APPENDIX

Theorem A.1: $V(\cdot)$ is the variance. If $L_A = \{a_i\}_{i=1}^n$ and $L_B = \{b_i\}_{i=1}^m$ are two disjoint set of positive real numbers Let $L = \{a_i\} \cup \{b_i\}$ then numbers. Let $L = \{a_i\} \cup \{b_i\}$, then

$$
\triangle V(L) = V(L) - \frac{|L_A| V(L_A) + |L_B| V(L_B)}{|L|} \ge 0.
$$

If $a_1 \leq a_2 \ldots a_n \leq b_1 \ldots \leq b_m$, then the equality holds only if $a_1 = a_2 = ... = a_n = b_1 ... = b_m$

Proof: Let

$$
\frac{\sum a_i}{n} = a, \sum a_i^2 = A, \frac{\sum b_i}{m} = b, \sum b_i^2 = B
$$

We have

$$
\Delta \mathbb{V}(L) = \left[\frac{A+B}{m+n} - \left(\frac{an+bm}{m+n} \right)^2 \right] - \left[\frac{A-na^2 + B - mb^2}{m+n} \right] = \frac{mn}{(m+n)^2} \cdot (a-b)^2 \tag{14}
$$

the statement follows.

Theorem A.2 (Theorem 3.6): $L = \{x_i\}_{i=1}^N$ is sorted, denote $L_A^{(i)} = \{x_j\}_{j=1}^i$ and $L_B^{(i)} = \{x_j\}_{j=i+1}^N$, let

$$
\triangle \mathbb{V}^{(i)}(L) = \mathbb{V}(L) - \frac{|L_B^{(i)}|\mathbb{V}(L_B^{(i)}) + |L_B^{(i)}|\mathbb{V}(L_B^{(i)})}{|L|}.
$$

If $\Delta V(L) = \max_i {\{\Delta V^{(i)}(L)\}, \text{ then } \Delta V(L)|L| \ge \Delta V(L) |L| \}}$ $\Delta V(L_A^{(i)})|L_A^{(i)}|$ and $\Delta V(L)|L| \ge \Delta V(L_B^{(i)})|L_B^{(i)}|$ for $\forall i =$
1.2 N , the equality holds only if $\Delta V(L_B^{(i)}) = 0$ $1, 2, \ldots, N$, the equality holds only if $\Delta V(L_A^{(i)}) = 0$ and $\triangle V(L_B^{(i)}) = 0$ respectively.
Proof: Without loss of gape

Proof: Without loss of generality, let L be ascending. We prove $\Delta V(L)|L| \ge \Delta V(L_A^{(i)})|L_A^{(i)}|$, the other
inequality can be similarly proved. Suppose inequality can be similarly proved. Suppose

$$
\underset{i}{\operatorname{argmax}} \{ \triangle \mathbb{V}^{(i)}(L) \} = n.
$$

let $m = N - n$ then according to the proof of Theorem A.1,

$$
\triangle V(L)|L| = \frac{mn}{(m+n)} \cdot (a-b)^2.
$$
 (15)

Denote

$$
\triangle \mathbb{V}(L_A^{(i)})|L_A^{(i)}| = \frac{m'n'}{(m'+n')} \cdot (a'-b')^2.
$$

$$
\therefore \triangle \mathbb{V}(L) = \max_i \{ \triangle \mathbb{V}^{(i)}(L) \} = \triangle \mathbb{V}^{(n)}(L)
$$

$$
\therefore \frac{m'(m+n-m')}{(m'+(m+n-m'))^2} \cdot (a'-c')^2 \le \frac{mn}{(m+n)^2} \cdot (a-b)^2
$$

$$
\therefore \frac{m'(m+n-m')}{(m'+(m+n-m'))} \cdot (a'-c')^2 \le \frac{mn}{(m+n)!} \cdot (a-b)^2
$$

$$
\therefore \frac{m(m+n-m)}{(m'+(m+n-m'))} \cdot (a'-c')^2 \le \frac{mn}{(m+n)} \cdot (a-b)^2
$$
\n(16)

where

$$
c' = \frac{ma + nb - m'a'}{m + n - m'} \ge b' \text{ (L is ascending)}.
$$

We now show

$$
\frac{m'n'}{(m'+n')} \cdot (a'-b')^2 \le \frac{m'(m+n-m')}{(m'+(m+n-m'))} \cdot (a'-c')^2.
$$
\n(17)

Note the function $(x - a')^2$ is increasing w.r.t x when $x > a'$ then $x > a'$, then

$$
(b' - a')^2 \le (c' - a')^2 \tag{18}
$$

And function

 \Box

$$
\frac{m'x}{(m'+x)} = \frac{m'}{\frac{m'}{x}+1}
$$

is increasing w.r.t *x*. Since $n' < m + n - m'$, we have

$$
\frac{m'n'}{(m'+n')} < \frac{m'(m+n-m')}{(m'+(m+n-m'))} \tag{19}
$$

Combined with Eq. 18, Eq. 17 holds. According to Eq. 16, then $\Delta V(L)|L| \ge \Delta V(L_A^{(i)})|L_A^{(i)}|$, the equality holds only if $a' = b'$ thus $\triangle V(L_A^{(i)}) = 0$.

Definition A.3 (FIFO property): Given a network

 $G = (V, E)$, where the travel time of each edge in G is time-dependent, we say G is FIFO if for any arc is time-dependent, we s (i,j) in E, given A leaves node i starting at time t_1 and B leaves node *i* at time $t_2 \geq t_1$, then B cannot arrive at j before A .

Theorem A.4: Let $c_{ij}(t)$ be a strictly positive function defined for a time interval $[0, T]$, which specifies how much time it takes to travel from i to j if departing i at time t. The graph is FIFO $\Leftrightarrow t+c_{ij}(t)$ is non-decreasing for any $(i, j) \in E$, $t \in [0, T]$.

Proof: Note that $t + c_{ij}(t)$ is the earliest arriving time at node j for one leaving node i at time t . Then the correctness of this theorem is a direct consequence of the FIFO's definition. \Box

Theorem A.5: If $c_{ij}(t)$ is piecewise linear, then G is FIFO if and only if the right derivative $c'_{ij+}(t) \ge -1$,
 $\forall t \in [0, T]$ $\forall t \in [0, T].$

Proof: Since $c_{ij}(t)$ is piecewise linear, then according to Theorem A.4, we have

G is FIFO if and only if
$$
(t + c_{ij}(t))'_{+} \ge 0, \forall t \in [0, T]
$$

G is FIFO if and only if $c'_{ij+}(t) \ge -1, \forall t \in [0, T]$ (20)
Then the theorem follows.

Theorem A.6: If the range of a single time slot Δt satisfies:

$$
\triangle t \ge t_{max} \tag{21}
$$

, we can reconstruct an continuous travel time function from a step travel time function to obey the FIFO rule (given the user's custom factor).

Proof: For each time interval $(t_1, t_2) \subseteq [0, T]$ containing a discontinuity point t_M , e.g.

$$
s_{ij}(t) = \begin{cases} f_1 & \text{if } t_1 < t \le t_M \\ f_2 & \text{if } t_M < t < t_2. \end{cases}
$$
 (22)

(b) A refined travel time function

Fig. 18. Travel Time Function

denote $t_{M'} = t_M - |f_1 - f_2|$. The refined function $c_{ij}(t)$
can be defined as: $\frac{1}{2}$ can be defined as:

$$
c_{ij}(t) = \begin{cases} f_1 & \text{if } t_1 < t \le t_{M'} \\ f_1 + \frac{f_2 - f_1}{|f_2 - f_1|}(t - t_M') & \text{if } t_{M'} < t \le t_M \\ f_2 & \text{if } t_M < t < t_2. \end{cases} \tag{23}
$$

Note that $|s_{ij}(t)| \le t_{max}$ so that $|f_1 - f_2| \le t_{max}$,
then according to inequality (21) $t_{i,j}$ is in the same then according to inequality (21), $t_{M'}$ is in the same time interval with t_M . Fig. 18(b) is the refined travel time function of Fig. 18(a). Since the gradient of the piecewise linear function $c_{ij}(t)$ can only be -1,0,1, it is
clear that the refined travel time function satisfies the (clear that the refined travel time function satisfies the inequity (20). \Box