
Locally Adaptive Dimensionality Reduction for Indexing
Large Time Series Databases

Eamonn Keogh Kaushik Chakrabarti Sharad Mehrotra Michael Pazzani
Department of Information and Computer Science

University of California, Irvine, California 92697 USA
(949) 824-7210

eamonn@ics.uci.edu kaushik@ics.uci.edu sharad@ics.uci.edu pazzani@ics.uci.edu

ABSTRACT
Similarity search in large time series databases has attracted much
research interest recently. It is a difficult problem because of the
typically high dimensionality of the data.. The most promising
solutions involve performing dimensionality reduction on the
data, then indexing the reduced data with a multidimensional
index structure. Many dimensionality reduction techniques have
been proposed, including Singular Value Decomposition (SVD),
the Discrete Fourier transform (DFT), and the Discrete Wavelet
Transform (DWT). In this work we introduce a new
dimensionality reduction technique which we call Adaptive
Piecewise Constant Approximation (APCA). While previous
techniques (e.g., SVD, DFT and DWT) choose a common
representation for all the items in the database that minimizes the
global reconstruction error, APCA approximates each time series
by a set of constant value segments of varying lengths such that
their individual reconstruction errors are minimal. We show how
APCA can be indexed using a multidimensional index structure.
We propose two distance measures in the indexed space that
exploit the high fidelity of APCA for fast searching: a lower
bounding Euclidean distance approximation, and a non-lower
bounding, but very tight Euclidean distance approximation and
show how they can support fast exact searching, and even faster
approximate searching on the same index structure. We
theoretically and empirically compare APCA to all the other
techniques and demonstrate its superiority.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process.
H.2.4 [Systems] Multimedia databases.

Keywords
Indexing, Dimensionality Reduction, Content-Based Retrieval.

1. INTRODUCTION
Time series account for a large proportion of the data stored in
financial, medical and scientific databases. Recently there has

been much interest in the problem of similarity search (query-by-
content) in time series databases. Similarity search is useful in its
own right as a tool for exploratory data analysis, and it is also an
important element of many data mining applications such as
clustering [13], classification [26, 33] and mining of association
rules [12].

The similarity between two time series is typically measured with
Euclidean distance, which can be calculated very efficiently.
However the volume of data typically encountered exasperates the
problem. Multi-gigabyte datasets are very common. As typical
example, consider the MACHCO project. This database contains
more than a terabyte of data and is updated at the rate of several
gigabytes a day [48].

The most promising similarity search methods are techniques that
perform dimensionality reduction on the data, then use a
multidimensional index structure to index the data in the
transformed space. The technique was introduced in [1] and
extended in [39, 31,11]. The original work by Agrawal et. al.
utilizes the Discrete Fourier Transform (DFT) to perform the
dimensionality reduction, but other techniques have been
suggested, including Singular Value Decomposition (SVD) [28,
24, 23], the Discrete Wavelet Transform (DWT) [9, 49, 22] and
Piecewise Aggregate Approximation (PAA) [24, 52].

For a given index structure, the efficiency of indexing depends
only on the fidelity of the approximation in the reduced
dimensionality space. However, in choosing a dimensionality
reduction technique, we cannot simply choose an arbitrary
compression algorithm. What is required is a technique that
produces an indexable representation. For example, many time
series can be efficiently compressed by delta encoding, but this
representation does not lend itself to indexing. In contrast SVD,
DFT, DWT and PAA all lend themselves naturally to indexing,
with each eigenwave, fourier coefficient, wavelet coefficient or
aggregate segment mapping onto one dimension of an index tree.

The main contribution of this paper is to propose a simple, but
highly effective compression technique, Adaptive Piecewise
Constant Approximation (APCA), and show that it can be indexed
using a multidimensional index structure. This representation was
considered by other researchers, but they suggested it “does not
allow for indexing due to its irregularity” [52]. We will show that
indexing APCA is possible, and, using APCA is up to one to two
orders of magnitude more efficient than alternative techniques on
real world datasets. We will define the APCA representation in
detail in Section 3, however an intuitive understanding can be
gleaned from Figure 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD May, 2001, Santa Barbara, California, USA.
Copyright 2001 1-58113-332-4/01/05

There are many situations in which a user would be willing to
sacrifice some accuracy for significant speedup [5]. With this in
mind we introduce two distance measures defined on the APCA
representation. The first tightly lower bounds the Euclidean
distance metric and is used to produce exact nearest neighbors.
The second is not lower bounding, but produces a very close
approximation of Euclidean distance and can be used to quickly
find approximate nearest neighbors. Both methods can be
supported by the same index structure so that a user can switch
between fast exact search and even faster approximate search.

The rest of the paper is organized as follows. In Section 2 we
provide background on and review related work in time series
similarity search. In Section 3 we introduce the APCA
representation and the two distance measures defined on it. In
Section 4 we demonstrate how to index the APCA representation.
Section 5 contains a comprehensive experimental comparison of
APCA with all the competing techniques. In section 6 we discuss
several advantages APCA has over the competing techniques, in
addition to being faster. Section 7 offers some conclusions.

2. BACKGROUND AND RELATED WORK
Given two time series Q = { q1,…,qn} and C = { c1,…,cn} their
Euclidean distance is defined as:

() ()∑ −≡
=

n

i
ii cqCQD

1

2, (1)

Figure 2 shows the intuition behind the Euclidean distance.

Figure 2: The intuition behind the Euclidean distance. The
Euclidean distance can be visualized as the square root of the
sum of the squared lengths of the gray lines.

There are essentially two ways the data might be organized [16]:

1. Whole Matching. Here it assumed that all sequences to be
compared are the same length n.

2. Subsequence Matching. Here we have a query sequence Q (of
length n), and a longer sequence C (of length m). The task is to
find the subsequence in C of length n, beginning at ci, which best
matches Q, and report its offset within C.

Whole matching requires comparing the query sequence to each
candidate sequence by evaluating the distance function and
keeping track of the sequence with the lowest distance.
Subsequence matching requires that the query Q be placed at
every possible offset within the longer sequence C. Note it is

possible to convert subsequence matching to whole matching by
sliding a “window” of length n across C, and making copies of the
(m-n) windows. Figure 3 illustrates the idea. Although this causes
storage redundancy it simplifies the notation and algorithms so we
will adopt this policy for the rest of this paper.

Any indexing scheme that does not examine the entire dataset
could potentially suffer from two problems, false alarms and false
dismissals. False alarms occur when objects that appear to be
close in the index are actually distant. Because false alarms can be
removed in a post-processing stage (by confirming distance
estimates on the original data), they can be tolerated so long as
they are relatively infrequent. A false dismissal is when qualifying
objects are missed because they appear distant in index space.

We will refer to similarity-searching techniques that guarantee no
false dismissals as exact, and techniques that do not have this
guarantee as approximate. We will review approximate techniques
in section 2.1 and exact techniques in section 2.2.

2.1 Approximate Techniques for Similarity
Searching
Several researchers have suggested abandoning the insistence on
exact search in favor of a much faster search that returns
approximately the same results. Typically this involves
transforming the data with a lossy compression scheme, then
doing a sequential search on the compressed data. Typical
examples include [42, 27, 30, 46], who all utilize a piecewise
linear approximation. Others have suggested transforming the data
into a discrete alphabet and using string-matching algorithms [2,
20, 34, 29, 21, 38]. All these approaches suffer from some
limitations. They are all evaluated on small datasets residing in
main memory, and it is unclear if they can be made to scale to
large databases.

The work of [3, 36, 45, 25, 26] differs from the above in that they
focus in providing a more flexible query language and not on
performance issues.

2.2 Exact Techniques for Similarity Searching.
A time series C = { c1,…,cn} with n datapoints can be considered
as a point in n-dimensional space. This immediately suggests that

DFT
 Reconstruction Error 5.85

SVD
 Reconstruction Error 5.22

0 100 200 300 400 500

APCA Representation
 Reconstruction Error 4.61

Haar Wavelet
 Reconstruction Error 5.77

0 100 200 300 400 500

Figure 1: A visual comparison of the time series representation proposed in this work (APCA), and the 3 other
representations advocated in the literature. For fair comparison, all representations have the same compression ratio.

Q

C

D (Q,C)

…

 n datapoints

C1

C2

Ci

Figure 3: The subsequence matching problem can be
converted into the whole matching problem by sliding a
"window" of length n across the long sequence and
making copies of the data falling within the windows.

time series could be indexed by a multidimensional index
structure such as the R-tree and its many variants [17]. Since
realistic queries typically contain 20 to 1,000 datapoints (i.e. n
varies from 20 to 1000) and most multidimensional index
structures have poor performance at dimensionalities greater than
8-12 [6], we need to first perform dimensionality reduction in
order to exploit multidimensional index structures to index time
series data. In [16] the authors introduced GEneric Multimedia
INdexIng method (GEMINI) which can exploit any
dimensionality reduction method to allow efficient indexing. The
technique was originally introduced for time series, but has been
successfully extend to many other types of data [28].

An important result in [16] is that the authors proved that in order
to guarantee no false dismissals, the distance measure in the index
space must satisfy the following condition:

Dindex space(A,B) ≤ Dtrue(A,B) (2)
This theorem is known as the lower bounding lemma or the
contractive property. Given the lower bounding lemma, and the
ready availability of off-the-shelf multidimensional index
structures, GEMINI requires just the following three steps.
� Establish a distance metric from a domain expert (in this case

Euclidean distance).
� Produce a dimensionality reduction technique that reduces

the dimensionality of the data from n to N, where N can be
efficiently handled by your favorite index structure.

� Produce a distance measure defined on the N dimensional
representation of the data, and prove that it obeys Dindex

space(A,B) ≤ Dtrue(A,B).

The efficiency of the GEMINI query algorithms depends only on
the quality of the transformation used to build the index. The
tighter the bound on Dindex space(A,B) ≤ Dtrue(A,B) the better, as
tighter bounds imply fewer false alarms hence lower query cost
[7]. Time series are usually good candidates for dimensionality
reduction because they tend to contain highly correlated features.
For brevity, we will not describe the three main dimensionality
reduction techniques, SVD, DFT and DWT, in detail. Instead we
refer the interested reader to the relevant papers or to [24] which
contains a survey of all the techniques. We will briefly revisit
related work in Section 6 when the reader has developed more
intuition about our approach.

3. ADAPTIVE REPRESENTATION
In recent work Keogh et. al. [24] and Yi & Faloutsos [52]
independently suggested approximating a time series by dividing

it into equal-length segments and recording the mean value of the
datapoints that fall within the segment. The authors use different
names for this representation, for clarity we will refer to it as
Piecewise Aggregate Approximation (PAA). This simple
technique is surprisingly competitive with the more sophisticated
transforms.

The fact that each segment in PAA is the same length facilitates
indexing of this representation. Suppose however we relaxed this
requirement and allowed the segments to have arbitrary lengths,
does this improve the quality of the approximation? Before we
consider this question, we must remember that the approach that
allows arbitrary length segments, which we call Adaptive
Piecewise Constant Approximation (APCA), requires two
numbers per segment. The first number records the mean value of
all the datapoints in segment, the second number records the
length. So a fair comparison is N PAA segments to M APCA
segments, were M = N/2.

It is difficult to make any intuitive guess about the relative
performance of the two techniques. On one hand PAA has the
advantage of having twice as many approximating segments. On
the other hand APCA has the advantage of being able to place a
single segment in an area of low activity and many segments in
areas of high activity. In addition one has to consider the structure
of the data in question. It is possible to construct artificial datasets
where one approach has an arbitrarily large reconstruction error,
while the other approach has reconstruction error of zero.

Figure 4 illustrates a fair comparison between the two techniques
on several real datasets. Note that for the task of indexing,
subjective feelings about which technique “ looks better” are
irrelevant. All that matters is the quality of the approximation,
which is given by the reconstruction error (because lower
reconstruction errors result in tighter bounds Dindex space(A,B) ≤
Dtrue(A,B).).

3.1 The APCA representation
Given a time series C = { c1,…,cn} , we need to be able to produce
an APCA representation, which we will represent as

C ={ <cv1,cr1>,…,<cvM,crM>} , cr0 = 0 (2)

Where cvi is the mean value of datapoints in the i th segment (i.e.

cvi = mean(
ii crcr cc ,...,11 +−

)) and cr i the right endpoint of the i th

segment. We do not represent the length of the segments but
record the locations of their right endpoints instead for indexing
reasons as will be discussed in Section 4. The length of the i th

segment can be calculated as cr i – cr i-1. Figure 5 illustrates this
notation.

(A)

A PC A
R E = 4 1 .8

PA A
R E = 7 0 .0

(E)

A PC A
R E = 5 8 .1

PA A
R E = 1 0 1

(B)

A PC A
R E = 9 8 .5

PA A
R E = 1 1 9

(C)

A PC A
R E = 1 6 .9

PA A
R E = 6 3 .7

(D)

A PC A
R E = 5 7 .3

PA A
R E = 1 7 2

(F)

A PC A
R E = 5 2 .1

PA A
R E = 5 3 .4

F

i

g

u

r

e

4

:

A

c

o

m

p

a

r

i

s

o

n

o

f

t

h

e

r

e

c

o

n

s

t

r

u

c

t

i

o

n

e

r

r

o

r

s

o

f

t

h

e

e

q

u

a

l

-

s

i

z

e

s

e

g

m

e

n

t

a

p

p

r

o

a

c

h

(

P

A

A

)

a

n

d

t

h

e

v

a

r

i

a

b

l

e

l

e

n

g

t

h

s

e

g

m

e

n

t

a

p

p

r

o

a

c

h

(

A

P

C

A

)

,

o

n

a

c

o

l

l

e

c

t

i

o

n

o

f

m

i

s

c

e

l

l

a

n

e

o

u

s

d

a

t

a

s

e

t

s

.

A

)

I

N

T

E

R

B

A

L

L

P

l

a

s

m

a

p

r

o

c

e

s

s

e

s

.

B

)

D

a

r

w

i

n

s

e

a

l

e

v

e

l

p

r

e

s

s

u

r

e

s

.

C

)

S

p

a

c

e

S

h

u

t

t

l

e

t

e

l

e

m

e

t

r

y

.

D

)

E

l

e

c

t

r

o

c

a

r

d

i

o

g

r

a

m

.

E

)

M

a

n

u

f

a

c

t

u

r

i

n

g

.

F

)

E

x

c

h

a

n

g

e

r

a

t

e

.

Figure 5: A time series C and its APCA representation C, with M = 4

In general, finding the optimal piecewise polynomial
representation of a time series requires a O(Nn2) dynamic
programming algorithm [15, 35]. For most purposes, however, an
optimal representation is not required. Most researchers,
therefore, use a greedy suboptimal approach instead [42, 27, 46].
In this work we utilize an original algorithm which produces high
quality approximations in O(nlog(n)). The algorithm works by
first converting the problem into a wavelet compression problem,
for which there are well known optimal solutions, then converting
the solution back to the ACPA representation and (possibly)
making minor modifications.

3.2 Distance Measures Defined for APCA
Suppose we have a time series C, which we convert to the APCA
representation C, and a query time series Q. Clearly, no distance
measure defined between Q and C can be exactly equivalent to the
Euclidean distance, D(Q,C) (defined in Equation 1.) because C
generally contains less information than C. However, we will
define two distance measures between Q and C that approximate
D(Q,C). The first, DAE(Q,C) is designed to be a very tight
approximation of the Euclidean distance, but may not always
lower bound the Euclidean distance D(Q,C). The second,
DLB(Q,C) is generally a less tight approximation of the Euclidean
distance, but is guaranteed to lower-bound, a property necessary
to utilize the GEMINI framework. These distance measures are
defined below, Figure 6 illustrates the intuition behind the
formulas.

3.2.1 An approximate Euclidean measure DAE

Given a query Q, in raw data format, and a time series C in the
APCA representation, DAE(Q,C) is defined as:

DAE(Q,C) ()∑ ∑=

−

= +
−

−
−≡ M

i

crcr

k crki
ii

i
qcv

1 1

21

1

(3)

This measure can be efficiently calculated in O(n), and it tightly
approximates the Euclidean distance, unfortunately it has a
drawback which prevents its use for exact search.

Proposition 1 DAE(Q,C) does not satisfy the triangular inequality

Proof: By counter example.

Consider the time series A = { -1, -1, -2, 1, 2} , B = { 1, 1, 0, -1, -1} and
C = { 0, 1, 0, 1, -2} their APCA representations A = { <-1,2>, <1/3
,5>} , B = { <2/3 ,3>,<-1,5>} , C = { <1/2 ,2>,< -1/3 ,5>}

The triangular inequality states that for any objects α, β and χ

d(α,β) ≤ d(α,χ) + d(β,χ)

Assume that DAE(Q,C) does satisfy the triangular inequality, then
we can write

DAE(A,B) ≤ DAE(A,C) + DAE(B,C)

Apply Equation 3 5.0662 ≤ 3.8079 + 1.2247

But this implies 5.0662 ≤ 5.0326

So the assumption was wrong and DAE(Q,C) does not satisfy the
triangular inequality.

The failure of DAE to obey the triangular inequality means that it
may not lower bound the Euclidean distance and thus cannot be
used for exact indexing [51]. However, we will demonstrate later
that it is very useful for approximate search.

3.2.2 An lower-bounding measure DLB

To define DLB(Q,C) we must first introduce a special version of
the APCA. Normally the algorithm mentioned in Section 3.1 is
used to obtain this representation. However we can also obtain
this representation by “projecting” the endpoints of C onto Q, and
finding the mean value of the sections of Q that fall within the
projected intervals. A time series Q converted into the APCA
representation this way is denoted as Q’ . The idea can be
visualized in Figure 6 III.

Q’ is defined as:

Q’ ={ <qv1,qr1>,…,<qvM,qrM>} ,

where qr i = cr i and qvi = mean(
ii crcr qq ,...,11 +−

) (4)

DLB(Q’ ,C) is defined as:

DLB(Q’ ,C) ∑ = − −−≡ M

i iiii cvqvcrcr
1

2
1))(((5)

This distance measure does lower bound the Euclidean distance.
For brevity we omit the proof which is a generalization of the
proof for the special case of equal length segments in [24].

Figure 6: A visualization of the two distance measures define on
the APCA representation. I) A query time series Q and a APCA
object C. II) The DAE measure can be visualized as the Euclidean
distance between Q and the reconstruction of C. III) Q’ is
obtained by projecting the endpoints of C onto Q and calculating
the mean values of the sections falling within the projected lines.
IIII) The DLB measure can be visualized as the square root of the
sum of the product of squared length of the gray lines with the
length of the segments they join.

4. INDEXING APCA
The APCA representation proposed in Section 3.1 defines a N-
dimensional feature space (N = 2M). In other words, the proposed
representation maps each time series C = { c1,…,cn} to a point C =
{ cv1, cr1, …, cvM, crM} in a N-dimensional space. We refer to the
N-dimensional space as the APCA space and the points in the
APCA space as APCA points. In this section, we discuss how we
can index the APCA points using a multidimensional index
structure (e.g., R-tree) and use the index to answer range and K
nearest neighbors (K-NN) queries efficiently. We will
concentrate on K-NN queries in this section; range queries will be
discussed briefly at the end of the section.

cr1

cv1

cr2

cv2

cr3

cv3 cr4

cv4
C C

C

Q

Q’

C

Q

D AE(Q,C) D LB(Q’ ,C)

I

II

III

IIII

Algorithm ExactKNNSearch(Q,K)

Variable queue: MinPriorityQueue;

Variable list: temp;

 1. queue.push(root_node_of_index, 0);

 2. while not queue.IsEmpty() do

3. top = queue.Top();

4. for each time series C in temp such that
D(Q,C) ≤ top.dist

5. Remove C from temp;

6. Add C to result;

 7. if |result| = K return result ;

 8. queue.Pop();

 9. if top is an APCA point C

10. Retrieve full time series C from database;

 11. temp.insert(C, D(Q,C));

 12. else if top is a leaf node

 13. for each data item C in top

 14. queue.push(C, DLB(Q’ ,C));

 15. else // top is a non-leaf node

 16. for each child node U in top

17. queue.push(U, MINDIST(Q,R)) // R
is MBR associated with U

Table 5: K-NN algorithm to compute the exact K nearest neighbors
of a query time series Q using a multidimensional index structure.

A K-NN query (Q, K) with query time series Q and desired
number of neighbors K retrieves a set C of K time series such that
for any two time series C ∈ C, E ∉ C, D(Q, C) ≤ D(Q, E). The
algorithm for answering K-NN queries using a multidimensional
index structure is shown in Table 5. The above algorithm is an
optimization on the GEMINI K-NN algorithm described in Table
3 and was proposed in [41]. Like the basic K-NN algorithm
[19,40], the algorithm uses a priority queue queue to navigate
nodes/objects in the index in the increasing order of their
distances from Q in the indexed (i.e. APCA) space. The distance
of an object (i.e. APCA point) C from Q is defined by DLB(Q’ ,C)
(cf. Section 3.2.2) while the distance of a node U from Q is
defined by the minimum distance MINDIST(Q,R) of the
minimum bounding rectangle (MBR) R associated with U from Q
(definition of MINDIST will be discussed later). Initially, we push
the root node of the index into the queue (Line 1). Subsequently,
the algorithm navigates the index by popping out the item from
the top of queue at each step (Line 8). If the popped item is an
APCA point C, we retrieve the original time series C from the
database, compute its exact distance D(Q,C) from the query and
insert it into a temporary list temp (Lines 9-11). If the popped
item is a node of the index structure, we compute the distance of
each of its children from Q and push them into queue (Lines 12-
17). We move a time series C from temp to result only when we
are sure that it is among the K nearest neighbors of Q i.e. there
exists no object E ∉ result such that D(Q,E) < D(Q,C) and |result|
< K. The second condition is ensured by the exit condition in Line
7. The first condition can be guaranteed as follows. Let I be the
set of APCA points retrieved so far using the index (i.e. I = temp
∪ result). If we can guarantee that ∀ C ∈ I, ∀ E ∉ I,
DLB(Q’ ,C) ≤ D(Q,E), then the condition “D(Q,C) ≤ top.dist” in
Line 4 would ensure that there exists no unexplored time series E
such that D(Q, E) < D(Q,C). By inserting the time series in temp
(i.e. already explored objects) into result in increasing order of
their distances D(Q,C) (by keeping temp sorted by D(Q,C)), we

can ensure that there exists no explored object E such that D(Q,
E) < D(Q,C). In other words, if ∀ C ∈ I, ∀ E ∉ I, DLB(Q’ ,C) ≤
D(Q,E), the above algorithm would return the correct answer.

Before we can use the above algorithm, we need to describe how
to compute MINDIST(Q,R) such that the correctness requirement
is satisfied i.e. ∀ C ∈ I, ∀ E ∉ I, DLB(Q’ ,C) ≤ D(Q,E). We now
discuss how the MBRs are computed and how to compute
MINDIST(Q,R) based on the MBRs. We start by revisiting the
traditional definition of an MBR [17]. Let us assume we have
built an index of the APCA points by simply inserting the APCA
points C = { cv1, cr1, …, cvM, crM} into a MBR-based
multidimensional index structure (using the insert function of the
index structure). Let U be a leaf node of the above index. Let R =
(L, H) be the MBR associated with U where L = { l1, l2, …, lN}
and H = { h1, h2, …, hN} are the lower and higher endpoints of the
major diagonal of R. By definition, R is the smallest rectangle that
spatially contains each APCA point C = { cv1, cr1, …, cvM, crM}
stored in U. Formally, R = (L, H) is defined as:

Definition 4.1 (Old definition of MBR)

2/)1(min += iUinCi cvl if i is odd (6)

2/min i
L

UinC cr= if i is even

2/)1(max += i
L

UinCi cvh if i is odd

2/max i
L

UinC cr= if i is even

The MBR associated with a non-leaf node would be the smallest
rectangle that spatially contains the MBRs associated with its
immediate children [17].

Figure 7: Definition of cmaxi and cmini for computing MBRs

However, if we build the index as above (i.e. the MBRs are
computed as in Definition 4.1), it is not possible to define a
MINDIST(Q,R) that satisfies the correctness criteria. To
overcome the problem, we define the MBRs are follows. Let us
consider the MBR R of a leaf node U. For any APCA point C =
{ cv1, cr1,…, cvM crM } stored in node U, let cmaxi and cmini denote
the maximum and minimum values of the corresponding time
series C among the datapoints in the i th segment i.e.

 cmaxi =)(max 11
t

cr

crt
ci

i += −

 and (7)

cmini =)(min 11
t

cr

crt
ci

i += −

The cmaxi and cmini of a simple time series with 4 segments is
shown in Figure 7.

We define the MBR R = (L, H) associated with U as follows:

Definition 4.2 (New definition of MBR)

2/)1(min += iUinCi incml if i is odd (8)

C

C

cmax

cmin

cmax

cmax

cmax

cmin

cmin

cmin

2/min iUinC cr= if i is even

 2/)1(max += iUinCi axcmh if i is odd

 2/max iUinC cr= if i is even

As before, the MBR associated with a non-leaf node is defined as
the smallest rectangle that spatially contains the MBRs associated
with its immediate children.
How do we build the index such that the MBRs satisfy Definition
4.2. We insert rectangles instead of the APCA points. In order to
insert an APCA point C = { cv1,cr1,..,cvM,crM} , we insert a
rectangle C = ({ cmin1, cr1, …, cminM, crM} ,{ cmax1, cr1, …,
cmaxM, crM}) (i.e. { cmin1, cr1, …, cminM, crM} and { cmax1, cr1,
…, cmaxM, crM}) are the lower and higher endpoints of the major
diagonal of C) into the multidimensional index structure (using
the insert function of the index structure). Since the insertion
algorithm ensures that the MBR R of a leaf node U spatially
contains all the C ’ s stored in U, R satisfies definition 4.2. The
same is true for MBRs associated with non-leaf nodes. Since we
use one of the existing multidimensional index structures for this
purpose, the storage organization of the nodes follows that of the
index structure (e.g., 〈MBR, child_ptr〉 array if R-tree is used, kd-
tree if hybrid tree is used). For the leaf nodes, we need to store the
cvi’ s of each data point (in addition to the cmaxi’ s, cmini’ s and
cr i’ s) since they are needed to compute DLB (Line 14 of the K-NN
algorithm in Table 5). The index can be optimized (in terms of
leaf node fanout) by not storing the cmaxi’ s and cmini’ s of the data
points at the leaf nodes i.e. just storing the cvi’ s and cr i’ s (a total
of 2M numbers) per data point in addition to the tuple identifier.
The reason is that the cmaxi’ s and cmini’ s are not required for
computing DLB, and hence are not used by the K-NN algorithm.
They are needed just to compute the MBRs properly (according to
definition 4.2) at the time of insertion. The only time they are
needed later (after the time of insertion) is during the
recomputation of the MBR of the leaf node containing the data
point after a node split. The insert function of the index structure
can be easily modified to fetch the cmaxi’ s and cmini’ s of the
necessary data points from the database (using the tuple
identifiers) on such occasions. The small extra cost of such
fetches during node splits is worth the improvement in search
performance due to higher leaf node fanout. We have applied this
optimization in the index structure for our experiments but we
believe the APCA index would work well even without this
optimization.

Once we have built the index as above (i.e. the MBRs satisfy
Definition 4.2), we define the minimum distance MINDIST(Q,R)
of the MBR R associated with a node U of the index structure
from the query time series Q. For correctness, ∀ C ∈ I, ∀ E ∉ I,
DLB(Q’ ,C) ≤ D(Q,E) (where I denotes the set of APCA points
retrieved using the index at any stage of the algorithm). We show
that the above correctness criteria is satisfied if MINDIST(Q,R)
lower bounds the Euclidean distance D(Q,C) of Q from any time
series C placed under U in the index.

Lemma 1:

If MINDIST(Q,R) ≤ D(Q,C) for any time series C placed
under U, the algorithm in Table 5 is correct i.e. ∀ C ∈ I, ∀ E ∉

I, DLB(Q’ ,C) ≤ D(Q,E) where I denotes the set of APCA points
retrieved using the index at any stage of the algorithm.

Proof:

According to the K-NN algorithm, any item E ∉ I
must satisfy one of the following conditions:

1) E has been inserted into the queue but has not been
popped yet i.e. ∀ C ∈ I, DLB(Q’ , C) ≤
DLB(Q’ ,E)

2) E has not yet been inserted into the queue i.e. there
exists a parent node U of E whose MBR R
satisfies the following condition: ∀ C ∈ I,
DLB(Q’ ,C) ≤ MINDIST(Q,R).

Since DLB(Q’ ,E) ≤ D(Q,E) (see Section 3.2.2), (1)
implies ∀ C ∈ I, DLB(Q’ ,C) ≤ D(Q,E). If
MINDIST(Q,R) ≤ D(Q,E) for any time series E under U,
(2) implies that ∀ C ∈ I, DLB(Q’ , C) ≤ D(Q,E). Since
either (1) or (2) must be true for any item E ∉ I, ∀ C ∈
I, ∀ E ∉ I, DLB(Q’ ,C) ≤ D(Q,E).

A trivial definition MINDIST(Q,R) that lower bounds D(Q,C) for
any time series C under U is MINDIST(Q,R) = 0 for all Q and R.
However, this definition is too conservative and would cause the
K-NN algorithm to visit all nodes of the index structure before
returning any answer (thus defeating the purpose of indexing).
The larger the MINDIST, the more the number of nodes the K-
NN algorithm can prune, the better the performance. We provide
such a definition of MINDIST below.

Figure 8: The M Regions associated with a 2M-dimensional MBR. The
boundary of a region G is denoted by G = { G[1], G[2], G[3], G[4]}

Let us consider a node U with MBR R = (L,H). We can view the
MBR as two APCA representations L={ l1, l2, …, lN} and H = { h1,
h2, …, hN} . The view of a 6-dimensional MBR ({ l1,l2,..,l6} ,
{ h1,h2,…,h6}) as two APCA representations { l1, l2, …, l6} and
{ h1, h2, …, h6} is shown in Figure 8. Any time series C = { c1,
c2,…, cn} under the node U is “contained” within the two
bounding time series L and H (as shown in Figure 9). In order to
formalize this notion of containment, we define a set of M regions
associated with R. The i th region GR

i (i = 1,…, M) associated with
R is defined as the 2-dimensional rectangular region in the value-
time space that fully contains the i th segment of all time series
stored under U. The boundary of a region G, being a 2-d
rectangle, is defined by 4 numbers: the low bounds G[1] and G[2]
and the high bounds G[3] and G[4] along the value and time axes
respectively.

By definition,

)(min]1[iUunderC
R
i ncmiG = (9)

Value
axis

h3

h1

REGION 2
G2

R = { l3, l2+1, h3, h4}

l5

t1

time (end points) axis

REGION 1
G1

R = { l1, 1, h1, h2}

l3

11

REGION 3
G3

R = { l5, l4+1, h5, h6}

h5

t2

H = { h1, h2, h3, h4, h5, h6}

L={ l1, l2, l3, l4, l5, l6}

l2 l4 h2 h4 l6 h6

Any time series C = { c1, …, cn} under
this node with MBR=(L,H) is
contained between L and (the dots on
the time series mark the starts and the
ends of the 3 APCA segments)

)1(min]2[1 += −iUunderC
R
i crG

)(max]3[iUunderC
R
i axcmG =

)(max]4[iUunderC
R
i crG =

Based the definition of MBR in Definition 4.2,
R
iG can be

defined in terms of the MBR R as follows:

Definition 4.3 (Definition of regions associated with MBR)
R
iG [1] = l{ 2i-1} (10)
R
iG [2] = l{ 2i-2}+1
R
iG [3] = h{ 2i-1}

R
iG [4] = h{ 2i}

Figure 8 shows the 3 regions associated with the 6-dimensional
MBR ({ l1,l2,..,l6} , { h1,h2,…,h6}). At time instance t (t = 1,…,n),
we say a region R

iG is active iff R
iG [2] ≤ t ≤ R

iG [4]. For

example, in Figure 8, only regions 1 and 2 are active at time
instant t1 while regions 1, 2 and 3 are active at time instant t2. The
value ct of a time series C under U at time instant t must lie within

one of the regions active at t i.e. ∨ activeisGR
i

R
iG [1] ≤ ct ≤

R
iG [3].

2.1 Lemma 2:The value ct of C under U at time instant
t must lie within one of the regions active at t.

Proof:

Let us consider a region R
iG that is not active at time

instant t i.e. either R
iG [2] > t or R

iG [4] < t. First, let us

consider the case R
iG [2] > t. By definition, R

iG [2] ≤cr i-1

+ 1 for any C under U . Since R
iG [2] > t, t < cr i-1 + 1 i.e.

ct is not in segment i.

Now let us consider the case R
iG [4] < t. By definition,

R
iG [4] ≥ cr i for any C under U. Since R

iG [4] < t, t > cr i

i.e. ct is not in segment i.

Hence, if region R
iG is not active at t, ct cannot lie in segment i

i.e. ct can lie in segment i only if R
iG is active. By definition of

regions, ct must lie within one of the regions active at t i.e.

∨ activeisGR
i

R
iG [1] ≤ ct ≤ R

iG [3].

Figure 9: Computation of MINDIST

Given a query time series Q = { q1, q2, …, qn} , the minimum
distance MINDIST(Q,R,t) of Q from R at time instant t (cf. Figure
9) is given by min tatactiveisGregion

MINDIST(Q,G,t) where

M I NDI ST(Q,G,t) = (G[1] -q t)2 i f q t < G[1] (11)

 = (q t -G[3])2 i f G[3] < q t

 = 0 otherwi se.
MINDIST(Q,R) is defined as follows:

MINDIST(Q,R) = ∑ =

n

t
tRQMINDIST

1
),,((12)

Lemma3: MINDIST(Q,R) lower bounds D(Q,C) for any time
series C under U.

Proof:

We will first show MINDIST(Q,R,t) lower bounds
D(Q,C,t) = (qt-ct)

2 for any time series C under U. We
know that ct must lie in one of the active regions (Lemma
3). Without loss of generality, let us assume that ct lies in
an active region G i.e. G[1] ≤ ct ≤ G[3]. Hence
MINDIST(Q,G,t) ≤ D(Q,C,t). Also, MINDIST(Q,R,t) <=
MINDIST(Q,G,t) (by definition of MINDIST(Q,R,t)).
Hence MINDIST(Q,R,t) lower bounds D(Q,C,t). Since
MINDIST(Q,R) = ∑ =

n

t
tRQMINDIST

1
),,(and D(Q,C) =

∑ =

n

t
tCQMINDIST

1
),,(, MINDIST(Q,R,t) ≤ D(Q,C,t)

implies MINDIST(Q,R) ≤ D(Q,C).

Note that, in general, lower the number of active regions at any
instant of time, higher the MINDIST, better the performance of
the K-NN algorithm. Also, narrower the regions along the value
dimension, higher the MINDIST. The above two principles justify
our choice of the dimensions of the APCA space. The odd
dimensions help clustering APCA points with similar cvi’ s, thus
keeping the regions narrow along the value dimension. The even
dimensions help clustering APCA points that are approximately
aligned at the segment end points, thus ensuring only one region
(minimum possible) is active for most instants of time.

Algorithm ExactRangeSearch(Q, ε, T)
 1. if T is a non-leaf node

 2. for each child U of T

 3. if MINDIST(Q,R)≤ ε ExactRangeSearch(Q, ε, U);
// R is MBR of U

 4. else // T is a leaf node

 5. for each APCA point C in T

 6. if D
LB
(Q’ ,C)≤ ε

 7. Retrieve full time series C from database;
 8. if D(Q,C) ≤ ε Add C to result;

Table 6: Range search algorithm to retrieve all the time series within

a range of ε from query time series Q. The function is invoked as

ExactRangeSearch(Q, ε, root_node_of_index).

Value
axis

time (end points) axis

 MINDIST(Q,R,t1)
= min (MINDIST(Q, G1

R, t1), MINDIST(Q, G2
R, t1))

= min ((qt1-h1)2, (qt1-h3)2)
= (qt1-h3)2

t1 t2

Query time series
Q = { q1, …, qn}

 REGION 1
G1

R = { l1, 1, h1, h2}

 REGION 2
G2

R = { l3, l2+1, h3, h4}

 REGION 3
G3

R = { l5, l4+1, h5, h6}

 MINDIST(Q,R,t2)
= min (MINDIST(Q, G1

R, t2), MINDIST(Q, G2
R, t2), MINDIST(Q, G3

R, t2))
= min ((qt2-h1)2, 0, (qt2-h3)2)
= 0

Although we have focussed on K-NN search in this section, the
definitions of DLB and MINDIST proposed in this paper are also
needed for answering range queries using a multidimensional
index structure. The range search algorithm is shown in Table 6. It
is a straightforward R-tree-style recursive search algorithm
combined with the GEMINI range query algorithm shown in
Table 2. Since both MINDIST(Q,R) and DLB(Q’ ,C) lower bound
D(Q,C), the above algorithm is correct [16].

In this section, we described how to find the exact nearest
neighbors of a query time series using a multidimensional index
structure. In Section 3.2.1, we proposed an approximate
Euclidean distance measure DAE(Q,C) for fast approximate search.
If we want to use the same index structure to answer both exact
queries and approximate queries, we can simply replace the
distance function DLB(Q,C) in Line 14 of the K-NN algorithm
(Table 5) by DAE(Q,C) to switch from exact to approximate
queries and vice-versa. Since DAE(Q,C) is a tighter approximation
of D(Q,C) than DLB(Q’ ,C), the K-NN algorithm would need to
retrieve fewer APCA points from the index before the algorithm
stops. This would result in fewer disk accesses to retrieve the full
time series corresponding to the retrieved APCA points (Line 10
of Table 5), leading to lower query cost. Since the approximate
distance DAE(Q,C) between a time series query Q = { q1, q2,…qn}
and an APCA point C = { cv1, cr1, …, cvM, crM} almost always
lower bounds the Euclidean distance D(Q,C) between Q and the
original time series C = { c1, c2,…, cn} (see Figure 7), the
approximate function can be used to get reasonably accurate
results more efficiently using the same index structure.

If an index is used exclusively for approximate search based on
D

AE
, further optimizations are possible. For such an index, we can

construct the MBRs as defined in Definition 4.1 i.e. by inserting
the APCA point C = { cv

1
, cr

1
, …, cv

M
, cr

M
} itself instead of the

corresponding rectangle ({ cmin
1
, cr

1
,…, cmin

M
, cr

M
} , { cmax

1
, cr

1
,

…, cmax
M
, cr

M
}). The MINDIST computation is the same as in the

exact case. It can be shown that MINDIST(Q,R) of the query from
the above MBR (Definition 4.1) lower bounds D

AE
(Q,C), therefore

ensuring retrieval of APCA points in the order of their distances
D

AE
(Q,C). Since these MBRs are always smaller than the MBRs in

Definition 4.2, the MINDISTs will be larger resulting in fewer
node accesses of the index structure compared to approximate
search using the same index as the exact search and hence even
better performance. To exploit this optimization, one can maintain
two separate indices (one with MBRs as defined in Definition 4.2
and one with that defined in Definition 4.1) for exact and
approximate searches respectively.

5. EXPERIMENTAL EVALUATION

In this section we will experimentally demonstrate the superiority
of APCA in terms of query response time.
For completeness we experimentally compare all the state of the
art indexing techniques with our proposed method. We have taken
great care to create high quality implementations of all competing
techniques. For example we utilized the symmetric properties of
the DFT as suggested in [39]. Additionally when taking the DFT
of a real signal, the first imaginary coefficient is zero, and because
all objects in our database have had their mean value subtracted,
the first real coefficient is also zero. We do not include these

constants in the index, making room instead for two additional
coefficients that carry information. All other approaches are
similarly optimized.

5.1 Experiment methodology
We performed all tests over a range of reduced dimensionalities
(N) and query lengths (i.e original dimensionalities, n). Because
we wanted to include the DWT in our experiments, we are limited
to query lengths that are an integer power of two. We consider a
length of 1024 to be the longest query likely to be encountered (by
analogy, one might query a text database with a word, a phrase or
a complete sentence, but the would be little utility in a paragraph-
length text query. A time series query of length 1024 corresponds
approximately with sentence length text query).
We tested on two datasets, one chosen because it is very
heterogeneous and one chosen because it is very homogenous.
� Homogenous Data: Electrocardiogram. This dataset is

taken from the MIT Research Resource for Complex
Physiologic Signals [32]. It is a “ relatively clean and
uncomplicated” electrocardiogram. The total size of the data
is 100,000 objects.

� Heterogeneous Data: Mixed Bag. This dataset we created
by combining 7 datasets with widely varying properties of
shape, structure, noise etc. The only preprocessing performed
was to insure that each time series had a mean of zero and a
standard deviation of one. The 7 datasets are, Space Shuttle
STS-57 [27, 25], Arrhythmia [32], Random Walk [46, 34,
52, 24], INTERBALL Plasma processes (figure 4) [43],
Astrophysical data (figure 1) [47], Pseudo Periodic Synthetic
Time Series [4]. Exchange rate (figure 4) [47]. The total size
of the data is 100,000 objects.

To perform realistic testing we need queries that do not have exact
matches in the database but have similar properties of shape,
structure, spectral signature, variance etc. To achieve this we used
cross validation. We removed 10% of the dataset, and build the
index with the remaining 90%. The queries are then randomly
taken from the withheld subsection. For each result reported for a
particular dimensionality and query length, we averaged the
results of 50 experiments.

For simplicity we only show results for nearest neighbor queries,
however we obtained similar results for range queries.

5.2 Experimental results: Pruning power
In comparing the four competing techniques there exists a danger
of implementation bias. That is, consciously or unconsciously
implementing the code such that some approach is favored. As an
example of the potential for implementation bias in this work
consider the following. At query time DFT must do a Fourier
transform of the query. We could use the naïve algorithm which is
O(n2) or the faster radix-2 algorithm (padding the query with zeros
for n ≠ 2integer) which is O(nlogn). If we implemented the simple
algorithm it would make the other indexing methods appear to
perform better relative to DFT. While we do present detailed
experimental evaluation of an implemented system in the next
section, we also present experiments in this section which are free
of the possibility of implementation basis. We achieve this by
comparing the pruning power of the various approaches.
To compare the pruning power of the four techniques under

consideration we measure P, the fraction of the database that must
be examined before we can guarantee that we have found the
nearest match to a 1-NN query.

databaseinobjectsofNumber
inedexambemustthatobjectsofNumberP= (13)

To calculate P we do the following. Random queries are generated
(as described above). Objects in the database are examined in
order of increasing (feature space) distance from the query until
the distance in feature space of the next unexamined object is
greater than minimum actual distance of the best match so far. The
number of objects examined at this point is the absolute minimum
in order to guarantee no false dismissals.
Note the value of P for any transformation depends only on the
data and is completely independent of any implementation
choices, including spatial access method, page size, computer
language or hardware. A similar idea for evaluating indexing
schemes appears in [18].

Figure 10 shows the value of P over a range of query lengths and
dimensionalities for the experiments that were conducted the
Mixed Bag dataset.

Note that the results for PAA and DWT are identical. This
because the pruning power of DWT and PAA are identical when N
= 2integer [24]. Having empirically shown this fact which was proved
in [24, 52] we have excluded PAA from future experiments for
clarity. We repeated the experiment for the Electrocardiogram
data, the results are shown in Figure 11.
In both Figure 10 and 11 we can see that APCA outperforms DFT
and DWT significantly, generally by an order of magnitude. These
experiments indicate that the APCA technique has fewer false
alarms, hence lower query cost as confirmed by the experiments
below.

5.3 Experimental results: Implemented system
Although the pruning power experiments are powerful predictors
of the (relative) performance of indexing systems using the
various dimensionality reduction schemes, we include a
comparison of implemented systems for completeness. We
implemented four indexing techniques: linear scan, DFT-index,

DWT-index and APCA-index. We compare the four techniques in
terms of the I/O and CPU costs incurred to retrieve the exact
nearest neighbor of a query time series. All the experiments
reported in this subsection were conducted on a Sun Ultra
Enterprise 450 machine with 1 GB of physical memory and
several GB of secondary storage, running Solaris 2.6.

Cost Measurements:
We measured the I/O and CPU costs of the four techniques as
follows:

(1) Linear Scan (LS): In this technique, we perform a simple
linear scan on the original n-dimensional dataset and
determine the exact nearest neighbor of the query. The I/O
cost in terms of sequential disk accesses is
(S*(n*sizeof(float) + sizeof(id)))/(PageSize). Since sizeof(id)
<< (n*sizeof(float)), we will ignore the sizeof(id) henceforth.
Assuming sequential I/O is about 10 times faster than random
I/O, the cost in terms of random accesses is
(S*sizeof(float)*n)/(PageSize*10). The CPU cost is the cost
of computing the distance D(Q,C) of the query Q from each
time series C = { c1, …, c

n
} in the database.

(2) DFT-index (DFT): In this technique, we reduce the
dimensionality of the data from n to N using DFT and build
an index on the reduced space using a multidimensional
index structure. We use the hybrid tree as the index structure.
The I/O cost of a query has two components: (1) the cost of
accessing the nodes of the index structure and (2) the cost of
accessing the pages to retrieve the full time series from the
database for each indexed item retrieved (cf. Table 5). For the
second component, we assume that a full time series access
costs one random disk access. The total I/O cost (in terms of
random disk accesses) is the number of index nodes accessed
plus the number of indexed items retrieved by the K-NN
algorithm before the algorithm stopped (i.e. before the
distance of the next unexamined object in the indexed space
is greater than the minimum of the actual distances of items
retrieved so far). The CPU cost also has two components: (1)
the CPU time (excluding the I/O wait) taken by the K-NN
algorithm to navigate the index and retrieve the indexed items

64
32

16

256
512

1024

0

0.1

0.2

0.3

DFT

64
32

16

256
512

1024

0

0.1

0.2

0.3

DWT

64
32

16

256
512

1024

0

0.1

0.2

0.3

APCA

Figure 11: The fraction P, of the Electrocardiogram database that must be examined by the three dimensionality reduction
techniques being compared over a range of query lengths (256-1024) and dimensionalities (16-64).

Figure 10: The fraction P, of the Mixed Bag database that must be examined by the four dimensionality reduction techniques being
compared, over a range of query lengths (256-1024) and dimensionalities (16-64).

0

0.1

0.2

0.3

0.4

0.5

64
32

16

256
512

1024

DFT DWT APCAPAA

0

0.1

0.2

0.3

0.4

0.5

64
32

16

256
512

1024
0

0.1

0.2

0.3

0.4

0.5

64
32

16

256
512

1024
0

0.1

0.2

0.3

0.4

0.5

64
32

16

256
512

1024

and (2) the CPU time to compute the exact distance D(Q,C)
of the query Q from the original time series C of each
indexed item C retrieved (Line 11 in Table 5). The total CPU
cost is the sum of the two costs.

(3) DWT-index (DWT): In this technique, we reduce the
dimensionality of the data from n to N using DWT and build
the index on the reduced space using the hybrid tree index
structure. The I/O and CPU costs are computed in the same
way as in DFT.

(4) APCA-index (APCA): In this technique, we reduce the
dimensionality of the data from n to N using APCA and build
the index on the reduced space using the hybrid tree index
structure. The I/O and CPU costs are computed in the same
way as in DFT and DWT.

We chose the hybrid tree as the index structure for our
experiments since it is a space partitioning index structure
(“dimensionality-independent” fanout) and has been shown to
scale to high dimensionalities [6, 37, 24]. Since we had access to
the source code of the index structure (http://www-db.ics.uci.edu)
we implemented the optimization discussed in Section 4 (i.e. to
increase leaf node fanout) for our experiments. We used a page
size of 4KB for all our experiments.
Dataset: We used the Electrocardiogram (ECG) database for
these experiments. We created 3 datasets from the ECG database
by choosing 3 different values of query length n (256, 512 and
1024). For each dataset, we reduced the dimensionality to N = 16,
N = 32 and N = 64 using each of the 3 dimensionality reduction
techniques (DFT, DWT and APCA) and built the hybrid tree
indices on the reduced spaces (resulting a total of 9 indices for
each technique). As mentioned before, the queries were chosen
randomly from the withheld section of the dataset. All our
measurements are averaged over 50 queries.

Figure 12 compares the LS, DFT, DWT and APCA techniques in
terms of I/O cost (measured by the number of random disk
accesses) for the 3 datasets (n = 256, 512 and 1024) and 3

different dimensionalities of the index (N = 16, 32 and 64). The
APCA technique significantly outperforms the other 3 techniques
in terms of I/O cost. The LS technique suffers due to the large
database size (e.g., 100,000 sequential disk accesses for n = 1024
which is equivalent to 10,000 random disk accesses). Although
LS is not considerably worse than APCA in terms of I/O cost, it is
significantly worse in terms of the overall cost due to its high
CPU cost component (see Figure 13). The DFT and DWT suffer
mainly due to low pruning power (cf. Figure 11). Since DFT and
DWT retrieve a large number of indexed items before it can
guaranteed that the exact nearest neighbor is among the retrieved
items, the second component of the I/O cost (that of retrieving full
time series from the database) tends to be high. The DFT and
DWT costs are the highest for large n and small N (e.g., n = 1024,
N=16) as the pruning power is the lowest for those values (cf.
Figure 11). The DWT technique shows a U-shaped curve for n =
1024: when the reduced dimensionality is low (N = 16), the
second component of the I/O cost is high due to low pruning
power, while when N is high (N = 64), the first component of the
I/O cost (index node accesses) becomes large due to
dimensionality curse. We did not observe such U-shaped behavior
in the other techniques as their costs were either dominated
entirely by the first component (e.g., n = 256 and n = 512 cases of
APCA) or by the second component (all of DFT and n = 1024
case of APCA).

Figure 13 compares the LS, DFT, DWT and APCA techniques in
terms of CPU cost (measured in seconds) for the 3 datasets (n =
256, 512 and 1024) and 3 different dimensionalities of the index
(N = 16, 32 and 64). Once again, the APCA technique
significantly outperforms the other 3 techniques in terms of CPU
cost. The LS technique is the worst in terms of CPU cost as it
computes the exact (n-dimensional) distance D(Q,C) of the query
Q from every time series C in the database. The DFT and DWT
techniques suffer again due to their low pruning power (cf. Figure
11), causing the second component of the CPU cost (i.e. the time
to compute the exact distances D(Q,C) of the original time series
of the retrieved APCA points from the query) to become high.

DFT DWT APCALS

64 32
16

256
512

1024
64 32

16
256

512
1024

64 32
16

256
512

1024
64 32

16
256

512
1024

Figure 12: Comparison of LS, DFT, DWT and APCA techniques in terms of I/O cost (number of random disk accesses). For LS,
the cost is computed as number_sequential_disk_accesses/10.

0

36,000

24,000

12,000

0

36,000

24,000

12,000

0

36,000

24,000

12,000

0

36,000

24,000

12,000

Figure 13: Comparison of LS, DFT, DWT and APCA techniques in terms of CPU cost (seconds).
64 32 16

256
512

1024

DFT DWT APCALS

64 32 16
256

512
1024

64 32 16
256

512
1024

64 32 16
256

512
1024

0

400

600

800

200

0

400

600

800

200

0

400

600

800

200

0

400

600

800

200

6. DISCUSSION

Now that the reader is more familiar with the contribution of this
paper we will briefly revisit related work. We believe that this
paper is the first to suggest locally adaptive indexing time series
indexing. A locally adaptive representation for 2-dimensional
shapes was suggested in [8] but no indexing technique was
proposed. Also in the context of images, it was noted by [50] that
the use of the first N Fourier coefficients does not guarantee the
optimal pruning power. They introduced a technique where they
adaptively choose which coefficients to keep after looking at the
data. However, the choice of coefficients was based upon a global
view of the data. Later work [49] in the context of time series
noted that the policy of using the first N wavelet coefficients [9,
49, 22] is not generally optimal, but “keeping the largest
coefficients needs additional indexing space and (more complex)
indexing structures” . Singular value decomposition is also a data
adaptive technique used for time series [28, 24, 23], but it is
globally, not locally, adaptive. Recent work [7] has suggested first
clustering a multi-dimensional space and then doing SVD on local
clusters, making it a semi-local approach. It is not clear however
that this approach can be made work for time series. Finally a
representation similar to APCA was introduced in [15] (under the
name “piecewise flat approximation”) but no indexing technique
was suggested.

7. CONCLUSIONS

The main contribution of this paper is to show that a simple, novel
dimensionality reduction technique, namely APCA, can
outperform more sophisticated transforms by one to two orders of
magnitude. In contrast to popular belief [52, 15], we have shown
that the APCA representation can be indexed using a
multidimensional index structure. In addition to fast exact queries,
the approach also allows even faster approximate querying on the
same index structure. We have also shown that our approach can
support arbitrary Lp norms, again using a single index structure.
Future directions for research include further increasing the
speedup of our method by exploiting the similarity of adjacent
sequences (in a similar spirit to the "trail indexing" technique
introduced in [16]). Additionally we intend to explore the
possibility of local adaptability for other representations and
problems.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation, Information Technology Research under
Grant No. IIS-0086124 and in part by the Army Research
Laboratory under Cooperative Agreement No. DAAL-01-96-2-
0003 and Cooperative Agreement No. DAAD-19-00-1-0188.

8. REFERENCES
[1] Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient

similarity search in sequence databases. Proceedings of the 4th

Conference on Foundations of Data Organization and
Algorithms.

[2] Agrawal, R., Psaila, G., Wimmers, E. L., & Zait, M. (1995).
Querying shapes of histories. Proceedings of the 21st

International Conference on Very Large Databases.

[3] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K. (1995). Fast
similarity search in the presence of noise, scaling, and translation
in times-series databases. Proceedings of 21th International
Conference on Very Large Data Bases. Zurich. pp 490-50.

[4] Bay, S. D. (2000). The UCI KDD Archive [http://kdd.ics.uci.edu].
Irvine, CA: University of California, Department of Information
and Computer Science.

[5] Bennett, K., Fayyad, U. & Geiger. D. (1999). Density-based
indexing for approximate nearest-neighbor queries. Proceedings
5th International Conference on Knowledge Discovery and Data
Mining. pp. 233-243, ACM Press, New York.

[7] Chakrabarti, K & Mehrotra, S (2000). Local dimensionality
reduction: A new approach to indexing high dimensional spaces.
Proceedings of the 26th Conference on Very Large Databases,
Cairo, Egypt.

[7] Chakrabarti, K & Mehrotra, S (2000). Local dimensionality
reduction: A new approach to indexing high dimensional spaces.
Proceedings of the 26th Conference on Very Large Databases,
Cairo, Egypt.

[8] Chakrabarti, K., Ortega-Binderberger, M., Porkaew, K &
Mehrotra, S. (2000) Similar shape retrieval in MARS.
Proceeding of IEEE International Conference on Multimedia
and Expo.

[9] Chan, K. & Fu, W. (1999). Efficient time series matching by
wavelets. Proceedings of the 15th IEEE International Conference
on Data Engineering.

[10] Chandrasekaran, S., Manjunath, B.S., Wang, Y. F. Winkeler, J.
& Zhang. H. (1997). An eigenspace update algorithm for image
analysis. Graphical Models and Image Processing, Vol. 59, No.
5, pp. 321-332.

[11] Chu, K & Wong, M. (1999). Fast time-series searching with
scaling and shifting. Proceedings of the 18th ACM Symposium on
Principles of Database Systems, Philadelphia.

[12] Das, G., Lin, K. Mannila, H., Renganathan, G., & Smyth, P.
(1998). Rule discovery from time series. Proceedings of the 3rd

International Conference of Knowledge Discovery and Data
Mining. pp 16-22.

[13] Debregeas, A. & Hebrail, G. (1998). Interactive interpretation of
Kohonen maps applied to curves. Proceedings of the 4th

International Conference of Knowledge Discovery and Data
Mining. pp 179-183.

[14] Evangelidis, G., Lomet, D. & Salzberg B (1997). The hB-Pi-
Tree: A multi-attribute index supporting concurrency, recovery
and node consolidation. VLDB Journal 6(1): 1-25.

[15] Faloutsos, C., Jagadish, H., Mendelzon, A. & Milo, T. (1997). A
signature technique for similarity-based queries. SEQUENCES
97, Positano-Salerno, Italy.

[16] Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994).
Fast subsequence matching in time-series databases. Proceedings
of the 1994 ACM SIGMOD International Conference on
Management of Data. Minneapolis.

[17] Guttman, A. (1984). R-trees: A dynamic index structure for
spatial searching. Proceedings ACM SIGMOD Conference. pp
47-57.

[18] Hellerstein, J. M., Papadimitriou, C. H., & Koutsoupias, E.
(1997). Towards an analysis of indexing schemes. Sixteenth ACM
Symposium on Principles of Database Systems.

[19] Hjaltason, G., Samet, H (1995). Ranking in spatial databases.
Symposium on Large Spatial Databases. pp 83-95.

[20] Huang, Y. W., Yu, P. (1999). Adaptive Query processing for
time-series data. Proceedings of the 5th International Conference
of Knowledge Discovery and Data Mining. pp 282-286.

[21] Jonsson. H., & Badal. D. (1997). Using signature files for
querying time-series data. First European Symposium on
Principles of Data Mining and Knowledge Discovery.

[22] Kahveci, T. & Singh, A (2001). Variable length queries for time
series data. Proceedings 17th International Conference on Data
Engineering. Heidelberg, Germany.

[23] Kanth, K.V., Agrawal, D., & Singh, A. (1998). Dimensionality
reduction for similarity searching in dynamic databases.
Proceedings ACM SIGMOD Conf., pp. 166-176.

[24] Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000)
Dimensionality reduction for fast similarity search in large time
series databases. Journal of Knowledge and Information Systems.

[25] Keogh, E. & Pazzani, M. (1999). Relevance feedback retrieval of
time series data. Proceedings of the 22th Annual International
ACM-SIGIR Conference on Research and Development in
Information Retrieval.

[26] Keogh, E., & Pazzani, M. (1998). An enhanced representation of
time series which allows fast and accurate classification,
clustering and relevance feedback. Proceedings of the 4th

International Conference of Knowledge Discovery and Data
Mining. pp 239-241, AAAI Press.

[27] Keogh, E., & Smyth, P. (1997). A probabilistic approach to fast
pattern matching in time series databases. Proceedings of the 3rd

International Conference of Knowledge Discovery and Data
Mining. pp 24-20.

[28] Korn, F., Jagadish, H & Faloutsos. C. (1997). Efficiently
supporting ad hoc queries in large datasets of time sequences.
Proceedings of SIGMOD ’97, Tucson, AZ, pp 289-300.

[29] Lam, S., & Wong, M (1998) A fast projection algorithm for
sequence data searching. Data & Knowledge Engineering 28(3):
321-339.

[30] Li, C,. Yu, P. & Castelli V.(1998). MALM: A framework for
mining sequence database at multiple abstraction levels. CIKM.
pp 267-272.

[31] Loh, W., Kim, S & Whang, K. (2000). Index interpolation: an
approach to subsequence matching supporting normalization
transform in time-series databases. Proceedings 9th International
Conference on Information and Knowledge Management.

[32] Moody, G. (2000). MIT-BIH Database Distribution
[http://ecg.mit.edu/index.html]. Cambridge, MA.

[33] Ng, M. K., Huang, Z., & Hegland, M. (1998). Data-mining
massive time series astronomical data sets - a case study.
Proceedings of the 2nd Pacific-Asia Conference on Knowledge
Discovery and Data Mining. pp 401-402

[34] Park, S., Lee, D., & Chu, W. (1999). Fast retrieval of similar
subsequences in long sequence databases. In 3rd IEEE Knowledge
and Data Engineering Exchange Workshop.

[35] Pavlidis, T. (1976). Waveform segmentation through functional
approximation. IEEE Transcations on Computers, Vol C-22, NO.
7 July.

[36] Perng, C., Wang, H., Zhang, S., & Parker, S. (2000). Landmarks:
a new model for similarity-based pattern querying in time series
databases. Proceedings 16th International Conference on Data
Engineering. San Diego, USA.

[37] Porkaew, K., Chakrabarti, K. & Mehrotra, S. (1999). Query
refinement for multimedia similarity retrieval in MARS.
Proceedings of the ACM International Multimedia Conference,
Orlando, Florida, pp 235-238

[38] Qu, Y., Wang, C. & Wang, S. (1998). Supporting fast search in
time series for movement patterns in multiples scales.
Proceedings 7th International Conference on Information and
Knowledge Management. Washington, DC.

[39] Refiei, D. (1999). On similarity-based queries for time series
data. Proc of the 15th IEEE International Conference on Data
Engineering. Sydney, Australia.

[40] Roussopoulos, N., Kelley, S. & Vincent, F. (1995). Nearest
neighbor queries. SIGMOD Conference 1995: 71-79.

[41] Seidl, T. & Kriegel, H. (1998). Optimal multi-step k-nearest
neighbor search. SIGMOD Conference: pp 154-165.

[42] Shatkay, H., & Zdonik, S. (1996). Approximate queries and
representations for large data sequences. Proceedings 12th IEEE
International Conference on Data Engineering. pp 546-553.

[43] Shevchenko, M. (2000). [http://www.iki.rssi.ru/] Space Research
Institute. Moscow, Russia.

[44] Stollnitz, E., DeRose, T., & Salesin, D. (1995). Wavelets for
computer graphics A primer: IEEE Computer Graphics and
Applications.

[45] Struzik, Z. & Siebes, A. (1999). The Haar wavelet transform in
the time series similarity paradigm. Proceedings 3rd European
Conference on Principles and Practice of Knowledge Discovery
in Databases. pp 12-22.

[46] Wang, C. & Wang, S. (2000). Supporting content-based searches
on time Series via approximation. International Conference on
Scientific and Statistical Database Management.

[47] Weigend, A. (1994). The Santa Fe Time Series Competition Data
[http://www.stern.nyu.edu/~aweigend/Time-Series/SantaFe.html]

[48] Welch. D. & Quinn. P (1999).
http://wwwmacho.mcmaster.ca/Project/Overview/status.html

[49] Wu, Y., Agrawal, D. & Abbadi, A.(2000). A Comparison of
DFT and DWT based Similarity Search in Time-Series
Databases. Proceedings of the 9th International Conference on
Information and Knowledge Management.

[50] Wu, D., Agrawal, D., El Abbadi, A. Singh, A. & Smith, T. R.
(1996). Efficient retrieval for browsing large image databases.
Proc of the 5th International Conference on Knowledge
Information. pp 11-18, Rockville, MD.

[51] Yi, B,K., Jagadish, H., & Faloutsos, C. (1998). Efficient retrieval
of similar time sequences under time warping. IEEEE
International Conference on Data Engineering. pp 201-208.

[52] Yi, B,K., & Faloutsos, C.(2000). Fast time sequence indexing for
arbitrary Lp norms. Proceedings of the 26st International
Conference on Very Large Databases, Cairo, Egypt.

