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Abstract. There has been significant interest in static analysis of pro-
grams that manipulate strings, in particular in the context of web secu-
rity. Many types of security vulnerabilities are exposed through flaws in
programs such as string encoders, decoders, and sanitizers. Recent work
has focused on combining automata and satisfiability modulo theories
techniques to address security issues in those programs. These techniques
scale to larger alphabets such as Unicode, that is a de facto character
encoding standard used in web software.

One approach has been to use character predicates to generalize finite
state transducers. This technique has made it possible to perform pre-
cise analysis of a large class of typical sanitization routines. However, it
has not been able to cope well with decoders, that often require to read
more than one character at a time. In order to overcome this limitation
we introduce a conservative generalization of Symbolic Finite Transduc-
ers (SFTs) called Extended Symbolic Finite Transducers (ESFTs) that
incorporates the notion of a bounded lookahead. We demonstrate the
advantage ESFTs on analyzing programs for which previous approaches
did not scale.

In our evaluation we use a UTF-16 to UTF-8 translator (utf8encoder)
and a UTF-8 to UTF-16 translator (utf8decoder). We show, among other
properties, that utfSencoder and utf8decoder are functionally correct.

1 Introduction

There has been significant recent interest in decision procedures for solving string
constraints. Much of this work has focused on designing domain specific deci-
sion procedures for string analysis that use state-of-the art constraint solvers
in the backend [17,4,19,20]. Many of the tools use automata based techniques,
including JSA [5], and Bek [9]. A comprehensive comparison of various algo-
rithmic design choices in this space is studied in [10]. The growing interest in
string analysis has also started a discussion for developing standards for regu-
lar expressions modulo alphabet theories [3] to unify some of the notations and
underlying theory in the tool support.
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One reason for this focus is security vulnerabilities caused by strings. Some
recent work has studied sanitizer correctness through static analysis based on
automata theory [12,5,13], including the Bek project and symbolic transduc-
ers [9] that our work is based on. Here we extend the analysis of Bek to a richer,
more expressive class of problems. In particular we consider string coders that
require symbolic lookahead. Symbolic lookahead allows programs to read more
than one symbol at a time. For example, in order to decode a (html encoded)
string "&#38;" back to the string "&" a lookahead of two digits is needed. Con-
cretely, in the paper we consider unicode encodings UTF-16 and UTF-8, that
have emerged as the most commonly used character encodings. UTF-8 is used
for representing Unicode text in text files and is perhaps the most widely ac-
cepted character encoding standard in the internet today. UTF-16 is used for
in-memory representation of characters in modern programming and scripting
languages. Transformations between these two encodings are ubiquitous.

Despite the wide adoption of these encodings, their analysis is difficult, and
carefully crafted invalid UTF-8 sequences have been used to bypass security val-
idations. Several attacks have been demonstrated [16] based on over-encoding
the characters ‘.” and ¢/’ in malformed URLs. For example, the invalid sequence
[CO16, AF16] (that decodes to ¢/7) has been used to bypass a literal check in the
Microsoft IIS server (in unpatched Windows 2000 SP1) to determine if a URL
contains “../../” by encoding it as “..%CO%AF../”. Similar vulnerability ex-
ists in Apache Tomcat (< 6.0.18), where “%CO%AE” has been used for encoding
‘.7 [14]. Further attacks use double-encoding [15]. We show how our new exten-
sion of symbolic transducers can make analysis of such coding routines possible.

Our analysis starts from a compilation from Bek programs to symbolic trans-
ducers (ST). In a symbolic transducer, transitions are annotated with logical
formulas instead of specific characters, and the transducer takes the transi-
tion on any input character that satisfies the formula. A symbolic transducer
is then transformed to a representation called extended symbolic finite trans-
ducer (ESFT), that uses lookahead to avoid state space explosion. For exam-
ple, an ESFT may treat the pattern "&#[0-9]1{6};" of an html decoder using
a single transition rather than 100k transitions required by an SFT (without
lookahead). Our representation enables leveraging satisfiability modulo theories
(SMT) solvers, tools that take a formula and attempt to find inputs satisfying
that formula. These solvers have become robust in the last several years and
are used to solve complicated formulas in a variety of contexts. At the same
time, our representation allows leveraging automata theoretic methods to rea-
son about strings of unbounded length, which is not possible via direct encoding
to SMT formulas. One advantage of SMT solvers is that they work with formulas
from any theory supported by the solver, while other previous approaches are
specialized to specific types of inputs. This is a crucial feature for our algorithms
and analysis, in particular we use a combination of theories, involving sequences,
numbers, and records.

After the analysis, programs written in Bek can be compiled back to tradi-
tional languages such as JavaScript or C#. This ensures that the code analyzed



is functionally equivalent to the code which is actually deployed for sanitization,
up to bugs in our compilation. Bek is available online [2].
This paper makes the following contributions:

— it introduces ESFTs as a new effective model for analysis of string coders;

— it presents an algorithm for STs register elimination that improves the ef-
ficiency and expressiveness of the previous state of the art technique based
on exhaustive exploration;

— it proves UTF8 encoder and decoder to be correct; and

— it uses realistic coding routines to show how ESFTs scale for big programs.

We first define ESFTs (Section 2) and STs with registers (Section 2.2). Sec-
ondly, we provide an algorithm to transform a subclass of STs into ESFTs (Sec-
tion 3). We then describe UTF-8 encoders and decoders and their Bek implemen-
tation (Section 4). We use our technique to prove those coders correct. Finally,
we show how our technique scales for bigger programs (Section 5).

2 Extended Symbolic Finite Transducers

We assume a background structure that has a recursively enumerable (r.e.) multi-
typed carrier set or background universe U, and is equipped with a language of
function and relation symbols with fixed interpretations. We use 7, o and ~ to
denote types, and we write U™ for the corresponding sub-universe of elements
of type 7. As a convention, we abbreviate 4° by X and U by I', due to their
frequent use. The Boolean type is B, with 4% = {t,{} and the integer type is Z.
Terms and formulas are defined by induction over the background language and
are assumed to be well-typed. The type 7 of a term ¢ is indicated by ¢: 7. Terms
of type B, or Boolean terms, are treated as formulas, i.e., no distinction is made
between formulas and Boolean terms. A k-tuple type is a type T(7o,...,Tk—1)
where k > 0 and all 7; are types. The 0-tuple type T() is assumed to be such that
U™ is the singleton sub-universe {()} and the 1-tuple type T(r) = 7. If 7 is a
type and k > 0 then 7" stands for the type T(ro,...,Ts_1) of k-way Cartesian
product where all 7; = 7. For example, Z? is T(Z,Z). If t is a k-tuple (k > 1)
then ;(t), also written ¢[i], projects the i’th element of ¢ for 0 < ¢ < k. The
k-tuple constructor for k£ > 1 is simply (to,...,tk—1)-

If 7 is a type, then 7* is the type over finite sequences of elements of
type 7. We assume the standard accessors head : 7 — 7 and tail : 7F —7*
over sequences and the constructors cons : 7 X 7 —7* and [| : 7". A term
cons(to, cons(ty, ..., cons(tn—1,[]))) of sort 7* is also denoted by [to,t1, ..., tn_1]
and is called an explicit sequence of length n. We use the following shorthands to
access elements of a sequence t : 7%, tail®(t) & ¢, tail* " (t) = tail(tail® (1)), and
for k > 0, t[k] = head(tail®(t)). Given a set S, we write S* for the Kleene closure
of S. The justification behind overloading the *-operator both as a type annota-
tor and Kleene closure operator is that, for any type 7, we assume U(7") = (Um*.
In particular 4" = X* and Y") = I'*.



All elements in U/ are also used as constant terms. A term without free
variables (such as a constant term) is closed. Closed terms ¢ have standard Tarski
semantics [t] over the background structure. Substitution of a variable z:7 in ¢
by a term w:7 is denoted by t[z/u].

A A-term is an expression of the form AZ.t, where T is a (possibly empty)
tuple of distinct variables, and ¢ is a term all of whose free variables occur in
Z. It is sometimes technically convenient to view T as a single variable of the
corresponding product (tuple) type.

To indicate the types, we say (o — v)-term for a A-term Az.t such that z: 0
and t:7y. A (0 = v)-term f = A\z.t denotes the function [f] that maps a € X to
[tlx/a]] € I'. We use f,g, h to stand for A-terms. We do not distinguish between
the A-term A().t and .

A (0 — B)-term is called a o-predicate. We use ¢ and v for o-predicates and,
for a € X, we write a € [¢] for [¢](a) = t. Given a (¢ —7)-term f = (Az.t)
and a term u: o, f(u) stands for the term ¢[x/u]. A o-predicate ¢ is unsatisfiable
when [p] = 0; ¢ is satisfiable, otherwise. A (o —v*)-term f = Az.[tg,...,tn—1]
is called a (0 — 7)-sequence and |f| = n.

A label theory is given by an r.e. set ¥ of formulas that is closed under
Boolean operations, substitution, equality and if-then-else terms. When talking
about satisfiability of formulas, we assume implicit A-closures. A label theory ¥
is decidable when satisfiability for ¢ € ¥, IsSat(p), is decidable.

Next, we describe an extension of finite state transducers through a symbolic
representation of labels and by adding a lookahead component to the rules.

Definition 1. An Ezxtended Symbolic Finite Transducer (ESFT) over o — 7 is
a tuple A = (Q,¢%, R),

— (@ is a finite set of states;
— ¢° € Q is the initial state;
— R is a finite set of rules, R = AU F, where

— Ais a set of transitions r = (p, ¥, ¢, f,q), denoted p SOT{J‘) q, where

p € Q is the start state of r;

£ > 1 is the lookahead of r;

@, the guard of r, is a o’-predicate;

f, the output of r, is a (¢* — v)-sequence;
q € Q is the end state of r.

F is a set of final rules r = (p, £, p, f), denoted p % e, with components

as above and where /¢ is allowed to be 0.

The lookahead of A is the maximum of all lookaheads of rules in R.

We use the following abbreviated notation for rules, by omitting explicit A’s.
We write

where ¢ and u; are terms whose free variables are among = = (zo, ..., x¢—1). Final
rules are a generalization of final states. A final rule with lookahead ¢ applies



only when the remaining input has exactly ¢ elements remaining as opposed to
a transition with lookahead ¢ that applies when the remaining input has at least
{ elements remaining.

The typical case of a final rule that corresponds to the classical final state p

isp —t/a[]—> e ie., p accepts the empty input and produces no additional outputs.

But there could be a non-empty output like in p M e. There could also be a

final rule with a non-zero lookahead. For example, suppose that characters are

integers, the state is ¢, and there are two rules from ¢, a final rule: if there is a

single input character remaining it is output “as is” ¢ # e; and a transition,

if there are at least two input characters, their sum is output ¢ M q. It is

not possible to separate these two cases without introducing nondetermlnlsm, if
final rules with positive lookahead are not allowed. It is also not practical to lift
the input type by adding a new “end of input” symbol as is done in the classical
case. Such type lifting non trivially affects properties of the label theory and
complicates use of specific theories over a given type such as standard linear
arithmetic.

An ESFT with lookahead 1 and whose all final rules have lookahead 0 is an
SFT [20]. In the sequel let A = (Q,q°, R), R = AUF, be a fixed ESFT over
o — 7. The semantics of rules in R is as follows:

sae—1]/[f1(ao,--;ae—1)

v, a0
I £ a1 p q| (a0 ... ac-1) € [¢]}

We write s1 - so for concatenation of two sequences s; and ss.

Definition 2. For a € X* b € I'*,q € Q,¢ € Q U {e}, define ¢ EQ»A q as

follows: there exists n > 0 and {p; /b, pit1 | 1 < n} C [R] such that

a=ap-a---a,, b=by-br--by, ¢=po, ¢ =pns1.
Let also ¢ %A q for all g € Q.
Does lookahead add expressiveness compared to SF'Ts? For finite X, the answer is
no, because any concrete transition p & q can be split into two transitions

P M p’ M g where p’ is a new (non final) state (as a consequence of the

standard form [22, Theorem 2.17]). However, ESFTs are strictly more expressive
than SF'Ts as the following example clearly illustrates. In general, ESFTs with
lookahead k + 1 are strictly more expressive than ESFTs with lookahead k.

Ezample 1. Let A be following ESFT

w0/, Yl
— ({aha fg =2, 4 g Yl oy

Then ¢ a—/H»A e iff a[2xi] = a[2+i+ 1] for all ¢ > 0. No SFT can express this
dependency. X



The above example can be generalized to any k. For a function f : X — 2V,
define the domain of £ as 2(f) = {z € X | f(x) # 0}; f is total when 2(f) = X.

Definition 3. The transduction of A, T,(a) = {b | ¢° LAY o).
The following subclass of SFTs captures transductions that behave as partial
functions from X* to I'*.

Definition 4. A is single-valued when |7, (a)| <1 for all @ € X*.

A sufficient condition for single-valuedness is determinism. We define ¢ A 1,
where ¢ is a o™-predicate and 1) a o"-predicate, as the ¢™®*("™")_predicate
AMZ1, s Tmax(m,n)) - P(T1s - oy Tm) AY(w1,. .., 2,). We define equivalence of f
and g modulo ¢, f =, g, as: IsValid(A\Z.(¢(Z) = f(Z) = ¢g(7))).

Definition 5. A is deterministic if and only if for all p % q,p % g €R

the following holds:

(a) Assume ¢,¢' € Q. If IsSat(p A ¢') then ¢ =¢', £ =" and f =, ., f'.
(b) Assume ¢ =¢' =eo. If IsSat(p A ¢') and £ = ¢ then f =4, f'.
(c) Assume ¢ € Q and ¢’ = o. If IsSat(¢ A ') then £ > ¢'.

Proposition 1. If A is deterministic then A is single-valued.

Determinism is not a necessary condition for single-valuedness. Moreover,
deterministic ESFTs with lookahead k + 1 are in general more expressive and
more succinct than deterministic ESFTs with lookahead k. A few examples of
ESFTs are given below to illustrate the definitions.

When A is total and single valued, and a € Z(A), we write A(a) for the
value b such that 7, (a) = {b}. In other words, we treat A as a function from
X* to I'™.

Ezxample 2. Consider characters as their integer codes. We construct an ESFT
Decode over Z — 7 that replaces all occurrences of the regex pattern #[0-9] [0-9]
in the input with the corresponding encoded character. For example, since the
code ‘A’ =65 and ‘B’ = 66, we have Decode("##65#66#") = "#AB#".3

The states are gy and ¢, where qq is the initial state. The intuition behind
the final rules is the following. In ¢o there is no unfinished pattern so the output
is [], while in ¢; the symbol ‘#’ is the prefix of the unfinished pattern that needs
to be output upon reaching the end of the input, and if there is only a single
character zp remaining in the input then the output is [‘#?, o]

3 A literal string "ABC" stands for the sequence [‘A?, ‘B, ‘C’], where ‘A’ is the char-
acter code of letter A.



The rules of D are as follows where IsDigit is the predicate A\z.0’ < x < €9?
(recall that ‘0’ =48 and ‘9’ = 57).

t t/[‘# IsDigit(x ‘#° x
F:{qo_/ﬁ[]_)” " /[0 | o, " g (i)/[ o] o}

(mo#‘#)/[wo] (zo="#)/1] (mo="#")/[#’]
AZ{QO%Q& q0m—>qlu a1 mfﬂll,

(w0 “#2 A= IsDigit(w0))/[“#’ 0]

Uil 1 qo,
(IsDigit(xo)Ax1# #’ A—IsDigit(x1)) /[ #’,x0,21]

Uil 3 qo,
(IsDigit(wo)Ax1="#)/[‘#,x0]

a1 D) a1,
(IsDigit(xo)ANIsDigit(x1))/[10%(zo—48)+x1 —48]

Uil B q}

The last three rules have non-overlapping guards because the conditions on x

are mutually exclusive. An equivalent SFT would require a state pg for each

d € [IsDigit] and a rule ¢ Io%d/[k pq in order to eliminate the rules with

lookahead 2. X

2.1 Composition of ESFTs

For composing ESFTs we first convert them to ST's, as explained in Section 2.2,
and then convert the resulting ST back to an ESFT using the semi-decision
procedure explained in Section 3. In general, ESFTs are not closed under com-
position, as shown next.

Given f: X =2 and x C X, f(x) & Usex f(z). Given f: X —2Y and
g:Y =27 fog(x) = g(f(x)). This definition follows the convention in [7],
i.e., o applies first f, then g, contrary to how o is used for standard function
composition. The intuition is that f corresponds to the relation Re: X X Y,
Ry = {(x,y) | y € f(x)}, so that f o g corresponds to the binary relation com-

position Re o Rg = {(z,2) | Jy(Re(x,y) A Rg(y, 2))}.

Definition 6. A class of transducer C' is closed under composition iff for every

G and % that are C-definable F o % is also C-definable.
Theorem 1. ESFTs are not closed under composition.

Proof. We show two ESFTs whose composition cannot be expressed by any
ESFT. Let A be following ESFT over Z — Z

t/[z1,w0] t/[]
A=({ah g, {0 5" 0,0 5> *}).
and B be following ESFT over Z — Z

t/[zo] t/[z1,20] t/[wo]
B = ({Qvah}aQOv{QO 10 q1,q1 ; 0 q1,q1 TO) .})




The two transformations behave as in the following examples:
%([a(); ai, az,as, a4, as,ae, - - ]) = [ala g, a3z, az, a5, a4, a7, . . ]

%([b07 b17 b27 b37 b47 b57 .. ]) = [b07 b27 b17 b47 b37 bﬁu .. ]

When we compose .7, and 75 we get the following transformation:

%OB([G’O? ai,az,as, a4,0as,06, - - ]) = [a’lv as, ap, as, a2, ar, .. ]

Intuitively, looking at 7,5 we can see that no finite lookahead seems to suffice
for this function. The following argument is illustrated by this figure:

a aiq a as a as a ar T
v XKL DKL LK

aq aq as a as [4 a7 Qg ce
s et P

a as ao as a2 ar Qa4
Formally, for each a; such that i > 0, 7,5 is the following function:

— if ¢ =1, a; is output at position 0;

— if 7 is even and greater than 1, a; is output at position 7 — 2;

— if ¢ is equal to k—2 where k is the length of the input, a; is output at position
k—1;

— if 7 is odd and different from k£ — 2, a; is output at position i + 2.

It is easy to see that the above transformation cannot be computed by any ESFT.
Let’s assume by contradiction that there exists an ESFT that computes .7, 5.
We consider the ESFT C' with minimal lookahead (let’s say n) that computes
‘onB'

We now show that on an input of length greater than n+2, C' will misbehave.
The first transition of C that will apply to the input will have a lookahead of
size | < n. We now have three possibilities (the case n = k — 2 does not apply
due to the length of the input):

I = 1: before outputting ay (at position 2) we need to output a; and as which
we have not read yet. Contradiction;

l is odd: position [ + 1 is receiving a;—; therefore C' must output also the el-
ements at position [. Position [ should receive a;2 which is not reachable
with a lookahead of just . Contradiction;

l is even and greater than 1: since | > 1, position [ is receiving a;_s. This
means C' is also outputting position [ — 1. Position [ — 1 should receive a;41
which is not reachable with a lookahead of just [. Contradiction;

We now have that n cannot be the minimal lookahead which contradicts our
initial hypothesis. Therefore .7, 5 is not ESFT-definable. X



2.2 Symbolic transducers with registers

Registers provide a practical generalization of SFTs. SFTs with registers are
called STs, since their state space (reachable by registers) may no longer be fi-
nite. An ST uses a register as a symbolic representation of states in addition to
explicit (control) states. The rules of an ST are guarded commands with a sym-
bolic input and output component that may use the register. By using Cartesian
product types, multiple registers are represented with a single (compound) reg-
ister. Equivalence of STs is undecidable but STs are closed under composition
[20].

Definition 7. A Symbolic Transducer or ST over o —  and register type 7 is
a tuple A = (Q,¢° p°, R),

— (@ is a finite set of states;

— ¢° € Q is the initial state;

— p® € U7 is the initial register value;

— R is a finite set of rules R = AU F

A is a set of transitions r = (p, p,0,u,q), also denoted p M q,
p € @ is the start state of r;

@, the guard of r, is a (o x 7)-predicate;

o, the output of r, is a finite sequence of ((o X 7) — 7)-terms;
u, the update of r, is a ((o X 7) — 7)-term;

q € Q is the end state of . )

— Fis a set of final rules r = (p, p,0), also denoted p 2o, o,

e p € () is the start state of r;
e o, the guard of r, is a 7-predicate;
e o, the output of r, is a finite sequence of (7 — 7)-terms.

All ST rules in R have lookahead 1 and all final rules have lookahead 0.
Longer lookaheads are not needed because registers can be used to record history,
in particular they may be used to record previous input characters. A canonical
way to do so is to let 7 be ¢* that records previously seen characters, where
initially p° = [], indicating that no input characters have been seen yet.

An ESFT transition

Azo,z1,22).0(x0,x1,22)/A(T0,21,22).0(x0,21,T2)

p 3

can be encoded as the following set of ST rules where p; and ps are new states

(Az,y).0)/[l;A(z,y).cons(z,[]) (A(z,).1)/[;A(z,y).cons(z,y)
pP1 D P2

) (A(z,y)-¢(y[1],y[0],2)) /M(z,y).0(y[1],y[0],2); A (z,y).]

Final rules are encoded similarly. The only difference is that ¢ above is e and
the register updated is not used in the third rule. An ST rule (p,p,0,u,q) € R
denotes the following set of concrete transitions:

[(p, 0,4, )] 2 {(p, 5) L2, (g, [ul(a,9)) | (a,5) € []}



A final ST rule (p, p,0) € F denotes the following set of concrete transitions:

[(p.,0)] 2 {(p,s) 22 o | s €[]}

The reachability relation p a—/b»A gforae X bel* pe(QxU) qc€
(QxUT)U{e} is defined analogously to ESFTs and 7, (a) = {b| (¢°, p°) a/b, o).

3 Register Elimination

The main advantage of ST's is their succinctness and the fact that Bek programs
can directly be mapped to STs. The downside of using STs is that many of the
desired properties, such as equivalence, idempotence, and commutativity, are no
longer decidable. One approach to decide those properties is to transform STs to
SFTs by exploring all the possible register values. However, this is only possible
for finite alphabets and in general not feasible due to state space explosion. This
is where ESFTs play a central role.

In this section we describe an algorithm that allows us to transform a class
of STs into ESFTs. The algorithm has several applications.

One application is to eliminate registers at the expense of increasing the
lookahead. The algorithm can be applied to a class of product STs with two
outputs. The algorithm is agnostic about how the output looks like. Product
STs are used in the single-valuedness checking algorithm of SFTs.

While ESFTs provide a powerful generalization of SFTs, they are unfortu-
nately not closed under composition as shown in Section 2.1. Another applica-
tion of the transformation algorithm is a semi-decision procedure for composing
ESFTs. The technique is to first translate the ESFTs to STs, as outlined in
Section 2.2, then compose the STs, and finally apply the register elimination
algorithm to convert the composed ST back to an ESFT, if possible. We are
currently investigating which subclasses of ESFT are effectively closed under
composition.

The core idea that underlies the register elimination algorithm is a symbolic
generalization of the classical state elimination algorithm for converting an NFA
to a regular expression (see e.g. [22, Section 3.3]), that uses the notion of extended
automata whose transitions are labelled by regular expressions. Here the labels of
the ST are predicates over sequences of elements of fixed lookahead. Essentially
the intermediate data structure of the algorithm is an Extended ST.

Input: ST A%/%7,
Output: | or an ESFT over o — v that is equivalent to A.
1. Lift A to use the input sort ¢* by replacing each transition p M q with

the following transition annotated with a lookahead of 1 and with z:c*,

Az,y) -2 [N (2[0],y)/A(z,y)-0(2[0],9);A(2,y) - u(z[0],y)
1

(Apply similar transformation to final rules and give them lookahead 0.)



2. Repeat the steps 2.a-2.c while there exists a state that does not have a self
loop (a self loop is a transition whose start and end states are equal).
2.a Choose a state p, such that p is not the state of any self loop and p is not

the initial state.
p1/01;u1 p2/02:u2

- P 7 pe2 in R:

2.b Do for all transitions p;

let Y= )\(xay)%’l ((E, y) A (pg(ta’ilk(.’li),ul (l',y))
let 0 = A(r, 4).01(z, ) - 02(fail* (z), us (7, )
let u = Az, y).us(tail® (), ui (x,y))

if IsSat(p) then let r = p; olou, p2 and add r as a new rule

k+¢
2.c Delete the state p.
3. If no guard and no output depends on the register, remove the register from
all the rules in the ST and return the resulting ST as an ESFT, otherwise
return L.

After the first step, the original ST accepts an input [ag, a1, az] and produces
output v iff the transformed ST accepts [cons(ag, -), cons(a1,-), cons(az, -)] and
produces output v, where the tails _ are unconstrained and irrelevant. Step 2
further groups the inputs characters, e.g., to [cons(ag, cons(ay,-)), cons(az, )],
etc, while maintaining this input/output property with respect to the original
ST. Finally, in step 3, turning the ST into an ESFT, leads to elimination of the
register as well as lowering of the character sort back to ¢, and replacing each
occurrence of tailk(x) with corresponding individual tuple element variable xj.
Soundness of the algorithm follows.

The algorithm omits several implementation aspects that have considerable
effect on performance. One important choice is the order in which states are
removed. In our implementation the states with lowest total number of incoming
and outgoing rules are eliminated first. It is also important to perform the choices
in an order that avoids unreachable state spaces. For example, the elimination
of a state p in step 2 may imply that ¢ is unsatisfiable and consequently that
p2 is unreachable if the transition from p is the only transition leading to ps. In
this case, if p is reachable from the initial state, choosing ps before p in step 2
would be wasteful.

4 Unicode Case Study

In this section we show how to describe realistic encoding and decoding routines
using STs. We use Bek as the concrete programming language for STs.

A hextet is a non-negative integer < 2'¢, and an octet is a non-negative inte-
ger < 28, i.e., hextets correspond to 16-bit bitvectors and octets correspond
to bytes. Hextets are used in modern programming and scripting languages
to represent character codes. For example, in C# as well as in JavaScript,
string representation involves arrays of characters, where each character has a
unique numeric code in form of a hextet. For example, the JavaScript expression
String.fromCharCode(0x48, 0x65, 0x6C, 0x6C, 0x153,0x21) equals to the string “Helle!”.



program utf8encode(input){
return iter(c in input) [H:=false; r:=0;]
{
case (!'H&&(0<=c)&&(c<=0x7F)): yield(c); //one octet
case (!'H&&(0x7F<c)&&(c<=0xT7FF)):
yield (0xCO| ((c>>6)&0x1F), 0x80| (c&0x3F)); //two octets
case (!H&&(0x7FF<c)&&(c<=0xFFFF)&&((c<0xD800) | | (c>0xDFFF))):
yield (0xEO| ((c>>12)&0xF), 0x80| ((c>>6)&0x3F), 0x80| (c&0x3F)); //three octets

case (H&&(0xDCO0<=c)&&(c<=0xDFFF)): H:=false; r:=0; //low surrogate
yield((0x80| (r << 4))|((c>>6)&0xF), 0x80| (c&0x3F));
case (!H&&(0xD800<=c)&&(c<=0xDBFF)): H:=true; r:=c&3; //high surrogate

yield (0xFO| (((1+((c>>6)&0xF))>>2)&7), (0x80| (((1+((c>>6)&0xF))&3)<<4)) | ((c>>2)&0xF));
case (true): raise InvalidInput;
end case (H): raise InvalidInput;
};
}

program utf8decode (input){
return iter(c in input) [q:=0; r:=0;]

{
case ((q==0)&&(0<=c)&&(c<=0x7F)): yield (c);
case ((q==0)&&(0xC2<=c)&&(c<=0xDF)): q:=3; r:=(c&0x3F)<<6;
case ((q==0)&&(c==0xE0)): q:=7;
case ((q==0)&&(c==0xED)): q:=6;
case ((q==0)&&(0xE1<=c)&&(c<=0xEF)): q:=2; r:=(c&O0xF)<<12;
case ((q==0)&&(0xF1<=c)&&(c<=0xF3)): q:=1; r:=(c&7)<<8;
case ((q==0)&&(c==0xF0)): q:=4;
case ((q==0)&&(c==0xF4)): q:=5; r:=0x400;
case ((gq==1)&&(0x80<=c)&&(c<=0xBF)): q:=8; r:=0xD800| (((r| ((c&0x30)<<2))-0x40) | ((c&0xO0F)<<2));
case ((g==4)&&(0x90<=c)&&(c<=0xBF)): q:=8; r:=0xD800| ((((c&0x30)<<2)-0x40) | ((c&0x0F)<<2));
case ((q==5)&&(0x80<=c)&&(c<=0x8F)): q:=8; r:=0xD800| (((r| ((c&0x30)<<2))-0x40) | ((c&0xOF)<<2));
case ((q==2)&&(0x80<=c)&&(c<=0xBF)): q:=3; r:=r|((c&0x3F)<<6);
case ((q==6)&&(0x80<=c)&&(c<=0x9F)): q:=3; r:=0xD000| ((c&0x3F)<<6);
case ((q==7)&&(0xA0<=c)&&(c<=0xBF)): q:=3; r:=(c&0x3F)<<6;
case ((q==8)&&(0x80<=c)&&(c<=0xBF)): q:=3; yield(r|((c>>4)&3)); r:=0xDCO0| ((c&0xF)<<6);
case ((q==3)&&(0x80<=c)&&(c<=0xBF)): q:=0; yield(r|(c&0x3F)); r:=0;
case (true): raise InvalidInput;
end case (!(g==0)): raise InvalidInput;

Fig. 1. UTF-8 encoder and decoder in Bek.

A Unicode code point is an integer between 0 and 1,112,064 (10FFFFq¢). Sur-
rogates are code points between D800 and DFFFy¢ and are not valid character
code points according to the UTF-8 definition.*

UTF-16 is the standard character encoding used in modern programming and
scripting languages. With UTF-16 format, Unicode symbols are represented ei-
ther directly by hextets, or as pairs of hextets, so called surrogate pairs, that
represent symbols in the upper Unicode range, e.g., the musical symbol ¢ called
“cut time” has Unicode code point 1D135;4 that is encoded in UTF-16 by the
surrogate pair [D834;4,DD351¢].

Not all sequences of hextets represent well-formed UTF-16 strings. Well-
formed UTF-16 strings are precisely all those sequences of hextets that match
the regular expression and corresponding symbolic finite automaton in Figure 2.

4 http://tools.ietf.org/html/rfc3629.



0-D7FF |[EO00-FFFF
D800-DBFF

DCOO-DFFF

~([\0-\uD7FF\uE000-\uFFFF] | ([\uD800-\uDBFF] [\uDCOO-\uDFFF1)) *$

Fig. 2. UTF-16 validator. All numbers use hexadecimal notation and the range expres-
sion m-n is short for the predicate Ax.m < x < n.

Elements in the ranges [\uD800-\uDBFF] and [\uDCOO-\uDFFF] are called
high surrogates and low surrogates, respectively. A surrogate pair [high, low]
represents the Unicode symbol whose code point is ((high g o) < 10)|low g,0y) +
1000016, where x(,, ) extracts bits m through n from .

UTF-8 UTF-8 uses sequences of one up to four octets to encode single Unicode
code points. Let ¢ be a Unicode codepoint, the UTF-8 encoding of ¢ is:

[d], if 0 <c¢ < 7Fg6;
e Cco |C 8016|C50 ] lfCS 7FF16'
UtS(c d:f [ 16|¢(10,6)» . )
f8(e) [EO16/c(15,12) 8016|C(11 6),8016/¢(5,0)]5 if ¢ < FFFFyg;
[

F016|C 20,18) 8016|C 17,12)5 8016|C 11,6) 8016|C 5,0) ] otherwise.

Some codepoints are not valid. In particular, in the third case, ¢ may not be
a surrogate, i.e., ¢ < D800 or ¢ > DFFFy4. Also, any number greater than
10FFFFy¢ is invalid. The exact details of how the UTF-8 encoding is computed
from the UTF-16 encoding follows from the Bek program in Figure 1 and is
discussed below.

Conversions A UTF-16 to UTF-8 encoder takes a well-formed UTF-16 encoded
string and converts it into the equivalent UTF-8 representation. Figure 1 shows
the Bek program of such an encoder. The program makes essential use of bitwise
operations over hextets, in particular, it uses bit shifting operations and logical
bit operations. The input to the program is a sequence of hextets. The output
produced by the encoder is a sequence of octets.

The Bek program represents a symbolic transducer that uses two registers:
the Boolean register H and the character register r. The value of H is true if the
previous character was a high surrogate, in which case the register r contains
the two least significant bits of that high surrogate. When a low surrogate is
input, it is used together with the value of r to yield the remaining two octets
of the combined code point (the first two octets were output when the high
surrogate was read). Both registers can be effectively eliminated by using an
exploration algorithm. The resulting SFT is illustrated in Figure 3, where HS is
the predicate for high surrogates and LS is the predicate for low surrogates. The
rules of the SFT correspond to the different branches of the Bek program, where
the exception cases correspond to the cases that are disabled at the respective
states. What is quite remarkable is that the SFT has 11 rules and 5 states
in total, compared to an equivalent classical finite state transducer that would
require 216 transitions (one transition per hextet).



(0 <z< 7F15)/[Q}]
(TF16 < = < 7FF16)/[CO16|% (10,6)> 8016]%(5,0)]
(7TFF16 < x < FFFF16 A ~HS(x) A =LS(2))/[E016|%(15,12) 8016]2 (11,6, 8016]%(5,0)]

D

(HS(z) Nr=12(1,00)/
LS(z)/[8016|(r < 4)|z 9,6y, 80167 (s5,0)] [FO16](1 + = (9,6))(4,2)»
8016|((1 + z(9,6))(1,0) K 4)|x(5,2)]

Fig. 3. SFT that is equivalent to the Bek program utf8encode in Figure 1. States are
labelled by values of (H, r), there are five states: (f,0), (t,0), (t,1), (,2), and (4, 3).

The program utf8decode in Figure 1 provides the inverse conversion from
valid UTF-8 encoded sequences to valid UTF-16 encoded sequences. The equiv-
alent SFT has in this case 1284 states and 6371 rules, that is in sharp contrast
to the 5 states and 11 rules of the encoder.

5 Experiments and Evaluation

We first verify the functional correctness of UTF8 encoder and decoder. Sec-
ondly, we analyze how the register elimination algorithm of Section 3 scales for
different program’s sizes.

5.1 Functional correctness of encoders and decoders

The Bek programs in Figure 1 can be analyzed for various properties of interest
by first converting them to STs and then to ESFT. While this analysis is very
efficient for the ESFT of the encoder in Figure 3 it is more demanding for the
decoder because of the size of the state space. As a fundamental correctness
criterion, the valid input sequences of utfS8decode should be the set of all valid
UTF-8 sequences: Z(utf8decode) = Z(UTF8) where UTFS is the UTF-8 val-
idator expressed as a Symbolic Automaton. An inspection of UTF8 shows that
the following validity properties are checked:

1. Octets COyg, Clyg, F51g,...,FFig are disallowed.

2. Invalid combinations of start-octets and continuation-octets are disallowed.

3. Sequences that decode to a value with a shorter encoding (so called “over-
long” sequences) are disallowed.

4. Sequences starting with F4;4 encoding a value > 10FFFF;4 are disallowed.

5. Encodings of surrogates (having start-octet EDg) are disallowed.

In particular, overlong encodings, such as the encoding [COyg, AE16] of ‘.7, are
disallowed.



Moreover, we expect the decoder to perform the inverse of the encoder and
vice versa. Let I be the identity SFT, i.e., I has a single state gy and a single

Ax.t/[Ax.x
# qo- Let B = 9tf8encode’ D= ‘?utﬂ?decody Uuttie = -@( UTF16)5

U

and Uyys = Z(UTFS). The following must hold:
— FEoD é I, @(E) = @(EOD) = Uutflﬁ
~DoE=1I,92(D)=2(DoE)=Uus
A = B, iff A and B produce the same output on each of the inputs in their
domain intersection (1l-equality [20]). Consider D : Uyiri¢ — Uutts and E
Uutts = Uutrie as functions. Thus D and E are bijections and inverses of each
other.

rule g

5.2 Use of register elimination

In general, an ESFT to SFT conversion is needed for deciding 1-equality. The
previous technique eliminated the registers by fully exploring their reachable
state space and created an SE'T prior to invoking the equivalence algorithm [21].
The technique introduced here takes a step further. It gradually increases the
lookahead of a 2-output ST by shortcutting intermediate states in an attempt
to completely eliminate register dependencies from the guards and the output
terms. First, we convert ESFTs to STs by introducing registers, as explained
in Section 2.2. Second, we compute a 2-output ST as a product of the two
STs that has synchronized input and where infeasible guard combinations have
been eliminated, corresponding to product-SFTs in [20, Definition 7]. Third, we
compute an equivalent 2-output ESFT (when possible) from the 2-output ST
using the register elimination algorithm explained in Section 3. Fourth, we con-
vert that 2-output ESFT into a 2-output SFT whose characters are grouped into
sequences of characters of given lookahead length and note that this transforma-
tion preserves one-equality of the original ESFTs due to the synchronized inputs.
Finally, we apply a variation of the one-equality algorithm for SFTs to the 2-
output product SFT that is the value of C in the one-equality algorithm [20,
Figure 3]. The procedure described above might not terminate. However this has
not been the case in our case study. We are currently investigating decidability
of one-equality of ESFTs, and a more direct approach.

We illustrate the register elimination algorithm, in the case of composition,
using some rules of the case study. Consider the composition FD = E o D
(encoding followed by decoding). The resulting ST ED uses a register (inherited
from D), and has 5 states and 22 rules. Besides the initial state go, all other
states ¢ are non-final and intermediate in the following sense: all paths through
q have the form:

e(@0)/ ([, (®0)),  (wo.)/(B(wo,y),0)
% . q . %

where the first rule is independent of the register (depends only on the input ele-
ment zg). The path can be represented with an equivalent rule with a lookahead
of 2 elements:

p(zo)Ab(1,f(20))/ (B(z1,f (20)),0)
0 2 9o



After the removal of all such intermediate states from ED, the register y can
be deleted from all the new rules because no guard or output depends on the
register.®

Table 1 shows the running times of the operations needed to perform the
checks described above.

| Operation | Running Time |
_@(E) = Uutflg 47 ms
Z(E o D) = Uusie 109 ms
P (D) = Uuits 156 ms
P(Do E) =Upus 320 ms
E oD = I (exploration) 82,000 ms
Do E = I (exploration) 134,000 ms
EoD =T (reg. elim.) 123 ms
Do E = I (reg. elim.) 215 ms

Table 1. Running Times for Functional Correctness

The first four entries of Table 1 show the running time for the domain checks.
The times are all under 0.4 seconds. To perform the domain checks we compute
the ESFAs (ESFTs with empty outputs) corresponding to domain of the ESFTs,
and we check for automata equivalence. In order to improve the efficiency, when
possible, we transform ESFAs into equivalent SFAs (SFTs with empty outputs)
and use the equivalence algorithm for SFAs [20]. Without this transformation,
some of the running times would be above 1 minute.

The next two entries of Table 1 show the running times for 1-equality with
the exploration algorithm in [21]. It is clear from the data (> 100 seconds) that
the state explosion causes the algorithm to work only on programs of small
sizes. Finally, the last two entries of the table represent the running time for
the improved algorithm of Section 3 with register elimination. It is important to
point out that in this case we do not check for domain equivalence but only for
1-equality. Performing the check after the register elimination algorithm achieves
a 600x speed-up against the full exploration version in this particular case study.
This is a consequence of the succinctness of ESFTs.

5.3 Running time analysis with register elimination

In this section we run our register elimination algorithm on bigger program
instances. Most of the checks performed in this section will time out (longer
than 1 hour) when using the full exploration algorithm.

We consider consecutive compositions of encoders and decoders and analyze
their correctness using l-equality for ESFTs. This experiment is motivated by
a common form of attack called double encoding [15]. This attack technique

® The online Bek tutorial http://www.rise4fun.com/Bek/tutorial/utf8 contains
further analysis scenarios.



consists of encoding the user input twice in order to cause unexpected behaviour.
We define the following notation for consecutive composition of STs. Given an
ST P we define P! = P and P"t! = P o P*. We verify the following properties
and analyze their execution times.

Equivalence for Enc/Dec: FE'o D' =1 for 1 <i <9, Figure 4(a);
Inequivalence for Enc/Dec: E't!'o D # I for 1 <i < 9, Figure 4(a);
Equivalence for Dec/Enc: Do E' = I for 1 <i < 3, Figure 4(b);
Inequivalence for Dec/Enc: D'o E*t! 2 [ for 1 < i < 3, Figure 4(b).

Figure 4(a) shows the running times for the case in which we first encode
and then decode. The figure plots the following measures where i varies between
1 and 9:

Composition: cost of computing E**! o D* (we omit the cost of computing
E'o D' since it is almost equivalent);

Equivalence: cost of checking E? o D = I;

Inequivalence: cost of checking E't! o D' # I.

In this case the algorithm scales pretty well with the number of STs. It is worth
noticing that at every ¢ we are analyzing the composition of 2¢ transducers in
the case of equivalence and 27 + 1 transducers in the case of inequivalence.

Figure 4(b) shows the running times for the case in which we first decode
and then encode. The plot has the same meaning as before, but in this case the
running time increases at a faster pace. This happens for two reasons: 1) the
state space is bigger, and 2) the lookahead is bigger.

In the case in which we first encode the number of states and transitions
does not grow when ¢ increases. However, when we first decode, we early (i = 3)
reach a big number of states (3645) and transitions (6791). Moreover, while
the size of the lookahead in the first case remains the same (it is always 2),
it grows exponentially with ¢ when we first decode. Indeed for i = 1,2,3 we
have lookaheads of size 4, 8, 16 respectively. This causes the register elimination
algorithm to explore more paths.

We noticed when we composed the encoder with the decoder, that the looka-
head size and the number of states and transitions do not grow when ¢ increases.
However, Figure 4(a) shows that the running time grows exponentially in i. The
complexity indeed does not only depend on the size of the ESFT, but also on
the size of its predicates. The predicate sizes increase when we compose ST,
causing the SMT solver to affect the performance of both the composition and
equivalence algorithms, which perform several satisfiability checks on predicates.

6 Related Work

Symbolic finite transducers (SFTs) and BEK were originally introduced in [9]
with a focus on security analysis of sanitizers. The key properties that are stud-
ied in [9] from a practical point of view are idempotence, commutativity and
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Fig. 4. Running time in seconds for equivalence/inequivalence checking of multiple
compositions of encoders and decoders.

equivalence checking of sanitizers. The formal foundations and the theoretical
analysis of the underlying SF'T algorithms, in particular, an algorithm for decid-
ing equivalence of single-valued SFTs, modulo a decidable background theory is
studied in [20], including a more general 1-equality algorithm that factors out
the decision problem for single-valuedness, and allows non-determinism with-
out violating single-valuedness. The formalism of SFTs is extended in [20] to
Symbolic Transducers (STs) that allow the use of registers. A “brute-force” ex-
ploration algorithm for register elimination is analyzed in [21]. However, the
algorithm only copes with finite-ranged register updates and generally produces
large state spaces. The focus and the motivation of the current paper is efficient
register elimination. We introduce extended symbolic finite transducers (ESFTs)
which are strictly more expressive than SFTs. We then propose an algorithm
that compiles a subclass of STs to ESFTs and that does not assume the input
alphabet to be finite. Finally, the succinctness of ESFTs enables fast analysis of
previously intractable (or not expressible) programs.



In recent years there has been considerable interest in automata using infinite
alphabets [18], starting with the work on register automata [11]. Finite words
over an infinite alphabet are often called data words in the literature. This line
of work focuses on fundamental questions about definability, decidability, com-
plexity, and expressiveness on classes of automata on one hand and fragments
of logic on the other hand.

Streaming transducers [1] provide another recent symbolic extension of finite
transducers where the label theories are restricted to be total orders, in order to
maintain decidability of equivalence. Streaming transducers are largely orthog-
onal to SF'Ts or the extension of ESFTs, as presented in the current paper. For
example, streaming transducers allow reversing the input, which is not possible
with ESFTs, while arithmetic is not allowed in streaming transducers but plays
a central role in our applications of ESFTs to string encoders.

We use the SMT solver Z3 [6] for incrementally solving label constraints
that arise during the exploration algorithm. Similar applications of SMT tech-
niques have been introduced in the context of symbolic execution of programs
by using path conditions to represent under and over approximations of reach-
able states [8]. The distinguishing feature of our exploration algorithm is that it
computes a precise transformation that is symbolic with respect to input labels,
while allowing different levels of concretization with respect to the state vari-
ables. The resulting extended symbolic finite transducer is not an under or over
approximation, but functionally equivalent to the original symbolic transducer.
This is important for achieving a sound and complete analysis.

Our work is complementary to previous efforts in using SMT solvers to solve
problems related to list transformations. Kaluza [17] extends the SMT solver to
handle equations over strings and equations with multiple variables. We are not
aware of previous work investigating the use of finite transducers for verifying
code as complex as utfS8encoder and utf8decoder. One obvious explanation for this
is that classical finite transducers are not directly suited for this purpose; indeed,
symbolic finite transducers can be exponentially more succinct than classical
finite transducers with respect to alphabet size.

7 Conclusions

Several web applications assume the correctness of encoding and decoding func-
tions. However, practical experience shows that writing correct encoders and
decoders is a hard task. This paper presents an algorithmic extension of Bek,
a language for writing, analyzing string manipulation routines. We introduce
extended symbolic finite transducers (ESFTs) to enable analysis of previously
intractable programs such as string decoders. We prove correctness of UTFS8
encoder and decoder, even in the case of double encoding. We show that our al-
gorithms are fast in practice, and scale up to 20 encoder/decoder compositions.
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