
A Framework for Multimodal Data Collection,
Visualization, Annotation and Learning

Anne Loomis Thompson
Microsoft Research
One Microsoft Way
Redmond, WA, US

annelo@microsoft.com

Dan Bohus
Microsoft Research
One Microsoft Way
Redmond, WA, US

dbohus@microsoft.com

ABSTRACT

The development and iterative refinement of inference models for

multimodal systems can be challenging and time intensive. We

present a framework for multimodal data collection, visualization,

annotation, and learning that enables system developers to build

models using various machine learning techniques, and quickly

iterate through cycles of development, deployment and

refinement.

Categories and Subject Descriptors

D.2.m [Software Engineering]: Miscellaneous – Rapid

Prototyping I.2.6 [Artificial Intelligence]: Learning – Parameter

Learning

General Terms

Algorithms, Design, Measurement.

Keywords

Multimodal systems, tools, visualization, annotation, learning.

1. INTRODUCTION
Systems that engage in open-world interaction, such as embodied

conversational agents or robots, typically rely on models that fuse

multiple streams of evidence to enable them to “understand” the

surrounding environment, and the activities, beliefs, and

intentions of people around them. These models are often

constructed in a data-driven manner, by using machine learning

techniques over corpora of collected and annotated data. In

general, this is a time consuming process.

A number of tools for multimodal data visualization, annotation,

and analysis have been developed and are used in the research

community [1, 2, 3, 4, 5]. We present a framework that provides

these functions, and additionally supports model building using a

variety of machine learning techniques. By bringing these

functions together in a single platform, the framework enables its

users to explore data in place, gain insights for model

development, and quickly iterate through cycles of deployment

and refinement.

2. FRAMEWORK
At the center of the data analysis and learning framework lies an

infrastructure for capturing the values of floating point temporal

variables into feature streams. For example, the x-location of a

face tracked in a video can be captured into a feature stream,

XCenter, visualized in Figure 1; a binary feature stream can

capture whether speech is in progress or not; and so forth. In

general, feature streams can store information gathered from any

sensory modality, or produced by the system’s components at

runtime.

System developers work with feature streams as strongly typed

variables in code. Like standard variables, feature streams can be

created, destroyed, assigned to and read from; in addition, the

infrastructure manages the feature stream timeline, and values are

automatically logged to disk in a compact format at every time

point. Feature streams can be organized in hierarchical

collections, and derived feature streams can be computed by

applying operators to existing streams. For instance, the horizontal

speed of a face XCenter.Slope can be computed by applying a

Slope operator to the XCenter feature stream.

A log exploration tool, shown in Figure 1, displays the data

logged by a system along a timeline. It visualizes feature streams

and events logged by system components, such as detected

utterances and corresponding recognition results. The tool

supports variable speed audio and video replay, and overlays the

results of scene analysis computations performed by the system. It

supports the construction of manual annotations, and allows for

user-defined tagging schemes and segmentation.

To enable rapid development of machine learned models, the

framework provides a graphical user interface that allows system

engineers to manage the multiple stages of the model building

process. We outline them briefly below.

Define a learning problem. Model construction begins by

defining the structure of the learning problem, i.e. how training

instances and corresponding labels are generated from logged

data. The framework supports binary, regression, and multinomial

classification problems. Training instances can be generated for

every time point within custom-defined intervals, e.g. where a

feature stream exists, or where a condition over a feature stream

holds. This mechanism enables the specification of a diverse set

of multimodal inference problems, such as: predict at every point

a face is visible whether the face is tracked correctly; or predict at

every point between utterances the next time someone will speak.

Features used to train a model can be selected from the set of

feature streams logged by the system. Novel features can also be

constructed by applying operators to existing streams. For

example, derived features such as “the average value of the

FaceConfidence feature stream in the last 2 seconds” can be

added easily. A number of basic statistical and signal processing

operators over time intervals are supported, and developers can

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage, and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

owner/author(s). Copyright is held by the author/owner(s).

ICMI’13, December 9–13, 2013, Sydney, Australia.

ACM 978-1-4503-2129-7/13/12.

http://dx.doi.org/10.1145/2522848.2531751

extend this set. Derived feature streams can be visualized in-place,

supporting insight and allowing for quick iteration over their

design.

Labels can be generated based on manual tags, or automatically,

by various parametric mechanisms. For instance, to predict

whether an actor will start speaking within the next second, a label

can be generated automatically based on a condition on an

existing feature stream. Multiple label generation mechanisms are

available and we continue to extend the set.

Construct a training dataset. Given a learning problem

definition and control file specifying input sessions, a training

data set is constructed from recorded data and output in a simple

text format that can easily be imported to other tools such as

Matlab or Excel. Any derived feature streams or automatically-

generated labels specified in the problem definition are computed.

In addition to the training data files, this process produces a report

containing basic global and per-feature statistics.

Train a model. The framework supports a variety of machine

learning approaches, such as boosted decision trees, linear SVMs,

and logistic regression. The training process produces a model file

and a report containing performance metrics such as accuracy,

log-likelihood, and mean squared error.

Run/evaluate a model. The resulting models are easily integrated

into our systems for use at runtime; derived feature streams are

computed automatically by the framework and no additional code

needs to be written. A model may also be run and evaluated

offline on any collection of sessions or extracted datasets. The

model predictions can be output to simple text files, or to feature

streams, which can be immediately visualized in the log explorer.

Together, the feature streams infrastructure, log exploration and

learning tools enable quick iterations through model building and

support a variety of problem types and machine learning

approaches. We continue to work on extending this repertoire and

the overall capabilities of the framework.

3. DEMONSTRATION PLAN
Our demonstration will showcase this multimodal analysis and

learning framework to conference participants – see

accompanying video at [6]. We will illustrate the different steps of

the model-building process with several learning problems we

have explored using data collected from deployed systems. We

will discuss and highlight the important aspects of the overall

framework, including the feature streams infrastructure, the

construction and in-place visualization of derived feature streams,

automatic label generation, different learning problem structures,

and quick iteration over model building with different machine

learning techniques. We will seek feedback from demonstration

participants to shape the future development of this platform.

4. REFERENCES
[1] Kipp, M. 2001. Anvil – A Generic Annotation Tool for Multimodal

Dialogue. In Proc. of 7th European Conference on Speech

Communication and Technology, pp. 1367-1370.

[2] Clow, J., and Oviatt, S. 1998. STAMP: A Suite of Tools for
Analyzing Multimodal System Processing. In Proc. of ICSLP’1998,

pp. 277-280.

[3] Wittenburg, P., Brugman, G., Russel, A., Klassman, A., and Sloetjes,
H. 2006. ELAN: a Professional Framework for Multimodality

Research. In Proc. of LREC’2006, Paris.

[4] Schmidt, T. 2004. Transcribing and annotating spoken language with
Exmaralda. In Proc. of LREC Workshop on XML based richly

annotated corpora, Paris.

[5] Rose, T., Quek, F., and Shi. Y. 2004. MacVissta: A system for
multimodal analysis. In Proc. of ICMI’2004, New York.

[6] Thompson, A. L., and Bohus, D., 2013. Demonstration Video.

http://research.microsoft.com/~dbohus/videos/icmi13.wmv

Figure 1. The log explorer tool enables visualization, annotation and learning.

