
U-Prove Cryptographic Specification V1.1
Revision 3

Microsoft Corporation

Authors: Christian Paquin, Greg Zaverucha

December 2013

© 2013 Microsoft Corporation. All rights reserved.

Summary
This document specifies the foundational U-Prove cryptographic protocols. It allows developers to

create interoperable implementations of U-Prove protocol participants.

Copyright License. Microsoft grants you a license under its copyrights in the specification to (a) make copies of the
specification to develop your implementation of the specification, and (b) distribute portions of the specification in
your implementation or your documentation of your implementation.

Patent Notice. Microsoft provides you certain patent rights for implementations of this specification under the
terms of Microsoft’s Open Specification Promise, available at
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx.

THIS SPECIFICATION IS PROVIDED "AS IS." MICROSOFT MAY CHANGE THIS SPECIFICATION
OR ITS OWN IMPLEMENTATIONS AT ANY TIME AND WITHOUT NOTICE. MICROSOFT MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, (1) AS TO THE
INFORMATION IN THIS SPECIFICATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; OR (2) THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS OR
OTHER RIGHTS.

http://approjects.co.za/?big=openspecifications/en/us/programs/osp/default.aspx

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 2

Contents
Summary .. 1

1 Introduction ... 4

1.1 Notation .. 4

1.2 Technology overview .. 5

2 Protocol specification ... 7

2.1 Group description ... 7

2.2 Hash algorithm ... 7

2.3 Basic primitives .. 8

2.3.1 Issuer parameters ... 8

2.3.2 Device parameters .. 9

2.3.3 U-Prove token .. 10

2.3.4 U-Prove token private key ... 10

2.3.5 U-Prove token public key ... 10

2.3.6 Issuer’s signature .. 12

2.3.7 Token identifier .. 12

2.4 Creating verifiable generators ... 13

2.4.1 Subgroup construction .. 13

2.4.2 Elliptic curve construction ... 14

2.5 Issuing U-Prove tokens .. 14

2.6 Presenting U-Prove tokens .. 16

3 Security considerations .. 21

3.1 Key sizes ... 21

3.2 Hash algorithm selection ... 21

3.3 Random number generation ... 21

3.4 Token lifetime ... 21

3.5 Transferability disincentive .. 21

3.6 Trust management ... 22

3.7 Device-protected tokens .. 22

Acknowledgments .. 22

References ... 23

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 3

List of Figures

Figure 1: Verify the Issuer parameters ... 9

Figure 2: Function ComputeXt ... 11

Figure 3: Function ComputeXi ... 12

Figure 4: Function VerifyTokenSignature ... 12
Figure 5: Function ComputeTokenID ... 13

Figure 6: Function ComputeVerifiablyRandomElement (subgroup construction)..................................... 13
Figure 7: Function ComputeVerifiablyRandomElement (elliptic curve construction) 14
Figure 8: Issuance protocol ... 16
Figure 9: Subset presentation proof generation .. 19
Figure 10: Subset presentation proof verification ... 19
Figure 11: Generate a group element given a Verifier scope ... 20

Change history

Version Description

Revision 1 Initial version. Released under the OSP at http://www.microsoft.com/u-

prove.

Revision 2

 Optimized issuance protocol: moved 𝜎𝑧 value computation from

Prover to Issuer (and therefore got rid of 𝑧𝑖 in the Issuer parameters),

and move some issuance Prover computations to the

precomputation phase.

 Modified challenge generation.

 Added the ability to generate commitments to attribute values to

extend the specification.

 Added the ability to present scope-exclusive pseudonyms from

attribute values.

Revision 3 Modified challenge generation in Section 2.6.

 Changed hash formatting in Section 2.4.

http://approjects.co.za/?big=u-prove
http://approjects.co.za/?big=u-prove

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 4

1 Introduction
This document contains the cryptographic specification for the U-Prove technology. It allows developers to

create interoperable implementations of U-Prove protocol participants. See [UPTO] for an overview of the U-

Prove technology, and [Brands] for background information about the cryptographic protocols. Application-

specific behavior such as U-Prove token contents and encoding, and protocol extensions, must be defined in

external documents.

1.1 Notation
The following notation is used throughout the document.

𝑎 ∈ 𝐴 Indicates that element 𝑎 is in set 𝐴. If 𝑎 is a list, then all its elements are in 𝐴.

𝐴 ⊆ 𝐵 Indicates that the set 𝐴 is a subset of or equal to set 𝐵.

𝐴 ∪ 𝐵 The union of the sets 𝐴 and 𝐵.

𝐴 − 𝐵 When 𝐴 and 𝐵 are sets, this represents the set of elements present in 𝐴 but not

in 𝐵.

{0,1}∗ The set of all octet strings with a minimum length of 0 (the empty string) up to a

maximum length of 232 − 1.

{0, 1, … , 𝑛, 𝑡} A set of index values from 0 to 𝑛, plus a special last value labeled 𝑡. The number

𝑛 could be 0, in which case the set is equal to {0, 𝑡}. In an implementation, it is

safe to assume that 𝑡 = 𝑛 + 1.

ℤ𝑞 The set of integers modulo 𝑞, i.e., {0, 1, … , 𝑞 − 1}. In this document, 𝑞 is always

a large prime number.

ℤ𝑞
∗ The multiplicative subgroup of ℤ𝑞. For a prime number 𝑞 this is {1, … , 𝑞 − 1}.

𝐺𝑞 An algebraic group of prime order 𝑞. This document defines two group

constructions: one based on a subgroup of a finite field and one based on

elliptic curves over a prime field, see Section 2.1. For uniformity, the

multiplicative notation of the subgroup construction is used throughout; as such,

when using the elliptic curve construction it should be understood that 𝑎𝑏

represents the group addition of points 𝑎 and 𝑏, and that 𝑎𝑏 represents the

scalar multiplication of point 𝑎 by the integer 𝑏.

Ø The null value, a zero-length octet string.

0x Prefix of a hexadecimal value. For example, 0x39c3 represents the two octet

values 39 and c3 in sequence.

𝐝 A Boolean value used to indicate whether or not a token is Device-protected.

𝐝 ̅ Negation of the Boolean value 𝐝.

𝑎𝑏 Group operation of elements 𝑎 and 𝑏. For elements of ℤ𝑞, 𝑎𝑏 means 𝑎 ×

𝑏 mod 𝑞; for clarity, we write mod 𝑞 explicitly in this case. For elements of 𝐺𝑞 ,

the meaning of 𝑎𝑏 depends on the group construction (Section 2.1): for the

subgroup construction, it means 𝑎 × 𝑏 mod 𝑝; for the elliptic curve construction,

it means the group addition of points 𝑎 and 𝑏.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 5

𝑎−𝑏 If 𝑏 = 1, then this represents the group inverse of element 𝑎. If 𝑏 > 1, this is

equivalent to (𝑎𝑏)−1. In this document, this operation is always performed in 𝐺𝑞

or in ℤ𝑞.

𝑎 ∶= 𝑏 Assign value 𝑏 to element 𝑎.

𝑎||𝑏 The binary concatenation of 𝑎 and 𝑏.

ℋ(…) Hash the input data represented by the ellipsis in a fixed order, see Section 2.2

for hash input formatting.

ℋ𝑟𝑎𝑤(𝑋) Hash the octet string 𝑋 directly without formatting (meaning without prepending

its length).

ℋ(…) → ℤ𝑞 Transform the outcome of a hash operation into an element of ℤ𝑞, see Section

2.2.

∏ 𝑎𝑖𝑖∈𝐼 Multiply all the values 𝑎𝑖 for which 𝑖 ∈ 𝐼.

[𝑋]𝐚 Represents an optional operation (perform action 𝑋 only if Boolean 𝐚 is true) or

an optional parameter (𝑋 is present only if Boolean 𝐚 is true).

〈… 〉 A list of values to be hashed, see Section 2.2.

In protocol descriptions, the statement “Verify X” indicates that an error should be returned and the protocol

aborted if X does not hold.

The key words “MUST”, “MUST NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document

are to be interpreted as described in [RFC 2119].

1.2 Technology overview
The following is a brief summary of the U-Prove Technology Overview document [UPTO], which elaborates on

the nature and strength of the security and privacy properties of U-Prove tokens.

A U-Prove token is a digitally signed container of attribute information of any type. It is issued to a Prover by an

Issuer via an issuance protocol, and is subsequently presented by the Prover to a Verifier via a presentation

protocol. The Prover can also non-interactively use U-Prove tokens to sign data and documents.

Each U-Prove token corresponds to a unique private key that the Prover generates in the issuance protocol.

When using a U-Prove token, the Prover applies the token’s private key to a message to create a presentation

proof. This proof is a proof-of-possession of the private key as well as a digital signature of the Prover on the

message. When presenting the token to a Verifier, the message can be used as a presentation challenge to

prevent replay attacks. When the Prover uses the token non-interactively, the signed message can later be

verified by any Verifier. The U-Prove token, the presentation proof, and the message can be kept in an audit log

for later verification.

The use of a U-Prove token does not reveal its private key; this ensures that the token cannot be stolen

through eavesdropping or phishing and prevents unauthorized replay by legitimate Verifiers. Arbitrarily many

presentation proofs or signatures may be created with the same U-Prove token.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 6

A U-Prove token can be made more informative at issuance time by encoding application-specific attribute

information of any type into any of the following token fields:

 The token information field contains a value 𝑇𝐼 encoded by the Issuer that is always disclosed when

the Prover uses the U-Prove token. A typical use of this field is to encode token metadata, such as a

validity period.

 The attribute fields contain values (Α1, … , Α𝑛) encoded by the Issuer; the Prover can selectively hide or

disclose the value of each field when using the U-Prove token.

 The Prover information field contains a value 𝑃𝐼 encoded by the Prover; it is invisible to the Issuer, but

is always disclosed when using the U-Prove token.

A universally unique token identifier can be computed from each U-Prove token. The Issuer cannot learn any

information about this value at issuance time; as a result, it cannot be used to correlate a presented U-Prove

token to its specific issuance instance. Token identifiers are particularly useful to identify repeat visitors and

for token revocation.

The verification of a U-Prove token and a corresponding presentation proof requires only an authentic copy of

the Issuer parameters under which the U-Prove token was issued. The Issuer parameters are generated and

distributed by the Issuer.

An Issuer can issue a U-Prove token to a Prover in such a manner that the Prover cannot use the token without

the assistance of a trusted Device (e.g., a smartcard, a mobile phone, or an online server). The Device can

efficiently protect multiple tokens issued by any number of Issuers, and can dynamically (i.e., at token use

time) enforce policies on behalf of the Issuer, Verifiers, or third parties — all without being able to compromise

the Prover’s privacy and without needing to interact with the Issuer.

The Prover can present a pseudonym derived from one token attribute that is unique to a particular scope. This

allows Verifiers to recognize repeat visitors even if they present different U-Prove tokens, as long as they

encode the same attribute.

The features included in this specification have been selected to support the majority of today’s identity

scenarios. There are, however, many extensions compatible with the U-Prove technology that can be

implemented externally. At presentation time, a Prover can generate cryptographic commitments to encoded

attributes, allowing external modules to provide additional functionality to this core specification, such as

revocation, identity escrow, and advanced predicate proofs on the attributes.

In contrast to PKI certificates and other conventional authentication technologies, U-Prove tokens do not

contain any unnecessary “correlation handles;” the degree to which the use of a U-Prove token can be traced

to its issuance instance or linked to other uses of tokens of the same Prover is determined solely by the

application-specific attribute information disclosed by the Prover. This privacy property holds even in the face

of collusion between Verifiers and the Issuer.

Issuer, Prover, Verifier, and Device are basic roles. In practice, multiple roles may be performed by the same

entity or a role may be split across several entities.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 7

2 Protocol specification
The U-Prove protocols and their related artifacts are specified in this section. A conforming implementation

MAY implement any combination of the Issuer, Prover, Verifier, and Device roles.

All protocol participants MUST check that all externally received mathematical elements belong to their

corresponding algebraic structures prior to relying on or computing with them; failure to do so may result in

critical security or privacy problems. For an element 𝑥 ∈ ℤ𝑞, this means verifying that 0 ≤ 𝑥 < 𝑞. For an

element 𝑥 ∈ 𝐺𝑞 , it is sufficient for the purpose of this specification to verify that 0 < 𝑥 < 𝑝 when using the

subgroup construction, and to make sure the curve equation holds when using the elliptic curve

constructions.1

Test vectors from [UPCTV] can be used to validate implementations of the cryptographic protocols.

2.1 Group description
This document defines two constructions2 for the group 𝐺𝑞 in which it is infeasible to compute discrete

logarithms.3 Either constructions MAY be used for the U-Prove protocols. Each construction is specified by a

description desc(𝐺𝑞):

 Subgroup construction: The description desc(𝐺𝑞) = (𝑝, 𝑞, 𝑔) specifies a subgroup 𝐺𝑞 of prime order 𝑞 of a

finite field of order 𝑝. Both 𝑝 and 𝑞 are prime numbers, 𝑞 divides 𝑝 − 1, and 𝑔 is a generator of 𝐺𝑞 . It is

RECOMMENDED to use the method defined in Appendix A of [FIPS186-3] to generate the group

description (𝑝, 𝑞, 𝑔); an implementation SHOULD support the values defined in [UPRPP] generated using

this procedure. An element 𝑎 is in 𝐺𝑞 (𝑎 ∈ 𝐺𝑞) if 1 < 𝑎 < 𝑝 and 𝑎𝑞 mod 𝑝 = 1.

 Elliptic curve construction: The description desc(𝐺𝑞) = (𝑝, 𝑎, 𝑏, 𝑔, 𝑞, 1) specifies an elliptic curve over a

finite field 𝔽𝑝, where 𝑝 is a prime number, 𝑎 and 𝑏 are two field elements defining the elliptic curve, 𝑔 is a

base point (𝑔𝑥, 𝑔𝑦) of prime-order 𝑞 on the curve (and the generator of 𝐺𝑞), 𝑞 is the order of the group, and

1 is the cofactor of the curve. An implementation SHOULD support the elliptic curve construction, and if it

does, it MUST support the curves over prime fields defined in [UPRPP]. An element 𝑎 is in 𝐺𝑞 (𝑎 ∈ 𝐺𝑞) if the

curve equation holds and 𝑎𝑞 = 1.4

2.2 Hash algorithm
To prevent ambiguous interpretations of the inputs to a hash algorithm, input data MUST be encoded as

follows, depending on its type:

 A byte (a.k.a. an octet): the value is encoded directly.

 The length of an octet string, the length of a list, and the index of an attribute: the binary value is

conditionally zero-extended to a length of 32 bits. The four bytes forming the extended value are then

1 The proper test is to verify that 𝑥𝑞 mod 𝑝 = 1. Since this is an expensive operation, it is explicitly specified

when needed in the protocols; otherwise, non-group elements are detected by the receiving party’s protocol

verification procedures.
2 See Section 2.2.2 of [Brands] for more information on these group constructions.
3 The security properties of U-Prove tokens rely on this assumption. The privacy properties, on the other hand,

hold unconditionally, limited only by the quality of the Prover-generated random numbers.
4 Only curves with prime order are allowed by this specification. Since the cofactor is 1 for curves of prime

order, all curve points are part of the group, and therefore checking that the curve equation holds is enough to

verify that a point is part of the group.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 8

encoded, leading with the most-significant byte (e.g., the value 11588062 is encoded as

0x00b0d1de). Such values are therefore in the range {0, … , 232 − 1}; larger values MUST be rejected.

 An octet string: the length of the string is encoded followed by the contents of the string (e.g., the

string 0x01fe is encoded as 0x0000000201fe).

 An element of ℤ𝑞, an element of 𝐺𝑞 , the values 𝑝 and 𝑞 in desc(𝐺𝑞) for a subgroup construction, and

the values 𝑝, 𝑎, 𝑏 and 𝑞 in desc(𝐺𝑞) for an elliptic curve construction: the binary value is conditionally

zero-extended to make its length a multiple of 8 bits (the value 0 is zero-extended to a full 8 bits). The

bytes forming the extended value are then encoded as an octet string, leading with the most-

significant byte (e.g., the number 254666256150 is encoded as 0x000000053b4b4aaf16).

 A list (delimited with 〈… 〉): the length of the list is encoded followed by the recursive encoding of the

list elements, in order.

 The null value (Ø): a zero-length octet string is encoded, yielding the sequence 0x00000000.

 A point 𝑒 = (𝑒𝑥 , 𝑒𝑦) on an elliptic curve (all elements of 𝐺𝑞 when using the elliptic curve construction):

the point is converted to an octet string following the procedure described in Section 2.3.3 of [SEC1],

without using point compression.

To transform the outcome of a hash operation into an element of ℤ𝑞, when ℋ(…) → ℤ𝑞 is used, the hash

digest bytes are interpreted as an unsigned integer in big-endian byte-order modulo 𝑞.

The security of the protocols critically depends on the choice of the hash function, see section 3.2.

2.3 Basic primitives
In this section, we provide the mathematical specification of all artifacts related to U-Prove tokens.

2.3.1 Issuer parameters
An instance of the Issuer parameters is of the form

UIDP, 𝑑𝑒𝑠𝑐(𝐺𝑞),UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆

where:

 UIDP is an octet string that holds an application-specific unique identifier for the Issuer parameters,

the value of which MUST be unique across the application realm.5

 desc(𝐺𝑞) specifies a group 𝐺𝑞 of prime order 𝑞 in which it is infeasible to compute discrete logarithms.

Two constructions are supported in this specification: the subgroup construction and the elliptic curve

construction, see Section 2.1.

 UIDℋ is an identifier of a cryptographically secure hash algorithm, see Section 3.2 for details on the

security requirements for the hash algorithm.

 (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) is the Issuer’s public key. To generate 𝑔0, the Issuer generates a private key 𝑦0 at

random from ℤ𝑞
∗ and computes 𝑔0 ≔ 𝑔𝑦0 . The private key 𝑦0 needs to be protected appropriately. The

remaining 𝑔𝑖 values MUST be random generators of 𝐺𝑞 . An implementation SHOULD support the pre-

generated (𝑔1, … , 𝑔50) values defined in [UPRPP] for the group constructions it supports.

 (e1, … , e𝑛) is a list of byte values indicating whether or not the attribute values (Α1, … , Α𝑛) are hashed

when computing a U-Prove token public key ℎ, see Section 2.3.5.

 S is an octet string that holds an application-specific specification for the Issuer parameters and the U-

Prove tokens issued using them.

5 For example, an application MAY choose to make the UIDP the digest of the other fields using UIDℋ as a

hash function.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 9

The application-specific value 𝑛 specifies the number of attributes encoded into each U-Prove token that will

be issued using these Issuer parameters. If no attributes are to be encoded, then the Issuer’s public key

becomes (𝑔0, 𝑔𝑡), and the list of 𝑒𝑖 values is empty.

The same group description 𝑑𝑒𝑠𝑐(𝐺𝑞), hash algorithm identifier UIDℋ, and the public values (𝑔1, … , 𝑔𝑛, 𝑔𝑡)

MAY be reused in different instances of Issuer parameters, even by different Issuers.6 Each Issuer SHOULD,

however, generate its own private key 𝑦0 and its own 𝑔0.

To be assured of the privacy properties of U-Prove tokens,7 Provers and Verifiers SHOULD verify any Issuer

parameters they rely on.8 This verification, specified in Figure 1, involves verifying that the group 𝐺𝑞 (if using

the subgroup construction) and the Issuer public key (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) are well-formed.9 Verification of the

group 𝐺𝑞 and generators (𝑔1, … , 𝑔𝑛, 𝑔𝑡) MAY be skipped when using the recommended values defined in

[UPRPP].

Figure 1: Verify the Issuer parameters

In addition, Provers and Verifiers SHOULD ensure that the application-specific specification 𝑆 complies with

their own policy. The distribution and trust management of the Issuer parameters are outside the scope of this

document, see Section 3.6.

2.3.2 Device parameters
When U-Prove tokens are Device-protected, protocol participants require additional setup data:

 𝑔𝑑 ∈ 𝐺𝑞 is the Device generator. It MUST be a generator of 𝐺𝑞 . This value is either generated by the

Issuer when creating the Issuer parameters or specified in a profile and shared by many Issuers and

Devices. An implementation SHOULD support the pre-generated 𝑔𝑑 values defined in [UPRPP].

 𝑥𝑑 ∈ ℤ𝑞
∗ is the Device private key. It MUST only be known to the Device. It can either be generated at

random, or derived from a secret using a strong derivation method (such as secure hash function).

6 In case Issuers don’t trust each other, they should verify that the values have been generated “verifiably at

random” to ensure no Issuer knows any relative discrete logarithm of a generator with respect to any other

generator. Using the values in [UPRPP] is recommended.
7 See Section 4 of [UPTO].
8 The privacy properties of U-Prove tokens are guaranteed only if the Issuer parameters are valid; in particular,

an Issuer that can get away with an invalid group might be able to trace or link issued U-Prove tokens with

significant success probability.
9 The verification procedure involves verifying that 𝑝 and 𝑞 are odd prime numbers. See Appendix C.3 of

[FIPS186-3] for recommendations on how to achieve this (DSA uses the same type of group description).

Input

Group description: desc(𝐺𝑞)

Public generators: (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞

Verify 𝐺𝑞 (if 𝐺𝑞 is of the subgroup construction)

Verify that 𝑝 and 𝑞 are odd prime numbers

Verify that 𝑞 divides 𝑝 − 1

Verify that 𝑔 ∈ 𝐺𝑞 and that 𝑔 ≠ 1

Verify public key elements

For each 𝑖 ∈ { 0,1, … , 𝑛, 𝑡}

Verify that 𝑔𝑖 ∈ 𝐺𝑞 and that 𝑔𝑖 ≠ 1

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 10

The latter method is useful to generate a unique key pair per Issuer, to provide “Device

unlinkability”.10 The Device MUST NOT, however, apply its private key on values from different groups

𝐺𝑞 .

 ℎ𝑑 = 𝑔𝑑
𝑥𝑑 ∈ 𝐺𝑞 is the Device public key. It is computed by the Device and made available to the Prover

and the Issuer in the issuance protocol. The Issuer and Prover MUST check that the Device public key

is a valid element of 𝐺𝑞 , see Section 2.1.

The distribution and trust management of the Device parameters are outside the scope of this document, see

Section 3.6.

2.3.3 U-Prove token
A U-Prove token is of the form

UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝

where:

 UIDP is the unique identifier of the Issuer parameters under which the U-Prove token was issued, see

Section 2.3.1.

 ℎ ∈ 𝐺𝑞 is the public key of the U-Prove token, see Section 2.3.5.

 𝑇𝐼 ∈ {0,1}∗ is the value of the token information field. The token information field is used to encode

token-specific information that is always disclosed to Verifiers, such as token usage restrictions, a

validity period (see Section 3.3), or token metadata.

 𝑃𝐼 ∈ {0,1}∗ is the value of the Prover information field. The Prover information field is used to encode

Prover-asserted information hidden from the Issuer, such as contact information, an encryption key, or

a Verifier-supplied nonce to guarantee freshness of the U-Prove token (see Section 3.3). 𝑃𝐼 is always

revealed during token presentation.

 𝜎𝑧
′ ∈ 𝐺𝑞 and (𝜎𝑐

′, 𝜎𝑟
′) ∈ ℤ𝑞 form the Issuer’s signature on all the other token contents, see Section

2.3.6.

 Boolean 𝐝 indicates if the token is protected by a Device (true) or not (false).

For the cryptographic specification of the issuance protocol in which these elements are processed or

generated, see Section 2.4.

2.3.4 U-Prove token private key

The private key of the U-Prove token, corresponding to its public key ℎ, is the value 𝛼−1 ∈ ℤ𝑞
∗ , the modular

multiplicative inverse of a secret value 𝛼 ∈ ℤ𝑞
∗ that the Prover generates in the issuance protocol; see Section

2.4.

The application-specific attribute values (Α1, … , Α𝑛) ∈ {0,1}∗ encoded into the U-Prove token are not part of the

private key per se; they are typically shared among multiple U-Prove tokens and are selectively disclosed to

Verifiers. However, since they are all needed to use the U-Prove token and may contain confidential user

information, they SHOULD be kept secret and be handled with similar care as the private key.

2.3.5 U-Prove token public key

The public key ℎ ∈ 𝐺𝑞 of a U-Prove token is of the form

10 The Device’s public key acts as a unique identifier for the Prover if reused across multiple Issuers (although

this is value is never seen by Verifiers). Using a per-Issuer value prevents Issuers from determining that they

are issuing tokens to the same Prover based on the Device’s public key.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 11

ℎ = (𝑔0𝑔1
𝑥1 …𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[𝑔𝑑

𝑥𝑑]
𝐝
)𝛼

where:

 (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡) ∈ 𝐺𝑞 is the Issuer’s public key, taken from the Issuer parameters under which the U-

Prove token was issued; see Section 2.3.1.

 𝛼 ∈ ℤ𝑞
∗ is a secret value generated by the Prover to randomize the public key ℎ, see Section 2.4.

 𝑥𝑡 ∈ ℤ𝑞 is computed by hashing the issuance protocol version 0x01, a digest of the Issuer parameters,

and the token information field value 𝑇𝐼; see Figure 2.

 The optional 𝑔𝑑 ∈ 𝐺𝑞 , present if the token is protected by a Device (𝐝 = 𝐭𝐫𝐮𝐞), is the public Device

generator. 𝑥𝑑 ∈ ℤ𝑞 is the Device private key, known only by the Device. The Device public key ℎ𝑑 =

𝑔𝑑
𝑥𝑑 allows the Prover to compute the token public key ℎ. See Section 2.3.2.

 𝑥𝑖 ∈ ℤ𝑞 (1 ≤ 𝑖 ≤ 𝑛) is obtained from the corresponding attribute value Α𝑖 either by hashing it (if the

Issuer parameters value e𝑖 is equal to 0x01) or by encoding it directly (if e𝑖 is equal to 0x00). In this

latter case, the value Α𝑖 is interpreted as the binary encoding of an unsigned integer in big-endian

byte-order, which must be smaller than 𝑞 to be a valid element of ℤ𝑞.11 For efficiency reasons, 𝑥𝑖 is set

to zero if the value Α𝑖 is null (Ø) and e𝑖 is equal to 0x01. See Figure 3.

ComputeXt()

Input

Issuer parameter fields: UIDP, desc(𝐺𝑞), UIDℋ,(𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡),(e1, … , e𝑛), 𝑆

Token information field: 𝑇𝐼 ∈ {0,1}∗
Device-protected Boolean: 𝐝

[Device generator: 𝑔𝑑]𝐝

Computation

𝑃 ∶= ℋ(UIDP, desc(𝐺𝑞), 〈𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡 , [𝑔𝑑]𝐝〉, 〈𝑒1, … , 𝑒𝑛〉, 𝑆)

Return 𝑥𝑡 ≔ ℋ(0x01, 𝑃, 𝑇𝐼) → ℤ𝑞

Figure 2: Function ComputeXt

11 Not hashing the value of an attribute may improve computational performance since the efficiency of

computing a modular exponentiation depends on the exponent size: the hash digest is typically a large number

in ℤ𝑞 even if the preimage is small. Not hashing the value is also preferred when encoding confidential

information serving as a lending disincentive; see Section 3.5.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 12

ComputeXi()

Input

Issuer parameter fields: 𝑞, UIDℋ , 𝑒𝑖
Attribute value: Α𝑖 ∈ {0,1}∗

Computation

If e𝑖 = 0x01

If Α𝑖 = Ø then 𝑥𝑖 ≔ 0

Else 𝑥𝑖 ≔ ℋ(Α𝑖) → ℤ𝑞

Else if e𝑖 = 0x00

Verify that 0 ≤ Α𝑖 < 𝑞

𝑥𝑖 ≔ Α𝑖
Else return an error

Return 𝑥𝑖

Figure 3: Function ComputeXi

The public key of a U-Prove token is computed by the Prover in the issuance protocol, see Section 2.4. It is

never seen by the Issuer and therefore it cannot be used to correlate a presented U-Prove token to its specific

issuance instance.

2.3.6 Issuer’s signature

The Issuer’s signature in the U-Prove token is composed of the values 𝜎𝑧
′ ∈ 𝐺𝑞 and (𝜎𝑐

′, 𝜎𝑟
′) ∈ ℤ𝑞. Its verification

is specified in Figure 4.

VerifyTokenSignature()

Input

Issuer parameter fields: desc(𝐺𝑞), UIDℋ , 𝑔0

U-Prove token fields: ℎ, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′

Verification

Verify that ℎ ≠ 1

Verify that 𝜎𝑐
′ = ℋ(ℎ, 𝑃𝐼, 𝜎𝑧

′, 𝑔𝜎𝑟
′
𝑔0
−𝜎𝑐

′

, ℎ𝜎𝑟
′
(𝜎𝑧

′)−𝜎𝑐
′
) → ℤ𝑞

Figure 4: Function VerifyTokenSignature

The Issuer never sees the value of its signature and therefore it cannot be used to correlate a presented U-

Prove token to its specific issuance instance.

2.3.7 Token identifier

The token identifier UID𝒯 of a U-Prove token is computed by hashing the U-Prove token’s public key and the

Issuer’s signature; see Figure 5.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 13

ComputeTokenID()

Input

Issuer parameters field: UIDℋ

U-Prove token fields: ℎ, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′

Computation

Return UID𝒯 ∶= ℋ(ℎ, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′)

Figure 5: Function ComputeTokenID

Owing to the security properties of the hash algorithm (see Section 3.2) and the fact that its inputs are

generated mutually at random in the issuance protocol by the Prover and the Issuer (see Section 2.4), the

token identifier of a U-Prove token is a unique random number (assuming the Issuer’s signature is correct). To

be convinced of the uniqueness of the token identifier, participants SHOULD only accept Issuer parameters

that specify hash algorithms they trust to be secure.

2.4 Creating verifiable generators
The protocols require that some group elements be generated verifiably without known relationships to other

group elements. To achieve this, the derivation methods specified in the following sections are used.

[UPRPP] defines pre-generated groups and associated generators that can be reused by many Issuers. The

generators were created with the following procedures and this can be verified using these derivation methods.

2.4.1 Subgroup construction
Figure 6 describes the method to generate a verifiably random group element when the subgroup construction

is used. The method is equivalent to the procedure defined in Appendix A.2.312 of [FIPS186-3] when 1) the

subgroup was generated using the procedure defined in Appendix A.1.1.2 of the same document, 2) 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is

set to the 𝑑𝑜𝑚𝑎𝑖𝑛_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑠𝑒𝑒𝑑 value resulting from that group generation procedure, and 3) UIDℋ

identifies a FIPS-approved hash function also used to generate the group.

ComputeVerifiablyRandomElement()

Input

Issuer parameters fields: UIDℋ , 𝑝, 𝑞

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {0,1}∗
𝑖𝑛𝑑𝑒𝑥 ∈ {0, … ,255}

Computation

𝑒 ≔ (𝑝 − 1)/𝑞
byte 𝑐𝑜𝑢𝑛𝑡 ≔ 0

𝑔 ≔ 0
While 𝑔 < 2

Verify that 𝑐𝑜𝑢𝑛𝑡 < 255

𝑐𝑜𝑢𝑛𝑡 ≔ 𝑐𝑜𝑢𝑛𝑡 + 1

𝑊 = ℋ𝑟𝑎𝑤(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 || 0𝑥6767656𝐸 || 𝑖𝑛𝑑𝑒𝑥 || 𝑐𝑜𝑢𝑛𝑡)
𝑔 ≔ 𝑊𝑒mod 𝑝

Return 𝑔

Figure 6: Function ComputeVerifiablyRandomElement (subgroup construction)

12 The constant 0x6767656E parameters in the computation of 𝑊 comes from that procedure.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 14

2.4.2 Elliptic curve construction
Figure 7 describes the method to generate a random group element when the elliptic curve construction is

used. The method was adapted from the procedure described in case I of section D.3.1 of [ANSI X9.62], with

modified steps 1 and 5.13 Note that two 𝑦 values can be returned when computing the square root of 𝛼, so to

insure interoperability between implementations, the smaller square root value is used. 14

ComputeVerifiablyRandomElement()

Input

Issuer parameters fields: UIDℋ , 𝑝, 𝑎, 𝑏

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ∈ {0,1}∗
𝑖𝑛𝑑𝑒𝑥 ∈ {0, … ,255}

Computation

byte 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ∶= 0

byte numIteration ≔ ⌈ bit length of p / output bit length of ℋ⌉
While 𝑦 ≠ Ø

For 0 ≤ byte 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≔ ℋ𝑟𝑎𝑤(𝑐𝑜𝑛𝑡𝑒𝑥𝑡 || index || counter || iteration)

𝑥 ≔ 𝑥0 || … || 𝑥𝑛𝑢𝑚𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−1 mod 𝑝

𝑧 ≔ 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝

If 𝑧 = 0 then 𝑦 ≔ 0

Else

𝑦 ≔ √𝑧 mod 𝑝

Verify that 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 255

If 𝑦 = Ø then 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≔ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

Return point (𝑥, min (𝑦, 𝑝 − 𝑦))

Figure 7: Function ComputeVerifiablyRandomElement (elliptic curve construction)

2.5 Issuing U-Prove tokens
The protocol for issuing a single U-Prove token is specified in Figure 8. Some clarifications are in order:

 How the Issuer and Prover agree on the contents of the issued U-Prove token is outside the scope of

this specification.

 How the Device public key is provided to the Issuer and Prover is outside the scope of this

specification. If the Issuer gets this value from the Prover, then it SHOULD be authenticated to make

sure the Prover has access to the Device, and that the key corresponds to a valid Device.

 The Prover’s and the Issuer’s precomputation steps MAY be performed as soon as the protocol inputs

are known.

 Multiple U-Prove tokens generated using identical common inputs MAY be issued in parallel, in which

case the three exchanged protocol messages contain values for all the parallel issuance instances.

When doing so, the Prover MAY specify different values for the Prover information field. The Prover

SHOULD use fresh random numbers for each issuance instance. The computation of the Prover's 𝛾

and 𝜎𝑧, and the Issuer's 𝛾 can be shared among all parallel protocol executions. To improve

performance, the token signature validation can be batched using a probabilistic15 method: suppose

13 The modification enables the generation of a verifiably random 𝑥-coordinate, and iteration over a counter if

the procedure fails.
14 An algorithm to compute the square root modulo 𝑝 can be found in Annex D.1.4 of [ANSI X9.62].
15 The probability that the Prover accepts if one of the tokens is invalid is 2−ℓ, for a parameter ℓ.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 15

we have 𝑘 tokens, and let 𝛼𝑖 , 𝜎𝑟𝑖
′ , 𝜎𝑐𝑖

′ , 𝜎𝑎𝑖
′ , 𝜎𝑏𝑖

′ be values from the 𝑖th token, and 𝛾, 𝑔, 𝑔0, 𝜎𝑧 be values that

are shared across all the tokens.

1. Choose 𝑛 random integers 𝑠1, … , 𝑠𝑘 from {1, … , 2ℓ} , for ℓ such that 2ℓ < 𝑞

2. Compute 𝜌𝛼𝑟 ≔ ∑ 𝑠𝑖𝛼𝑖𝜎𝑟𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞

3. 𝜌𝑟 ≔ ∑ 𝑠𝑖𝜎𝑟𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞

4. 𝜌𝛼𝑐 ≔ ∑ 𝑠𝑖𝛼𝑖𝜎𝑐𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞

5. 𝜌𝑐 ≔ ∑ 𝑠𝑖𝜎𝑐𝑖′
𝑘
1 𝑚𝑜𝑑 𝑞

6. Verify that ∏ (𝜎𝑎𝑖
′ 𝜎𝑏𝑖

′)𝑠𝑖𝑘
1 = 𝑔𝜌𝑟𝛾𝜌𝛼𝑟𝑔0

−𝜌𝑐𝜎𝑧
−𝜌𝛼𝑐

 If the Prover and the Issuer use different protocol inputs, or if one of them deviates from the issuance

protocol, the protocol will result in a U-Prove token with an invalid Issuer’s signature. Signature

verification by the Prover at the end of the issuance protocol ensures that issued U-Prove tokens are

valid. In the interest of improved performance, however, the Prover MAY skip verification of the

Issuer’s response 𝜎𝑟 and instead verify the Issuer’s signature before using the U-Prove token (see

Figure 4).

 The issuance protocol cannot be implemented in a stateless manner. Concretely, the Issuer MUST

NOT export the value 𝑤 (even in encrypted form) to the Prover when sending the first issuance

message since doing so would allow an attacker to compute its private key.

 Upon completion of the protocol, the Issuer MUST delete the value 𝑤; its leakage would allow the

computation of its private key. Similarly, the value 𝑤 MUST NOT be reused. The Prover SHOULD delete

the values , 𝛽1, 𝛽2, 𝑡𝑎, and 𝑡𝑏.

 Apart from the token information value 𝑇𝐼 and any Prover-disclosed values Α𝑖, there is nothing in a U-

Prove token that can be used to trace its use to its issuance or to link it to other U-Prove tokens of the

same Prover. If an application relies on the untraceability and unlinkability of U-Prove tokens,

precautions should be put in place to prevent information leakage through these fields. Specifically,

the possible field values SHOULD be clearly defined in the Issuer parameters’ specification 𝑆, and the

Prover SHOULD have a means to inspect and boycott inappropriate values.

 The Issuer MUST make sure Device public key ℎ𝑑 is well-formed and is associated with the Prover.

 This protocol is based on the techniques described in Section 4.5.2 of [Brands].

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 16

Common input

Issuer parameters: 𝐼𝑃 = UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆

Application-specific attribute information: (Α1, … , Α𝑛), 𝑇𝐼 ∈ {0,1}∗
Device-protected Boolean: 𝐝

[Device parameters: 𝑔𝑑 , ℎ𝑑]𝐝

Prover Issuer

Input Input

𝑥𝑡 ∶= ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝) 𝑥𝑡 ∶= ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝)
For each 𝑖 ∈ {1, … , 𝑛}, 𝑥𝑖 ∶= ComputeXi(𝐼𝑃, Α𝑖) For each 𝑖 ∈ {1, … , 𝑛}, 𝑥𝑖 ∶= ComputeXi(𝐼𝑃, Α𝑖)

𝛾 ≔ 𝑔0𝑔1
𝑥1 …𝑔𝑛

𝑥𝑛𝑔𝑡
𝑥𝑡[ℎ𝑑]𝐝 𝛾 ≔ 𝑔0𝑔1

𝑥1 …𝑔𝑛
𝑥𝑛𝑔𝑡

𝑥𝑡[ℎ𝑑]𝐝
Prover information field value: 𝑃𝐼 ∈ {0,1}∗ Private key: 𝑦0 ∈ ℤ𝑞

 𝜎𝑧 ≔ 𝛾𝑦0

Precomputation Precomputation

Generate 𝛼 at random from ℤ𝑞
∗ Generate 𝑤 at random from ℤ𝑞

Generate 𝛽1 and 𝛽2 at random from ℤq 𝜎𝑎 ≔ 𝑔𝑤

ℎ ≔ 𝛾𝛼 𝜎𝑏 ≔ 𝛾𝑤

𝑡1 = 𝑔0
𝛽1𝑔𝛽2

𝑡2 = ℎ𝛽2

Compute 𝛼−1 mod 𝑞 First message

 𝜎𝑧, 𝜎𝑎, 𝜎𝑏
←

Second message

𝜎𝑧
′ ≔ 𝜎𝑧

𝛼

𝜎𝑎
′ ≔ 𝑡1𝜎𝑎

𝜎𝑏
′ ≔ (𝜎𝑧

′)𝛽1𝑡2𝜎𝑏
𝛼

𝜎𝑐
′ ≔ ℋ(ℎ, 𝑃𝐼, 𝜎𝑧

′, 𝜎𝑎
′ , 𝜎𝑏

′) → ℤ𝑞

𝜎𝑐 ≔ 𝜎𝑐
′ + 𝛽1 mod 𝑞

 𝜎𝑐
→

 Third message

 𝜎𝑟 ≔ 𝜎𝑐𝑦0 +𝑤 mod 𝑞
 Delete 𝑤

 𝜎𝑟
←

U-Prove token generation

𝜎𝑟
′ ≔ 𝜎𝑟 + 𝛽2 mod 𝑞

Verify that 𝜎𝑎
′𝜎𝑏

′ = (𝑔ℎ)𝜎𝑟
′
(𝑔0𝜎𝑧

′)−𝜎𝑐
′
 (RECOMMENDED)

Delete 𝛽0, 𝛽1, 𝛽2, 𝑡1, 𝑡2

Return

U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝

Private key: 𝛼−1

Figure 8: Issuance protocol

2.6 Presenting U-Prove tokens
To present an issued U-Prove token 𝒯, the Prover transmits 𝒯 itself, the subset of the attribute values it

expressly wants to disclose to the Verifier, and a presentation proof generated by applying its token private key

to a message and the non-disclosed attribute values. Figure 9 specifies the generation by the Prover of a

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 17

presentation proof. Verification by the Verifier of the U-Prove token and the presentation proof is specified in

Figure 10. Some clarifications are in order:

 How the Prover, the Verifier and the optional Device agree on the protocol inputs and, more generally,

the requirements to be met by the presented U-Prove token is outside the scope of this specification.

 How the Prover invokes the Device if the token is Device-protected is outside the scope of this

specification.

 The presentation proof serves two security purposes: it proves the integrity and source authenticity of

the Prover-disclosed attribute values, and establishes that the Prover owns the private key associated

with the presented U-Prove token. The latter serves to prevent unauthorized token replay.

 The presentation proof doubles as a digital signature on the application-specific message (𝑚,𝑚𝑑).

The Prover can non-interactively use the presentation proof generation to create a digital signature on

arbitrary data; a Verifier can at any later time verify the signature by performing the presentation proof

verification.

 The message (𝑚,𝑚𝑑)MAY be specified by either the Prover or the Verifier, depending on the

application. If replay protection is required, then the message SHOULD contain a unique Verifier

identifier and fresh information that cannot be predicted or anticipated (such as a cryptographic

nonce); the Verifier SHOULD verify that it is in its scope and that the presentation proof is fresh.16 The

𝑚 value of the message is only visible to the Prover and Verifier, and is normally used to encode the

application-specific data. If a Device or an extension is used that requires direct access to some

protocol data (for example, a policy for the Device), then 𝑚𝑑 MAY be used to encode this data;

otherwise it can be left null.

 The Prover MUST NOT reuse the 𝑤𝑖 random values when presenting the same U-Prove token. Similarly,

the Device MUST NOT reuse the value 𝑤𝑑
′ .

 A Verifier MAY skip the verification of the Issuer’s signature in a previously verified U-Prove token (i.e.,

in Figure 10, the call to VerifyTokenSignature function MAY be skipped). This is useful when

verifying multiple presentation proofs created using the same U-Prove token, in parallel or over time.

 Both the Prover and the Verifier MAY independently archive (e.g., in an audit log) the protocol inputs

specified in Figure 10; this data constitutes an unforgeable proof of the token presentation. It MAY

later be verified by any party following the procedure specified in Figure 10.

 A Verifier MAY request the presentation of a scope-exclusive pseudonym, i.e., a pseudonym derived

from a token attribute unique to a specific scope. An Issuer knowing the value of the attribute used to

derive a pseudonym will be able to trace its usage, it is therefore RECOMMENDED to use a Device

pseudonym if this is undesirable. The pseudonym generator 𝑔𝑠 can be precomputed by Provers and

Verifiers if the same scope is used in multiple token presentations.

 The Prover can cryptographically commit to the values encoded in some attributes to allow an external

module to extend the functionality of this core specification. The commitments {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶 are

needed by the Verifier and are part of the presentation proof, while the {�̃�𝑖}𝑖∈𝐶 values are secret and

only used by the Prover’s extension modules. If the proof verifies, the Verifier has assurance that �̃�𝑖 is

a commitment to the attribute value encoded in the token 𝒯.

 This protocol is based on the techniques described in Section 3.3.1 and 6.3.1 of [Brands].

16 This can be achieved by keeping the received presentation proof’s value 𝑎 indexed by the timestamp for a

short period of time, and making sure that the same value is not received again.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 18

Device Prover

Input Input

Issuer parameters fields: desc(𝐺𝑞),UIDℋ Issuer parameter fields: UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛 , 𝑔𝑡), (e1, … , e𝑛), 𝑆

Device generator: 𝑔𝑑 Ordered indices of disclosed attributes: 𝐷 ⊂ {1,… , 𝑛}
Private key: 𝑥𝑑 Ordered indices of undisclosed attributes: 𝑈 = {1,… , 𝑛} − 𝐷

 Ordered indices of committed attributes: 𝐶 ⊂ 𝑈

 Pseudonym attribute index: 𝑝 ∈ 𝑈 ∪ {𝑑}
 Pseudonym scope: 𝑠 ∈ {0,1}∗
 Messages: 𝑚,𝑚𝑑 ∈ {0,1}∗

 U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝

 Private key: 𝛼−1 ∈ ℤ𝑞

 Attribute values: (Α1, … , Α𝑛) ∈ {0,1}∗
 [Device generator: 𝑔𝑑]𝐝

 Presentation proof generation

 For each 𝑖 ∈ {1, … , 𝑛}, 𝑥𝑖 ≔ ComputeXi(𝐼𝑃, Α𝑖)
Device commitment Generate 𝑤0 [and 𝑤𝑑]𝐝 at random from ℤ𝑞

Generate 𝑤′𝑑 at random from ℤ𝑞 For each 𝑖 ∈ 𝑈, generate 𝑤𝑖 at random from ℤ𝑞

𝑎𝑑 ≔ 𝑔𝑑
𝑤′𝑑 [

 𝑠
←]

𝐝 and 𝑝=𝑑

If 𝑠 ≠ Ø

𝑔𝑠:= GenerateScopeElement(desc(𝐺𝑞), 𝑠)

𝑎𝑝
′ ≔ 𝑔𝑠

𝑤𝑑
′

𝑃𝑠 ≔ 𝑔𝑠
𝑥𝑑

[
 𝑎𝑑,[𝑎𝑝

′ , 𝑃𝑠]𝑝=𝑑

→]

𝐝

𝑎 ∶= ℋ(ℎ𝑤0(∏ 𝑔𝑖

𝑤𝑖) [𝑔𝑑
𝑤𝑑𝑎𝑑]𝐝

𝑖∈𝑈
)

 If 𝑝 ≠ Ø and 𝑠 ≠ Ø,

 𝑔𝑠 ≔ GenerateScopeElement(desc(𝐺𝑞), 𝑠)
 𝑎𝑝 ≔ ℋ(𝑔𝑠

𝑤𝑝[𝑎𝑝
′]

𝑝=𝑑
)

 [𝑃𝑠 ≔ 𝑔𝑠
𝑥𝑝]

𝑝≠𝑑

 Else 𝑎𝑝 ∶= Ø and 𝑃𝑠 ≔ Ø

 For each 𝑖 ∈ 𝐶

 Generate �̃�𝑖 , �̃�𝑖 at random from ℤ𝑞

 �̃�𝑖 ≔ 𝑔𝑥𝑖𝑔1
�̃�𝑖

 �̃�𝑖 ≔ ℋ(𝑔𝑤𝑖𝑔1
�̃�𝑖)

 UID𝒯 ≔ ComputeTokenID(𝐼𝑃, 𝒯)
 If 𝑝 = 𝑑 then 𝑝′ ≔ 0 else 𝑝′ ≔ 𝑝

 𝑐𝑝 ≔ ℋ(UID𝒯 , 𝑎, 〈𝐷〉, 〈{𝑥𝑖}𝑖∈𝐷〉, 〈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 𝑝
′, 𝑎𝑝, 𝑃𝑠 , 𝑚)

 𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞

 𝑟0 ≔ 𝑐𝛼−1 + 𝑤0 mod 𝑞
 For each 𝑖 ∈ 𝑈, 𝑟𝑖 ≔ −𝑐𝑥𝑖 +𝑤𝑖 mod 𝑞

[
 𝑐𝑝, 𝑚𝑑
←]

𝐝

(continued on next page)

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 19

Device response computation

Process 𝑚𝑑

𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞

𝑟𝑑
′ ≔ −𝑐𝑥𝑑 + 𝑤′𝑑 mod 𝑞

Delete 𝑤′𝑑

[
 𝑟𝑑

′

→]

𝐝

 [𝑟𝑑 ≔ 𝑟𝑑
′ + 𝑤𝑑 mod 𝑞]𝐝

 For each 𝑖 ∈ 𝐶, �̃�𝑖 ≔ −𝑐�̃�𝑖 + �̃�𝑖 mod 𝑞

 Delete 𝑤0, {𝑤𝑖}𝑖∈𝑈, [𝑤𝑑]𝐝, {�̃�𝑖}𝑖∈𝐶

 Return

 Presentation proof: {𝐴𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈 , [𝑟𝑑]𝐝, {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶

 Secret commitment values: {�̃�𝑖}𝑖∈𝐶

Figure 9: Subset presentation proof generation

Input

Issuer parameter fields: 𝐼𝑃 = UIDP, desc(𝐺𝑞), UIDℋ , (𝑔0, 𝑔1, … , 𝑔𝑛, 𝑔𝑡), (e1, … , e𝑛), 𝑆

Ordered indices of disclosed attributes: 𝐷 ⊂ {1,… , 𝑛}
Ordered indices of undisclosed attributes: 𝑈 = {1,… , 𝑛} − 𝐷

Ordered indices of committed attributes: 𝐶 ⊂ 𝑈

U-Prove token: 𝒯 = UIDP, ℎ, 𝑇𝐼, 𝑃𝐼, 𝜎𝑧
′, 𝜎𝑐

′, 𝜎𝑟
′, 𝐝

Pseudonym attribute index: 𝑝 ∈ 𝑈 ∪ {𝑑}
Pseudonym scope: 𝑠 ∈ {0,1}∗
Messages: 𝑚,𝑚𝑑 ∈ {0,1}∗

Presentation proof: {Α𝑖}𝑖∈𝐷 , 𝑎, (𝑎𝑝, 𝑃𝑠), 𝑟0, {𝑟𝑖}𝑖∈𝑈, [𝑟𝑑]𝐝, {(�̃�𝑖 , �̃�𝑖 , �̃�𝑖)}𝑖∈𝐶

[Device generator: 𝑔𝑑]𝐝

U-Prove token verification

VerifyTokenSignature(𝐼𝑃, 𝒯)

Presentation proof verification

𝑥𝑡 ≔ ComputeXt(𝐼𝑃, 𝑇𝐼, 𝐝, [𝑔𝑑]𝐝)
For each 𝑖 ∈ 𝐷, 𝑥𝑖 ≔ ComputeXi(𝐼𝑃, Α𝑖)

UID𝒯 ≔ ComputeTokenID(𝐼𝑃, 𝒯)
If 𝑝 = 𝑑 then 𝑝′ ≔ 0 else 𝑝′ ≔ 𝑝

𝑐𝑝 ≔ ℋ(UID𝒯 , 𝑎, 〈𝐷〉, 〈{𝑥𝑖}𝑖∈𝐷〉, 〈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 〈{�̃�𝑖}𝑖∈𝐶〉, 𝑝
′, 𝑎𝑝, 𝑃𝑠, 𝑚)

𝑐 ≔ ℋ(〈𝑐𝑝, 𝑚𝑑〉) → ℤ𝑞

Verify that 𝑎 = ℋ ((𝑔0𝑔𝑡
𝑥𝑡∏ 𝑔𝑖

𝑥𝑖
𝑖∈𝐷)

−𝑐
ℎ𝑟0(∏ 𝑔𝑖

𝑟𝑖)[𝑔𝑑
𝑟𝑑]

𝐝𝑖∈𝑈)

If 𝑎𝑝 ≠ Ø and 𝑃𝑠 ≠ Ø

𝑔𝑠 ≔ GenerateScopeElement(desc(𝐺𝑞), UIDℋ , 𝑠)

Verify that 𝑎𝑝 = ℋ(𝑃𝑠
𝑐𝑔𝑠

𝑟𝑝
)

For each 𝑖 ∈ 𝐶, verify that �̃�𝑖 = ℋ(�̃�𝑖
𝑐𝑔𝑟𝑖𝑔1

�̃�𝑖)

Figure 10: Subset presentation proof verification

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 20

GenerateScopeElement()

Input

Hash identifier: UIDℋ

Group description: desc(𝐺𝑞)
Scope string: 𝑠 ∈ {0,1}∗

Compute scope generator

Return 𝑔𝑠 ≔ ComputeVerifiablyRandomElement(UIDℋ , desc(𝐺𝑞), 𝑠, 0)

Figure 11: Generate a group element given a Verifier scope

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 21

3 Security considerations

3.1 Key sizes
The performance and the security properties (but not the privacy properties) of the U-Prove protocols depend

on the sizes of elements in 𝐺𝑞 and in ℤ𝑞.

In contrast to conventional digital certificates, the size of the public key of a U-Prove token cannot be picked

independently from the size of the Issuer's public key; all operations, for all participants, take place in the

same group 𝐺𝑞 . As such, the selection of key sizes should be driven by the maximum lifetime requirements for

both the Issuer's key pair and U-Prove tokens.

When using the subgroup construction, minimum sizes for 𝑝 and 𝑞 of 2048 and 256 bits, respectively, are

RECOMMENDED for long-term security. The level of security of the U-Prove protocols that results from a

particular choice for the sizes of 𝑝 and 𝑞 is believed to be the same as that for DSS (see [FIPS 186-3]). When

using the elliptic curve construction, the level of security is believed to be the same as in ECDSA (also see [FIPS

186-3]). For general guidelines on picking key sizes to ensure the infeasibility of computing discrete logarithms

in 𝐺𝑞 , see Section 5.6 of [SP 800-57].

3.2 Hash algorithm selection
The hash algorithm specified in the Issuer parameters MUST be a cryptographically secure hash algorithm,

meaning that it MUST be collision-intractable and behave as much as possible as a “random oracle.”

Furthermore, the digest size of the hash algorithm SHOULD be close or equal to the size of 𝑞. A good choice

would be the hash function from the SHA family (see [FIPS 180-4]) matching the size of 𝑞. In light of state-of-

the-art attacks on hash functions, a 256-bit 𝑞 is RECOMMENDED.

3.3 Random number generation
The strength of the security and privacy properties of U-Prove tokens for each protocol participant critically

depend on both the quality and secrecy of the random numbers used by that participant in the protocols. For

general guidance on how to generate strong random numbers, see [SP800-90].

3.4 Token lifetime
Issuers can limit the lifetime of U-Prove tokens by encoding a validity period into them, for example in the token

information field. Alternatively, a Verifier MAY request that a U-Prove token be obtained in real-time from the

Issuer to guarantee the freshness of the attribute data. For security reasons, the Verifier SHOULD request that

the presentation message 𝑚 be encoded into the token;17 for privacy reasons, the message SHOULD be

encoded in the Prover information field.18

3.5 Transferability disincentive
An Issuer cannot cryptographically prevent a Prover from transferring a U-Prove token to another party, but it

can provide a disincentive for doing so. Since all attribute values Α𝑖 are needed to generate a presentation

proof, an Issuer could encode confidential information into one special attribute that is never disclosed. The

attribute must be encoded directly, i.e., the corresponding Issuer parameter’s encoding type e𝑖 must be set to

17 If the message 𝑚 is unpredictable, then the Prover cannot obtain U-Prove tokens in advance.
18 This is to prevent the Issuer and Verifier from linking the issuance and presentation protocols based on the

message 𝑚.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 22

0x00.19 To transfer a U-Prove token, the Prover would need to share this confidential information along with

the private key.

Alternatively, Device-protected tokens offer strong protection against unauthorized token transfer.

3.6 Trust management
The Issuer parameters are conceptually equivalent to the certificate of a Certificate Authority in a PKI. This

specification does not define how trust is established among protocol participants. Conventional techniques

can be used to securely share the Issuer and Device parameters with Provers and Verifiers; e.g., they could be

signed with a key corresponding to a trusted X.509 CA certificate. Issuer and Device parameters could be

obtained before the issuance or presentation protocol, downloaded from a trusted directory, or preinstalled by

participants.

3.7 Device-protected tokens
When using Device-protected tokens, it is RECOMMENDED to use a recommended group and the associated

Device generator 𝑔𝑑. Moreover, Issuers SHOULD only accept authenticated Device public keys ℎ𝑑 to make sure

they are well-formed and belong to the user; otherwise users might try to modify token attributes values by

providing a specially-crafted Device public key.

For most operations, the Prover does not need to entrust their privacy or security to the Device, since the

protocol is robust to Devices that deviate from the protocol (either maliciously or accidentally). However, when

a scope-exclusive device pseudonym is used, the Prover sends the value 𝑃𝑠 = 𝑔𝑠
𝑥𝑑 to the Issuer without

modification. In this case, collusion between the Device and Issuer, sharing knowledge of 𝑥𝑑 can identify the

user. In applications where such collusion is possible, device pseudonyms SHOULD NOT be used.

Acknowledgments
The authors would like to thank Stefan Brands, Lan Nguyen and Melissa Chase for their input on the

specification.

19 Otherwise, the Prover could lend the token by sharing 𝑥𝑖 without disclosing the confidential hash input 𝛢𝑖.

U-Prove Cryptographic Specification V1.1 December 2013

Microsoft Corporation Page 23

References
[ANSI X9.62] American National Standard for Financial Services. X9.62 - 1998. Public Key Cryptography for

the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),

January 7, 1999.

[Brands] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates. The MIT Press,

August 2000. http://www.credentica.com/the_mit_pressbook.html.

[FIPS180-4] NIST. FIPS 180-4 Secure Hash Standard, March 2012.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

[FIPS186-3] NIST. FIPS PUB 186-3 Digital Signature Standard (DSS), June 2009.

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf.

[RFC2119] Scott Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels, 1997.

ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt.

[SEC1] Certicom Research, Standard for Efficient Cryptography 1: Elliptic Curve Cryptography, May

2009. http://www.secg.org/download/aid-780/sec1-v2.pdf.

[SP800-57] NIST. SP 800-57 Recommendation for Key Management - Part 1: General (Revision 3), July

2012.

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf.

[SP800-90] NIST. SP 800-90 Recommendation for Random Number Generation Using Deterministic

Random Bit Generators (Revised), January 2012,

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

[UPCTV] U-Prove Cryptographic Test Vectors V1.1 (Revision 3). Microsoft, December 2013.

http://www.microsoft.com/u-prove.

[UPRPP] Christian Paquin. U-Prove Recommended Parameters Profile V1.1 (Revision 2). Microsoft,

April 2013. http://www.microsoft.com/u-prove.

[UPTO] Christian Paquin. U-Prove Technology Overview V1.1 (Revision 2). Microsoft, April 2013.

http://www.microsoft.com/u-prove.

http://www.credentica.com/the_mit_pressbook.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc2119.txt
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://approjects.co.za/?big=u-prove
http://approjects.co.za/?big=u-prove
http://approjects.co.za/?big=u-prove

