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Abstract
What a user does in an app (e.g., viewing the menu of a
restaurant or listening to the same song several times) is
key to understanding user interests and preferences, and
ultimately to enabling personalised experiences. This
kind of behavioural analytics information, as we call it,
is rarely used today (and if it is used, it remains siloed in
one app). This paper makes a case for the OS to provide
an in-app behavioural analytics service which monitors
user activities within an app to extract such analytics and
to share them with other apps in a secure, private and uni-
form way. All this must be achieved with zero developer
effort and with low resource overhead.

1 Introduction

Today there are apps for almost everything, from educa-
tion to entertainment, from travelling to shopping, from
cooking to exercising. In fact, while using mobile de-
vices users spend most of their time within apps [3].
Knowing what a user does within an app, such as pur-
chases she makes, restaurants she books, or songs she lis-
tens to is valuable information that reflects her interests,
habits, and behaviours. We collectively call this informa-
tion in-app behavioural analytics due to its analogy with
web analytics today collected (directly or indirectly) by
web publishers each time a user visits their website.

In-app behavioural analytics data is key to person-
alised user experiences. Amazon, for instance, keeps
statistics on items bought or viewed by each user to sug-
gest items related to her purchase and browsing history.
Other apps that utilise a user’s behavioural information
to personalise contents and experiences include Netflix
(for movies), Pandora (for music), Ness (for restaurants),
Polyvore (for fashion), and Prismatic (for news). When
done well, personalisation drives higher conversion and
customer satisfaction. For example, 35 percent of Ama-
zon’s product sales originate in personalised recommen-
dations [14].

In-app behavioural analytics can benefit not only third
party apps, but also various first party services offered by
today’s mobile OSes. For example, iOS, Windows Phone
and Android all come with digital assistants (Siri, Cor-
tana and Google Now, respectively). Today, when a user
asks her digital assistant to order a pizza, it returns results
from Google or Bing for keywords such as “pizza”. On
the other hand, if the digital assistant could tap into the
user’s in-app activities to learn that the user often uses
the OpenTable app to make reservations at the “Via Tri-
bunali” pizzeria, it would readily know which restaurant,
and perhaps which pizza, the user is referring to.

Despite their value, in-app behavioural analytics are
rarely used today, mainly for two reasons. First is
the cost and complexity of extracting in-app behaviour.
This requires an app developer to carefully instrument
her code to capture the user’s activities within the app,
and then to extract semantically meaningful information
about the activities. This includes both the semantics of
what content a user consumes in an app (e.g., a restau-
rant) and how she interacts with it (e.g., she views the
menu or reserves a table). Second, apps today work in
silos. Due to security and privacy reasons, mobile OSes
such as iOS and Windows Phone do not allow apps to lo-
cally share data with each other. Therefore, even if there
is a third party library that a developer can use to eas-
ily extract in-app behavioural information, one app will
not be able to access information from another, severely
limiting the utility of behavioural analytics. Even if the
apps could share data with each other, through the cloud
or locally (e.g., on Android), there is no central service
or framework that co-ordinates exchange of behavioural
data thus making interoperability hard.

In this paper, we take the unorthodox view that the OS
should take the responsibility for extracting in-app be-
havioural analytics and making them available to apps,
through what we call a Behavioural Analytics Service
(BAS). The BAS would 1) transparently monitor how
the user interacts with her apps, 2) extract semantically
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meaningful information about her interests, habits, and
behaviours, and 3) expose the information to various
apps in a secure, private, and uniform way. Behavioural
data captured by the BAS is represented as a collection of
Behavioural Data Items (BDIs), each of which is an ob-
ject containing name, type and a list of qualifying meta-
data and usage statistics for some “thing” that the user
consumes or interacts with in an app. For instance, a con-
crete BDI might contain the name of a business, its type
(“restaurant”), address, price range, user actions associ-
ated with it (e.g., “Like”, ”View menu” or “View map”),
and time the user spent viewing it.

Our proposal raises many open questions for which
we do not have concrete answers. For example, we do
not propose a concrete vocabulary for BDI attributes and
methods to extend the vocabulary to support new at-
tributes. We hope that our examples throughout the pa-
per will initiate a discussion for a base vocabulary and
extension methods. Users and app developers also have
conflicting interests in what BDIs may be shared, and
balancing these is an open problem (more in §4).

Putting the BAS in the OS has many unique benefits
over alternative designs, as we discuss in §2. It also poses
constraints: the BAS must work without any help from
app developers (which implies zero developer effort) and
be efficient. We outline a design proposal in §3 and dis-
cuss associated research challenges in §4.

2 Why the OS?
We compare our proposal for putting the BAS in the
OS with two alternative designs based on third party li-
braries: (a) In-app, where the behavioural analytics li-
brary extracts behavioural data and stores it locally to be
later consumed by the same app, and (b) Cloud-based,
where behavioural data is extracted and stored in the
cloud to be consumed by the same or other apps. The
high- level architectures of these designs are shown in
Figure 1. We compare these designs on various dimen-
sions summarised in Table 1. We first discuss the unique
benefits the OS-based design has over other approaches.

Sharing across apps. With a centralised behavioural
analytics service in the OS, apps can share behavioural
analytics data among each other. This can give an app
a broader view of the user’s interests, habits, and be-
haviours than what is visible to that single app, and hence
enable the app to personalise a user’s experience based
on her activities in other apps. This is not possible with
in-app libraries that cannot share data with other apps
(e.g., in iOS and Windows Phone). Note that Android
allows in-app libraries to share data across apps (e.g.,
via a shared sqlite database), but, without a unifying ser-
vice, sharing must be implemented and maintained on a
per-app basis. A cloud-based library can also allow such
sharing. However, unless all apps use the same analyt-
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Figure 1: Three design choices for implementing in-app
behavioural analytics (BA).

3rd party library (c) OS
(a) In-app (b) Cloud service

Sharing ×
√ √

Low resource overhead × ×
√

App independence ×
√ √

Privacy
√

×
√

Deep learning ×
√

×

Table 1: Trade-offs of various designs.

ics library or all libraries follow the same representation
of behavioural data, interoperability and sharing across
libraries can be a nightmare.
Low resource overhead. Behavioural analytics can
come with a smaller overhead by being an OS service.
Resource footprint of the service can be independent of
the number of apps, unlike in-app libraries where the
overhead can grow linearly with the number of apps (i.e.,
the library is replicated in each app). Without develop-
ers’ annotations, the process of automatically inferring
semantics of user actions can be expensive. Similar tech-
niques are used for processing web documents and are
computation-intensive and use large databases. Pushing
the task of inferring semantics to the cloud can avoid
the computational and memory overhead, but would cost
network overhead on battery-constrained mobile devices
and introduce privacy risks, as discussed below.1

App independence. Behavioural analytics provided by
the OS can be independent of the apps installed on the
device. This nicely decouples publishers and consumers
of analytics data. For instance, if a recipe app such as
Epicurious wants to leverage the cuisine type of restau-
rants the user searches most often, it does not need to de-
pend on any specific restaurant app and can use data ex-
tracted from any currently installed restaurant app. This
approach can scale more easily with new apps and does
not break when apps are removed or updated. This is also

1For many use cases, content semantics must be extracted on the fly,
so data must be transferred to the cloud continuously—data aggrega-
tion techniques cannot be used to lower the energy overhead. Instead,
as discussed later, the processing and memory overheads of the BAS
on the device are amenable to reductions by optimising the semantics
extraction algorithms.

2



possible with a third party cloud library, but, as discussed
above, it is conditional on the willingness of different
apps or different third party libraries to interoperate.
Privacy. An OS service generating and managing be-
havioural analytics provides a privacy-preserving archi-
tecture by design. The OS is implicitly trusted and it
can grant or deny access to analytics data as specified by
the user. Furthermore, users and app developers do not
have to worry about third party libraries surreptitiously
tracking in-app interactions and transmitting them to the
cloud for nefarious purposes other than analytics extrac-
tion. Ultimately, behavioural analytics can be treated as
other device resources such as GPS or network and be
managed using a similar permission model. Although,
an OS design does not guarantee privacy of behavioural
analytics (e.g., a malicious app with granted permissions
can still leak behavioural analytics), it aids, instead of
compromising, user privacy.
New functionality. Behavioural analytics data collected
by the OS also enables novel system functionality. As
discussed earlier, modern personal digital assistants can
dynamically learn about a user’s preferences and habits
from her in-app activities and help users complete their
tasks. Many other first party services bundled with mo-
bile OSes can use the analytics to know more about the
user and personalise the experience. For example, the
music player can automatically select songs that the user
likes, and the app store can discover and recommend
apps that the user might need. An app, which does not
exist today, can mash-up various information about an
upcoming trip such as hotel, flights and restaurant details
that the user consumes in apps like Expedia and Yelp, so
that she can later retrieve them in one place.
Limitations. We acknowledge that the above mentioned
benefits do not come without limitations. Understand-
ing a user’s habits, preferences, and behaviours from her
in-app actions could employ expensive machine learning
and data mining algorithms that correlate user activity
data with external data sources to identify rich semantics
and subtle patterns in user activities. Therefore, a cloud-
based solution is likely to provide richer behavioural data
than an in-device solution. We argue that this is a rea-
sonable trade-off because (1) recent commercial systems
have shown that simple, low-footprint techniques are suf-
ficient to extract very useful behavioural data [8], and (2)
we are hopeful that the machine learning and data min-
ing community will develop lower-footprint behavioural
analysis algorithms when the need becomes evident.

3 Towards an OS-managed BAS design
For simplicity, we discuss the BAS design for a single-
device OS. Our arguments, however, also apply to a
multi-device OS where the OS collects behavioural an-
alytics of a user on multiple devices (based on user’s

App1 App2 Yelp Epicurious
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Name: Nara

Cuisine: Japanese

Actions: “Like”, ...

TimeSpent: 100sec
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App space
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Figure 2: Components of the OS Behavioural Analytics
Service (BAS) and example of a behavioural analytics
item (BDI) extracted from the Yelp restaurant app.

app usage on those devices) and sync the BDIs securely
across devices.

A BAS in the OS needs to satisfy at least three key re-
quirements. First, it should not rely on any help, such as
semantics of the app or its source code, from app de-
velopers. Apps should enjoy the benefits of the BAS
with zero developer effort. Requiring developer effort
would not only impose extra burden on developers, but
also create the danger of compromising the accuracy of
the BDIs collected by the BAS. For example, if the BAS
allows apps to specify as hints the categories of the BDIs
they provide, a malicious app actually providing BDIs
of category X can claim BDIs of incorrect category Y
and make the BAS think that a user using the app likes
BDIs of category Y instead of X . Second, since BDIs
may contain sensitive information, the BAS needs to be
careful about which app may get access to them. Without
any access control, an app can read BDIs of the user and
use them for undesirable purposes such as ad targeting
or sell them to third parties. Finally, the BAS should run
efficiently, with a small resource footprint, even when
extracting BDIs from a large number of apps.

3.1 A design proposal

We now outline a design for the BAS that satisfies the
above requirements. As shown in Figure 2, it consists of
three key components.

In-app Tracer: This component extracts raw in-app data
by extending the app UI framework (UI Fw). Data in-
clude contents a user consumes on various app pages
(e.g., text contained in the ListItems of a List UI element)
and user actions (e.g., taps of various UI elements) with
timestamps.

Analyser: This is the “brain” of the BAS that analyses
raw data collected by the tracer to generate BDIs. The
analysis can happen as soon as new user traces are made
available, periodically or at night when the device is idle
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or perhaps charging. The analyser performs the follow-
ing tasks. First, for each app page, it locates and clas-
sifies all texts appearing in the raw data into pre-defined
categories such as names of businesses, persons, or lo-
cations. Second, it groups various categorised texts into
groups such that each group represents one logical entity.
For example, a restaurant name, its type (“restaurant”),
its address, its phone number, can all be combined to-
gether. Each group is represented as one BDI. Third, it
discards all but the BDIs that are relevant to the user;
e.g., the ones that the user clicks on, visits frequently,
or spends a long time on. Finally, it considers previous
pages visited by the user to enrich the selected BDIs with
additional information. For example, it can associate the
name of a restaurant in a page with the cuisine type the
user selected in the previous page. The BDIs generated
by the Analyser are stored in the Analytics Store.

Query API and Access Control module: This module
decides which apps can access the BDIs in the Analytics
Store and at what granularity. Apps can submit one-time
queries as well as subscribe for BDI events of interest
(e.g., a restaurant reservation was made).

3.2 A use case

Consider two apps: Yelp, a popular app for searching
restaurants, and Epicurious, an app for searching recipes,
installed on a user’s device. Each time the user interacts
with the apps, the BAS extracts behavioural analytics
from their interaction traces and saves them in the Ana-
lytics Store. As an example, suppose in Yelp, the user has
browsed several Japanese restaurants, such as the “Nara”
restaurant (for which Figure 2 reports the extracted BDI).
Later, when the user launches Epicurious, it can query
the BAS and find out that the user likes Japanese cui-
sine. With this information, Epicurious can rank recipe
results to reflect Japanese dishes. This example demon-
strates how apps can share data in a scalable way (i.e.,
Yelp does not know about the existence of Epicurious
and vice-versa), with little effort.

Other scenarios that can leverage this kind of app shar-
ing are Amazon recommending recipe books based on
cuisine preferences inferred from Epicurious, the store
app recommending kids apps based on toddler songs lis-
tened in Pandora, or TripAdvisor recommending restau-
rants based on hotel reservations made in Expedia.

4 Challenges and open questions
We now discuss a few challenges in realising our pro-
posed design.

Correct and efficient app-tracing. A mobile app
page contains various UI elements (such as buttons and
text boxes) whose contents are often populated asyn-
chronously (e.g., from the cloud). For correctness, the
content must be captured after the page has reached a

stable state after a user interaction. If the page is scanned
for content too soon after a user interaction, the content
may not yet be there. If we wait too long before scan-
ning it, the target content may no longer be there either,
because it might change due to another interaction or the
user navigating to a new page. Mobile apps are highly
asynchronous, further complicating the decision of when
to capture app page content. To determine if the page
has reached a stable state, the system needs to track and
determine when all asynchronous calls due to a user in-
teraction have completed and activate UI capture at that
point. Systems for app performance analytics such as
AppInsight [12] deal with similar problems and we can
leverage their techniques.

Efficiently capturing all contents and activities can be
tricky too. First, the structure of UI elements in an app
page can be quite large and complex. In our prelimi-
nary investigation, we found that the AllRecipes app in
Windows Phone contains on average 663 UI elements
per app page! Second, content must be captured at ev-
ery user interaction, not only when a page loads for the
first time. Otherwise, one risks loosing relevant content
such as the text entered in a search box before navigating
to the next page or dynamic text that appears or disap-
pears at user interactions. Further, note that the content
of an app page must be captured on the UI thread (other
threads do not have access to the UI tree); therefore, the
delay introduced by content capturing must be minimal
otherwise it can degrade the UI responsiveness.

App contents and user interaction logs collected on
the device can grow large. Our preliminary exploration
shows that a 10-minute interaction with the music app
Spotify produces about 1 MB of logs. To save space, the
BAS can discard the raw data after it has extracted BDIs
from them. In the long term, the analytics store itself
needs to remove BDIs that no longer apply to the user.
New eviction strategies might be needed to determine
such BDIs. One option could be to prefer the BDIs that
are related to the user’s long-term interests and prefer-
ences (e.g., cuisine types, news topics, artists, etc.) over
those related to temporary ones (e.g., restaurants visited
during a trip abroad, purchased items for small kids).

Automatic semantics with zero developer effort. As-
signing semantics to unstructured textual data without
supervision is by itself a hard problem. In the data min-
ing community, the problem is known as named entity
recognition [7, 9, 13] where entity extraction algorithms
classify text contained in web documents into entities.
In general, to work in an unsupervised manner, these al-
gorithms rely on the “context” of an input string (text
surrounding it) and compare it against a large knowledge
base or dictionary. For instance, given a string “Italian”,
the entity extraction algorithm may classify it as a cuisine
type or a language entity. If other cuisine types (i.e., the
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context) are found in the same document, the ambiguity
is resolved and “Italian” is classified as cuisine type.

Using existing entity extraction techniques in the BAS
is non trivial for two key reasons. First, “context” in a
mobile app page is limited. App pages contain little text
to fit in small screens. For instance, only one restau-
rant and its associated cuisine type may be displayed per
page. Such an insufficient context may result in a poor
quality of entity extraction. Second, these techniques are
computation-intensive and rely on large databases, mak-
ing them unsuitable for resource-constrained devices.

However, there are other lightweight techniques that
can be easily adopted into a BAS. For example, rule-
based techniques [7, 9, 11, 13] can infer semantics of a
text string or an app page. For instance, a string can
be classified as a phone number or an address with high
confidence, if it satisfies a regular expression or a pat-
tern. Similarly, a user can be inferred to book a flight
if he clicks on the “book” button on a page containing
text fields with labels “From”, “To”, “Date” and the text
“Alaska Airlines”. Commercial solutions have shown
that such hard-coded rule-based inference provides valu-
able, albeit not as rich as sophisticated data mining algo-
rithms, behavioural information about the user [8].

Recent work on automated app crawling [6, 10] of-
fers new opportunities between the two extremes of hard-
coded rule-based techniques that are lightweight but less
powerful, and sophisticated unsupervised data mining
techniques that are expensive but more powerful. For ex-
ample, one might envision automatically crawling con-
tents of popular apps with a monkey [6], analysing the
data offline to extract rules, and pushing the rules to the
mobile device for a rule-based inference. This would
make the inference more automated (since rules do not
need to be handcrafted) and powerful (with many more
rules than a handcrafted system), but as lightweight as
rule-based inference.

Another challenge that fully-automated techniques
pose is that they do not provide perfect accuracy (e.g.,
existing entity extraction algorithms typically provide a
recall of 80–90%). The OS must be prepared to deal with
such false positives. If a term cannot be classified with
high confidence as any of the target entities, it is best for
the OS to return a null result.

Options for access control. To control access to be-
havioural analytics, one option is to treat the analytics
database as a system resource and to adopt the same
model current mobile OSes use to control access to de-
vice resources, such as sensors and network. However,
the analytics database can potentially contain many dif-
ferent types of BDIs and one-size-fits-all access control
policy may not be appropriate for all apps.

We consider various granularities of access control to
the analytics library. Overhead and utility of these strate-

gies will be decided by actual use cases. The first op-
tion is the all-or-nothing option, where an app can ei-
ther get access to the entire analytics library or noth-
ing, depending on how the user grants permission to the
app. Another option is to manage the permissions sep-
arately per BDI category. For example, OpenTable and
Yelp both produce BDIs of category RestaurantName,
and an app with permission granted to access BDIs of
category RestaurantName can access all such BDIs pro-
duced by any app on the device. Yet another option is
finer-grained control within a BDI category. One could
specify a “fine” and “coarse” subcategory for each BDI
category, similar to the ACCESS FINE LOCATION and AC-
CESS COARSE LOCATION permissions on Android. The
drawback of fine-grained permissions is that the system
may become harder to maintain and use, if the permis-
sion set grows large, leading to overprivilege issues [5].

While permissions are a necessary part of security, re-
search has shown that permissions are not sufficient to
completely govern access to sensitive data. Thus, entity-
type permissions inherit the same problems of traditional
permissions. For example, once an app gains access to
behavioural analytics, it can leak that data to a malicious
network server. Orthogonal techniques to control use of
sensitive data are applicable here [1, 2, 4].

Data ownership. Do the extracted behavioural analyt-
ics belong to the user or to the app? It depends. An
app like Amazon may be willing to share some data but
not all its data with other apps. For example, Amazon
lets users export their purchase history (and if this infor-
mation is not shared today, it is mostly because there is
currently no easy way for doing it). On the other hand,
product reviews are probably a more proprietary type of
data. The challenge is finding the right balance which
will allow apps to protect their data and business, but
also allow users to benefit from new functionality.

5 Conclusions
Users spend most of their time on mobile devices in apps,
but the OS today has no visibility into the content users
consume within them. We argue the OS is in a unique
position to shoulder the responsibility of extracting be-
havioural analytics from a user’s activity within her apps.
We propose a behavioural analytics service (BAS) hosted
entirely in the OS, which promises to work with zero de-
veloper effort and which, at least from a design point of
view, does not compromise user privacy. The BAS al-
lows for scalable sharing of behavioural analytics data
among apps, makes it easy for developers to personalise
their apps, and helps emerging digital assistants to be-
come truly “personal”.

An implementation of the BAS, Appstract, is in
progress.
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