APPENDIX

Theorem A.1: $\mathbb{V}(\cdot)$ is the variance. If $L_A = \{a_i\}_{i=1}^n$ and $L_B = \{b_i\}_{i=1}^m$ are two disjoint set of positive real numbers. Let $L = \{a_i\} \cup \{b_i\}$, then

$$\Delta \mathbb{V}(L) = \mathbb{V}(L) - \frac{|L_A|\mathbb{V}(L_A) + |L_B|\mathbb{V}(L_B)|}{|L|} \ge 0.$$

If $a_1 \leq a_2 \dots a_n \leq b_1 \dots \leq b_m$, then the equality holds only if $a_1 = a_2 = \ldots = a_n = b_1 \ldots = b_m$

Proof: Let

$$\frac{\sum a_i}{n} = a, \sum a_i^2 = A, \frac{\sum b_i}{m} = b, \sum b_i^2 = B$$

We have

$$\Delta \mathbb{V}(L) = \left[\frac{A+B}{m+n} - (\frac{an+bm}{m+n})^2\right] - \left[\frac{A-na^2+B-mb^2}{m+n}\right] = \frac{mn}{(m+n)^2} \cdot (a-b)^2$$
(14)

the statement follows.

Theorem A.2 (Theorem 3.6): $L = \{x_i\}_{i=1}^N$ is sorted, denote $L_A^{(i)} = \{x_j\}_{j=1}^i$ and $L_B^{(i)} = \{x_j\}_{j=i+1}^N$, let

$$\Delta \mathbb{V}^{(i)}(L) = \mathbb{V}(L) - \frac{|L_B^{(i)}|\mathbb{V}(L_B^{(i)}) + |L_B^{(i)}|\mathbb{V}(L_B^{(i)})}{|L|}$$

If $\bigtriangleup \mathbb{V}(L) = \max_i \{\bigtriangleup \mathbb{V}^{(i)}(L)\}$, then $\bigtriangleup \mathbb{V}(L)|L| \ge$ $\bigtriangleup \mathbb{V}(L_A^{(i)})|L_A^{(i)}| \text{ and } \bigtriangleup \mathbb{V}(L)|L| \ge \bigtriangleup \mathbb{V}(L_B^{(i)})|L_B^{(i)}| \text{ for } \forall i = 1$ $1, 2, \ldots, N$, the equality holds only if $\bigtriangleup \mathbb{V}(L_A^{(i)}) = 0$ and $riangle \mathbb{V}(L_B^{(i)}) = 0$ respectively.

Proof: Without loss of generality, let *L* be ascending. We prove $\Delta \mathbb{V}(L)|L| \geq \Delta \mathbb{V}(L_A^{(i)})|L_A^{(i)}|$, the other inequality can be similarly proved. Suppose

$$\operatorname*{argmax}_{i}\{\triangle \mathbb{V}^{(i)}(L)\} = n.$$

let m = N - n then according to the proof of Theorem A.1,

$$\Delta \mathbb{V}(L)|L| = \frac{mn}{(m+n)} \cdot (a-b)^2.$$
(15)

Denote

$$\Delta \mathbb{V}(L_A^{(i)})|L_A^{(i)}| = \frac{m'n'}{(m'+n')} \cdot (a'-b')^2.$$

$$\therefore \Delta \mathbb{V}(L) = \max_i \{\Delta \mathbb{V}^{(i)}(L)\} = \Delta \mathbb{V}^{(n)}(L)$$

$$\therefore \frac{m'(m+n-m')}{(m'+(m+n-m'))^2} \cdot (a'-c')^2 \le \frac{mn}{(m+n)^2} \cdot (a-b)^2$$

$$\therefore \frac{m(m+n-m)}{(m'+(m+n-m'))} \cdot (a'-c')^2 \le \frac{mn}{(m+n)} \cdot (a-b)^2$$
(16)

where

$$c' = \frac{ma + nb - m'a'}{m + n - m'} \ge b'$$
 (*L* is ascending).

We now show

$$\frac{m'n'}{(m'+n')} \cdot (a'-b')^2 \le \frac{m'(m+n-m')}{(m'+(m+n-m'))} \cdot (a'-c')^2.$$
(17)

Note the function $(x - a')^2$ is increasing w.r.t x when x > a', then

$$(b' - a')^2 \le (c' - a')^2 \tag{18}$$

And function

$$\frac{m'x}{(m'+x)} = \frac{m'}{\frac{m'}{x}+1}$$

is increasing w.r.t x. Since n' < m + n - m', we have

$$\frac{m'n'}{(m'+n')} < \frac{m'(m+n-m')}{(m'+(m+n-m'))}$$
(19)

Combined with Eq. 18, Eq. 17 holds. According to Eq. 16, then $\Delta \mathbb{V}(L)|L| \geq \Delta \mathbb{V}(L_A^{(i)})|L_A^{(i)}|$, the equality holds only if a' = b' thus $\triangle \mathbb{V}(L_A^{(i)}) = 0$.

): Given a network
ime of each edge in
$$G$$

is FIFO if for any arc

Definition A.3 (FIFO property) G G = (V, E), where the travel t is time-dependent, we say G is FIFO if for any arc (i,j) in E, given A leaves node i starting at time t_1 and B leaves node *i* at time $t_2 \ge t_1$, then B cannot arrive at j before A .

Theorem A.4: Let $c_{ij}(t)$ be a strictly positive function defined for a time interval [0, T], which specifies how much time it takes to travel from *i* to *j* if departing *i* at time t. The graph is FIFO $\Leftrightarrow t + c_{ij}(t)$ is non-decreasing for any $(i, j) \in E$, $t \in [0, T]$.

Proof: Note that $t + c_{ij}(t)$ is the earliest arriving time at node j for one leaving node i at time t. Then the correctness of this theorem is a direct consequence of the FIFO's definition.

Theorem A.5: If $c_{ij}(t)$ is piecewise linear, then G is FIFO if and only if the right derivative $c_{ij+}(t) \ge -1$, $\forall t \in [0,T].$

Proof: Since $c_{ij}(t)$ is piecewise linear, then according to Theorem A.4, we have

G is FIFO if and only if
$$(t + c_{ij}(t))'_{+} \ge 0, \forall t \in [0, T]$$

G is FIFO if and only if $c'_{ij+}(t) \ge -1, \forall t \in [0, T]$ (20)
Then the theorem follows.

Theorem A.6: If the range of a single time slot Δt satisfies:

$$\Delta t \ge t_{max} \tag{21}$$

, we can reconstruct an continuous travel time function from a step travel time function to obey the FIFO rule (given the user's custom factor).

Proof: For each time interval $(t_1, t_2) \subseteq [0, T]$ containing a discontinuity point t_M , e.g.

$$s_{ij}(t) = \begin{cases} f_1 & \text{if } t_1 < t \le t_M \\ f_2 & \text{if } t_M < t < t_2. \end{cases}$$
(22)

Fig. 18. Travel Time Function

denote $t_{M'} = t_M - |f_1 - f_2|$. The refined function $c_{ij}(t)$ can be defined as:

$$c_{ij}(t) = \begin{cases} f_1 & \text{if } t_1 < t \le t_{M'} \\ f_1 + \frac{f_2 - f_1}{|f_2 - f_1|} (t - t'_M) & \text{if } t_{M'} < t \le t_M \\ f_2 & \text{if } t_M < t < t_2. \end{cases}$$
(23)

Note that $|s_{ij}(t)| \leq t_{max}$ so that $|f_1 - f_2| \leq t_{max}$, then according to inequality (21), $t_{M'}$ is in the same time interval with t_M . Fig. 18(b) is the refined travel time function of Fig. 18(a). Since the gradient of the piecewise linear function $c_{ij}(t)$ can only be -1,0,1, it is clear that the refined travel time function satisfies the inequity (20).