-Prove token. The latter serves to prevent unauthorized token replay. 

 The presentation proof doubles as a digital signature on the application-specific message (𝑚,𝑚𝑑). 

The Prover can non-interactively use the presentation proof generation to create a digital signature on 

arbitrary data; a Verifier can at any later time verify the signature by performing the presentation proof 

verification. 

 The message (𝑚,𝑚𝑑)MAY be specified by either the Prover or the Verifier, depending on the 

application. If replay protection is required, then the message SHOULD contain a unique Verifier 

identifier and fresh information that cannot be predicted or anticipated (such as a cryptographic 

nonce); the Verifier SHOULD verify that it is in its scope and that the presentation proof is fresh.16 The 

𝑚 value of the message is only visible to the Prover and Verifier, and is normally used to encode the 

application-specific data. If a Device or an extension is used that requires direct access to some 

protocol data (for example, a policy for the Device), then 𝑚𝑑 MAY be used to encode this data; 

otherwise it can be left null. 

 The Prover MUST NOT reuse the 𝑤𝑖  random values when presenting the same U-Prove token. Similarly, 

the Device MUST NOT reuse the value 𝑤𝑑
′ . 

 A Verifier MAY skip the verification of the Issuer’s signature in a previously verified U-Prove token (i.e., 

in Figure 10, the call to VerifyTokenSignature function MAY be skipped). This is useful when 

verifying multiple presentation proofs created using the same U-Prove token, in parallel or over time. 

 Both the Prover and the Verifier MAY independently archive (e.g., in an audit log) the protocol inputs 

specified in Figure 10; this data constitutes an unforgeable proof of the token presentation. It MAY 

later be verified by any party following the procedure specified in Figure 10. 

 A Verifier MAY request the presentation of a scope-exclusive pseudonym, i.e., a pseudonym derived 

from a token attribute unique to a specific scope. An Issuer knowing the value of the attribute used to 

derive a pseudonym will be able to trace its usage, it is therefore RECOMMENDED to use a Device 

pseudonym if this is undesirable. The pseudonym generator  𝑔𝑠 can be precomputed by Provers and 

Verifiers if the same scope is used in multiple token presentations. 

 The Prover can cryptographically commit to the values encoded in some attributes to allow an external 

module to extend the functionality of this core specification. The commitments {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶  are 

needed by the Verifier and are part of the presentation proof, while the {�̃�𝑖}𝑖∈𝐶 values are secret and 

only used by the Prover’s extension modules. If the proof verifies, the Verifier has assurance that �̃�𝑖 is 

a commitment to the attribute value encoded in the token 𝒯. 

 This protocol is based on the techniques described in Section 3.3.1 and 6.3.1 of [Brands]. 

 

                                                           
16 This can be achieved by keeping the received presentation proof’s value 𝑎 indexed by the timestamp for a 

short period of time, and making sure that the same value is not received again. 
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Device  Prover 

Input  Input 

Issuer parameters fields: desc(𝐺𝑞),UIDℋ Issuer parameter fields: UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛 , 𝑔𝑡), (e1, … , e𝑛), 𝑆 

Device generator: 𝑔𝑑 Ordered indices of disclosed attributes: 𝐷 ⊂ {1,… , 𝑛} 
Private key: 𝑥𝑑 Ordered indices of undisclosed attributes: 𝑈 = {1,… , 𝑛} − 𝐷 

 Ordered indices of committed attributes: 𝐶 ⊂ 𝑈 

 Pseudonym attribute index: 𝑝 ∈ 𝑈 ∪ {𝑑} 
 Pseudonym scope: 𝑠 ∈ {0,1}∗ 
 Messages: 𝑚,𝑚𝑑 ∈ {0,1}∗ 

 U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝 

 Private key: 𝛼−1 ∈ ℤ𝑞 

 Attribute values: (Α1, … , Α𝑛) ∈ {0,1}∗ 
 [Device generator: 𝑔𝑑]𝐝 

  

  Presentation proof generation 

  For each 𝑖 ∈ {1, … , 𝑛},  𝑥𝑖 ≔ ComputeXi(𝐼𝑃, Α𝑖) 
Device commitment  Generate 𝑤0 [and 𝑤𝑑]𝐝  at random from ℤ𝑞 

Generate 𝑤′𝑑  at random from ℤ𝑞  For each 𝑖 ∈ 𝑈,  generate 𝑤𝑖  at random from ℤ𝑞 

𝑎𝑑 ≔ 𝑔𝑑
𝑤′𝑑 [

            𝑠                
←          ]

𝐝 and 𝑝=𝑑
 

If 𝑠 ≠ Ø  

𝑔𝑠:= GenerateScopeElement(desc(𝐺𝑞), 𝑠) 

𝑎𝑝
′ ≔ 𝑔𝑠

𝑤𝑑
′

 

𝑃𝑠 ≔ 𝑔𝑠
𝑥𝑑  

 

[
                 𝑎𝑑,[𝑎𝑝

′  ,   𝑃𝑠]𝑝=𝑑       
           

→                       ]

𝐝

 

  
𝑎 ∶= ℋ(ℎ𝑤0(∏ 𝑔𝑖

𝑤𝑖) [𝑔𝑑
𝑤𝑑𝑎𝑑]𝐝 

𝑖∈𝑈
) 

  If 𝑝 ≠ Ø and 𝑠 ≠ Ø,   

  𝑔𝑠 ≔ GenerateScopeElement(desc(𝐺𝑞), 𝑠) 
  𝑎𝑝 ≔ ℋ(𝑔𝑠

𝑤𝑝[𝑎𝑝
′ ]

𝑝=𝑑
) 

  [𝑃𝑠 ≔ 𝑔𝑠
𝑥𝑝]

𝑝≠𝑑
 

  Else 𝑎𝑝 ∶=  Ø and 𝑃𝑠 ≔  Ø 

  For each 𝑖 ∈ 𝐶 

  Generate �̃�𝑖 , �̃�𝑖 at random from ℤ𝑞 

  �̃�𝑖 ≔ 𝑔𝑥𝑖𝑔1
�̃�𝑖  

  �̃�𝑖 ≔ ℋ(𝑔𝑤𝑖𝑔1
�̃�𝑖) 

  UID𝒯 ≔ ComputeTokenID(𝐼𝑃, 𝒯) 
  If 𝑝 = 𝑑 then 𝑝′ ≔ 0 else 𝑝′ ≔ 𝑝 

  𝑐𝑝 ≔ ℋ(UID𝒯 , 𝑎, 〈𝐷〉, 〈{𝑥𝑖}𝑖∈𝐷〉, 〈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 𝑝
′, 𝑎𝑝, 𝑃𝑠 , 𝑚) 

  𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞 

  𝑟0 ≔ 𝑐𝛼−1 + 𝑤0 mod 𝑞 
  For each 𝑖 ∈ 𝑈,  𝑟𝑖 ≔ −𝑐𝑥𝑖 +𝑤𝑖  mod 𝑞 

   

 
[
            𝑐𝑝,   𝑚𝑑                   
←                ]

𝐝
 

(continued on next page)  
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Device response computation 

Process 𝑚𝑑 

  

𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞 

𝑟𝑑
′ ≔ −𝑐𝑥𝑑 + 𝑤′𝑑  mod 𝑞   

Delete 𝑤′𝑑  

[
                 𝑟𝑑

′
       

           
→             ]

𝐝

 

  [𝑟𝑑 ≔ 𝑟𝑑
′ + 𝑤𝑑   mod 𝑞]𝐝 

  For each 𝑖 ∈ 𝐶,  �̃�𝑖 ≔ −𝑐�̃�𝑖 + �̃�𝑖  mod 𝑞 

  Delete 𝑤0, {𝑤𝑖}𝑖∈𝑈, [𝑤𝑑]𝐝, {�̃�𝑖}𝑖∈𝐶 

  Return 

  Presentation proof: {𝐴𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈 , [𝑟𝑑]𝐝, {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶  

  Secret commitment values: {�̃�𝑖}𝑖∈𝐶 

   
Figure 9: Subset presentation proof generation 

 

 

Input 

Issuer parameter fields: 𝐼𝑃 = UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆 

Ordered indices of disclosed attributes: 𝐷 ⊂ {1,… , 𝑛} 
Ordered indices of undisclosed attributes: 𝑈 = {1,… , 𝑛} − 𝐷 

Ordered indices of committed attributes: 𝐶 ⊂ 𝑈 

U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝 

Pseudonym attribute index: 𝑝 ∈ 𝑈 ∪ {𝑑} 
Pseudonym scope: 𝑠 ∈ {0,1}∗ 
Messages: 𝑚,𝑚𝑑 ∈ {0,1}∗ 

Presentation proof: {Α𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈, [𝑟𝑑]𝐝, {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶 

[Device generator: 𝑔𝑑]𝐝 
 

U-Prove token verification 

VerifyTokenSignature(𝐼𝑃, 𝒯) 

 

Presentation proof verification 

𝑥𝑡 ≔ ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝) 
For each 𝑖 ∈ 𝐷, 𝑥𝑖 ≔ ComputeXi(𝐼𝑃, Α𝑖) 

UID𝒯 ≔ ComputeTokenID(𝐼𝑃, 𝒯) 
If 𝑝 = 𝑑 then 𝑝′ ≔ 0 else 𝑝′ ≔ 𝑝 

𝑐𝑝 ≔ ℋ(UID𝒯 , 𝑎, 〈𝐷〉, 〈{𝑥𝑖}𝑖∈𝐷〉, 〈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 𝑝
′, 𝑎𝑝, 𝑃𝑠, 𝑚) 

𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞  

Verify that 𝑎 = ℋ ((𝑔0𝑔𝑡
𝑥𝑡∏ 𝑔𝑖

𝑥𝑖
𝑖∈𝐷 )

−𝑐
ℎ𝑟0(∏ 𝑔𝑖

𝑟𝑖)[𝑔𝑑
𝑟𝑑]

𝐝𝑖∈𝑈 )  

If 𝑎𝑝 ≠ Ø and 𝑃𝑠 ≠ Ø 

𝑔𝑠 ≔ GenerateScopeElement(desc(𝐺𝑞), UIDℋ , 𝑠) 

Verify that 𝑎𝑝 = ℋ(𝑃𝑠
𝑐𝑔𝑠

𝑟𝑝
) 

For each 𝑖 ∈ 𝐶, verify that �̃�𝑖 = ℋ(�̃�𝑖
𝑐𝑔𝑟𝑖𝑔1

�̃�𝑖) 

 
Figure 10: Subset presentation proof verification 
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GenerateScopeElement(   ) 

 

Input 

Hash identifier: UIDℋ 

Group description:  desc(𝐺𝑞) 
Scope string: 𝑠 ∈ {0,1}∗ 

 

Compute scope generator 

Return 𝑔𝑠 ≔  ComputeVerifiablyRandomElement(UIDℋ , desc(𝐺𝑞), 𝑠, 0) 
 

Figure 11: Generate a group element given a Verifier scope 
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3 Security considerations 

3.1 Key sizes 
The performance and the security properties (but not the privacy properties) of the U-Prove protocols depend 

on the sizes of elements in 𝐺𝑞  and in ℤ𝑞. 

In contrast to conventional digital certificates, the size of the public key of a U-Prove token cannot be picked 

independently from the size of the Issuer's public key; all operations, for all participants, take place in the 

same group 𝐺𝑞 . As such, the selection of key sizes should be driven by the maximum lifetime requirements for 

both the Issuer's key pair and U-Prove tokens. 

When using the subgroup construction, minimum sizes for 𝑝 and 𝑞 of 2048 and 256 bits, respectively, are 

RECOMMENDED for long-term security. The level of security of the U-Prove protocols that results from a 

particular choice for the sizes of 𝑝 and 𝑞 is believed to be the same as that for DSS (see [FIPS 186-3]). When 

using the elliptic curve construction, the level of security is believed to be the same as in ECDSA (also see [FIPS 

186-3]). For general guidelines on picking key sizes to ensure the infeasibility of computing discrete logarithms 

in 𝐺𝑞 , see Section 5.6 of [SP 800-57]. 

3.2 Hash algorithm selection 
The hash algorithm specified in the Issuer parameters MUST be a cryptographically secure hash algorithm, 

meaning that it MUST be collision-intractable and behave as much as possible as a “random oracle.” 

Furthermore, the digest size of the hash algorithm SHOULD be close or equal to the size of 𝑞. A good choice 

would be the hash function from the SHA family (see [FIPS 180-4]) matching the size of 𝑞. In light of state-of-

the-art attacks on hash functions, a 256-bit 𝑞 is RECOMMENDED. 

3.3 Random number generation 
The strength of the security and privacy properties of U-Prove tokens for each protocol participant critically 

depend on both the quality and secrecy of the random numbers used by that participant in the protocols. For 

general guidance on how to generate strong random numbers, see [SP800-90]. 

3.4 Token lifetime 
Issuers can limit the lifetime of U-Prove tokens by encoding a validity period into them, for example in the token 

information field. Alternatively, a Verifier MAY request that a U-Prove token be obtained in real-time from the 

Issuer to guarantee the freshness of the attribute data. For security reasons, the Verifier SHOULD request that 

the presentation message 𝑚 be encoded into the token;17 for privacy reasons, the message SHOULD be 

encoded in the Prover information field.18 

3.5 Transferability disincentive 
An Issuer cannot cryptographically prevent a Prover from transferring a U-Prove token to another party, but it 

can provide a disincentive for doing so. Since all attribute values Α𝑖 are needed to generate a presentation 

proof, an Issuer could encode confidential information into one special attribute that is never disclosed. The 

attribute must be encoded directly, i.e., the corresponding Issuer parameter’s encoding type e𝑖  must be set to 

                                                           
17 If the message 𝑚 is unpredictable, then the Prover cannot obtain U-Prove tokens in advance. 
18 This is to prevent the Issuer and Verifier from linking the issuance and presentation protocols based on the 

message 𝑚. 
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0x00.19 To transfer a U-Prove token, the Prover would need to share this confidential information along with 

the private key. 

Alternatively, Device-protected tokens offer strong protection against unauthorized token transfer. 

3.6 Trust management 
The Issuer parameters are conceptually equivalent to the certificate of a Certificate Authority in a PKI. This 

specification does not define how trust is established among protocol participants. Conventional techniques 

can be used to securely share the Issuer and Device parameters with Provers and Verifiers; e.g., they could be 

signed with a key corresponding to a trusted X.509 CA certificate. Issuer and Device parameters could be 

obtained before the issuance or presentation protocol, downloaded from a trusted directory, or preinstalled by 

participants. 

3.7 Device-protected tokens 
When using Device-protected tokens, it is RECOMMENDED to use a recommended group and the associated 

Device generator 𝑔𝑑. Moreover, Issuers SHOULD only accept authenticated Device public keys ℎ𝑑 to make sure 

they are well-formed and belong to the user; otherwise users might try to modify token attributes values by 

providing a specially-crafted Device public key. 

For most operations, the Prover does not need to entrust their privacy or security to the Device, since the 

protocol is robust to Devices that deviate from the protocol (either maliciously or accidentally). However, when 

a scope-exclusive device pseudonym is used, the Prover sends the value 𝑃𝑠 = 𝑔𝑠
𝑥𝑑 to the Issuer without 

modification. In this case, collusion between the Device and Issuer, sharing knowledge of 𝑥𝑑 can identify the 

user. In applications where such collusion is possible, device pseudonyms SHOULD NOT be used. 
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19 Otherwise, the Prover could lend the token by sharing 𝑥𝑖 without disclosing the confidential hash input 𝛢𝑖. 
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