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Abstract

Dynamic storage allocation has become increasingly impor-
tant in many applications, in part due to the use of the
object-oriented paradigm. At the same time, processor
speeds are increasing faster than memory speeds and pro-
grams are increasing in size faster than memories. In this
paper, we investigate efforts to predict heap object refer-
ence and lifetime behavior at the time objects are allocated.
Our approach uses profile-based optimization, and consid-
ers a variety of different information sources present at the
time of object allocation to predict the object’s reference fre-
quency and lifetime. Our results, based on measurements of
six allocation intensive programs, show that program refer-
ences to heap objects are highly predictable and that our
prediction methods can successfully predict the behavior of
these heap objects. We show that our methods can decrease
the page fault rate of the programs measured, sometimes
dramatically, in cases where the physical memory available
to the program is constrained.

1 Introduction

Due to the widespread success of C++ and more recently
Java, object-oriented applications now dominate the com-
mercial marketplace. As a result, the use of dynamic stor-
age allocation in application programs has increased dra-
matically. A recent study of C and C++ programs shows
that over a range of application domains, heap objects are
allocated almost ten times more frequently in C++ than in
C [3]. Because all objects in Java must be allocated on the
heap, dynamic storage allocation in Java is likely to be even
more frequent than in C++ [8].

As program sizes have increased, so have main memory
sizes. But, because of rapid changes in computer technol-
ogy, a larger amount of outdated hardware is currently in
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use than ever before. For these older computers to be of
value, they need to be able to run more memory intensive
programs. The secondary storage used for virtual memory
swap space has not increased significantly in speed, so pro-
grams need to make better use of physical memory pages
or they will slow fast processors to the level of the slower
storage media.

These trends suggest that program reference locality, es-
pecially in programs with dynamically allocated memory, is
important now and will continue to be increasingly impor-
tant. Surprisingly, little research has been devoted to the
specific goal of improving locality of reference in programs
with explicit storage management (e.g., that use malloc).

We see three solutions to improve locality of reference in
these programs: user-driven optimizations, compiler-driven
optimizations, and profile-driven optimizations. User-driven
optimizations require the user to have intimate knowledge of
how objects will be used, and for large programs with mul-
tiple programmers, this process is often fraught with error.
Compiler-driven optimizations are limited by the amount
of information available at compile time, information which
may not be sufficient to predict object behavior.

In this paper, we propose a profile-driven approach to or-
ganizing heap-allocated objects that substantially improves
the spatial locality of reference to those objects. The specific
focus of the work reported in this paper is to decrease a pro-
gram’s usage of virtual memory pages. We do not explicitly
attempt to decrease the cache miss rate in this work. Our
technique attempts to classify dynamically allocated objects
into different behavior categories at the time they are allo-
cated. Objects in different categories are placed in different
areas of the heap, which we call segments. In the results
we present, the four segments we identify are: highly refer-
enced (HR), not highly referenced (HR), short-lived (SL),
and other.

In the training phase of our profile-driven optimization,
a training input from the program is used to find a correla-
tion between information that is present when each object is
allocated and the segment into which the object should be
placed. Based on these measurements, we generate a cus-
tomized version of an allocator that predicts which segment
each allocated object should be placed into based on the in-
formation available. In this paper, we describe and evaluate
several approaches to predicting which segment an object
should be placed in.

Our results are based on measurements of six allocation-
intensive programs. We evaluate our approach using bi-
nary instrumentation based on ATOM [17], and vmalloc,
a region-based general purpose storage allocator [19]. Us-

1



ing a cross-validated experimental method, we show that
our technique is uniformly effective at increasing the spatial
locality of program references in the programs measured.
Further, we show that our methods can decrease the page
fault rate of the programs measured, sometimes dramati-
cally, in cases where the physical memory available to the
program is constrained. Finally, we show that our object
placement does not significantly affect the cache locality of
the programs.

This paper has the following organization. In Section 2
we discuss related work. In Section 3 we describe the meth-
ods we use to predict the behavior of objects. In Section 4
we describe our evaluation methods, including the programs
measured and the instrumentation performed. Section 5
presents our results and Section 6 concludes and suggests
directions for future work.

2 Background and Related Work

Organizing program code to improve its locality of reference
in the virtual memory (e.g., see [15]) and cache (e.g., see [13])
has been of interest for many years. These methods work
because frequently executed code segments can be readily
discovered using program profiling and/or static profile es-
timation [20]. In this paper, we investigate the analogous
problem of predicting heap object behavior at the time ob-
jects are allocated.

Existing malloc implementations allocate memory with
little awareness of the other objects that have been allocated
on the target page. In general, these implementations are
tuned to allocate and free objects as fast as possible and are
not aware of overall application performance with respect to
main memory. As a result, substantial opportunity exists to
increase the spatial reference locality of objects in such sys-
tems. In previous work, we showed that for some programs,
a small number of objects receive a majority of the refer-
ences, while other objects receive almost no references [16].
That previous result acts as a starting point for the current
paper, which goes beyond the previous work by quantifying
the performance effect achievable using object segregation.

The issue of locality of reference of heap-allocated ob-
jects has been investigated extensively, although more so
for garbage-collected languages than for languages with ex-
plicit storage allocation. The poor reference locality charac-
teristics of first-fit storage allocation [12] has prompted the
improved “better fit” methods [18] that are now often used.

Grunwald et al. surveyed existing malloc implementa-
tions with the goal of understanding what techniques they
provide to support cache locality [10]. Their conclusion was
that the existing methods, including eliminating boundary
value tags, and providing a fast allocator front end to rapidly
reuse freed objects, did provide substantially better refer-
ence locality than the simple first-fit algorithm. Their work
did not consider the more speculative issue of predicting ref-
erence locality as we do in this paper.

There have also been a number of papers investigat-
ing the effect of heap organization on reference locality in
garbage collected languages [5, 14], including several recent
papers that specifically consider the effect of garbage col-
lection on cache performance [7, 21, 23]. This work differs
from ours in its focus. While much of the related garbage
collection work has investigated how generational garbage
collection interacts with processor cache architecture, none
of the previous work we are aware of has attempted to clas-
sify objects using profiles and segregate them as we do. The
work of Courts [5], in which the working set for an entire
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Figure 1: Illustration of our goal of memory segmentation

Lisp system is obtained by performing a “training” of the
system, is the closest in this group to our work. While our
goals are similar to theirs, our prediction techniques are very
different.

Perhaps the work that is closest in spirit to our work is
that of Barrett and Zorn, who attempted to predict short-
lived object lifetimes using information present at the time of
allocation [2]. Cohn and Singh also showed that object life-
times in allocation-intensive programs can be predicted us-
ing decision trees to extract relevant static features present
at an object’s allocation [4]. While the methods used in our
paper are similar to this previous work, this paper goes be-
yond that work in several dimensions. First, we attempt to
predict object reference behavior as well as lifetime. Sec-
ond, we consider new predictors that previous work did not
consider. Finally, we present performance results based on
a prototype implementation of our methods, including mea-
surements of page fault rates.

3 Algorithms

Our approach uses profile-based optimizations to predict the
behaviors of objects at the time they are allocated. The spe-
cific behaviors we are predicting are highly referenced (HR),

not highly referenced (HR), short-lived (SL), and other. By
separating these different kinds of objects, we attempt to
achieve the following results:

• Highly referenced objects will be co-located and dense-
ly packed on a small set of pages.

• Short-lived objects will be densely packed on a small
set of different pages, which are also part of the work-
ing set. A secondary effect will be that long-lived ob-
jects will be more densely packed, potentially reducing
fragmentation, since the SL objects have been segre-
gated.

• Not highly referenced objects will be co-located on
pages that are not part of the working set.

A potential disadvantage of segregating objects into four
segments is that the heap will be fragmented. Figure 1 shows
a hypothetical memory layout before and after optimization.

Figure 2 presents a diagram of the optimization frame-
work that we use. The process starts by instrumenting the
program to be optimized, which can be done either with a
special compiler, or as we do, with a executable transforma-
tion tool (e.g., ATOM [17]). The instrumented program is
then run with a number of training inputs that are intended
to be representative of the program in actual use.
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Figure 2: Overview of the Optimization Framework

In our case, these training executions result in trace files
that contain information about all the heap objects allo-
cated by the program, including the number of loads and
stores to each object. In the figure, the output from the
instrumentation is called a “fat” trace file because it con-
tains additional information beyond what is needed for the
research described here, but of potential interest to other
researchers. After the unnecessary information is removed,
the result is the “thin” trace file in the figure. The actual
data contained in the “thin” trace file depends on the pre-
dictors being considered, but in general contains information
about each object including the number of references that
were made to it, what the call stack was at the time it was
allocated, what the size of the object was, etc.

Based on the “thin” trace file data, predictor selection
takes place. The process of predictor selection involves com-
paring the effectiveness of the different predictors over the
training data gathered, and generating a specific instance
of the predictor based on the specifics of the program being
optimized.

The underlying assumption of this approach is that the
program behavior observed in the training runs is represen-
tative of the behavior that is likely to occur in actual use.
As a result, the goal of the selection process is to determine
what data that is available at the time an object is allocated
will be most effective in predicting that the object will be
highly referenced, short-lived, etc.

An important decision that must be made before a pre-
dictor instance can be created is that correct threshold val-
ues must be chosen. The training data allows a large number
of alternative performance scenarios to be considered (as we
show in Section 5) across a variety of threshold settings.
The current work uses four threshold values: the maximum
age of an SL object, the minimum age of an HR object, the
minimum reference density (references per byte) of an HR

object, and the maximum reference density of a HR object.
Any object not classified as one of these three types (HR,

HR, and SL) is placed in the “other” segment. As long as the
maximum lifetime of an SL object is less than the minimum

age of an HR object, these segments are non-overlapping
and we do not have to decide which of the two segments to
place the object in.

Choosing the appropriate threshold values for a program
requires a search of the parameter space. We chose the val-
ues presented here by selecting an initial position in the
threshold space, and then exploring outward from that ini-
tial location. Our experience is that while some threshold
values are either particularly good or bad, the majority pro-
vided moderate improvements. Therefore, for the results
we present, the search of the space was concerned primarily
with avoiding bad values, and did not involve searching ex-
haustively for a global maxima. Also, because each program
runs for a different amount of time and references objects
more or less densely, each program uses its own threshold
values.

The most important input to the predictor selection pro-
cess is a set of potential prediction algorithms, but before
describing the predictor algorithms in depth, we first out-
line the rest of the process shown in Figure 2. After the
predictor instance is determined, a modified version of the
allocation runtime system is automatically created that im-
plements that instance. Finally, an optimized version of the
program is created that incorporates the predictor-based al-
locator. This optimized program should exhibit substan-
tially increased spatial locality if our segregation technique
is successful.

3.1 The Prediction Algorithms

We looked at a number of different predictors, ranging from
simple to complex. The predictors we focus primarily on
here are based on the value of the stack pointer, the call
path leading to the allocation, and the stack contents. These
predictors have varying degrees of effectiveness and varying
degrees of implementation overhead.

3.1.1 Stack Pointer

The stack pointer predictor (Sp) uses the value of the stack
pointer at the time of heap allocation to predict which seg-
ment the object should be placed in. The stack pointer
encodes the call stack to a limited extent and is easy to
implement, but also offers less information about the object
being allocated. This predictor can be implemented by plac-
ing a wrapper around malloc, checking the stack pointer and
placing the object in the correct segment. The main cost of
the implementation is the lookup process that maps a par-
ticular stack pointer value to a prediction. Depending on the
number of “significant” stack pointer values, either a sim-
ple test or a hash table lookup could be performed. As an
example, assume objects in the training set allocated with
a stack pointer of 0xABCDABCD were short-lived objects.
When an object in the final program is allocated, the cur-
rent stack pointer is looked up in a hash table. If the stack
pointer was 0xABCDABCD, the object would be allocated
to the SL segment. Although the stack pointer predictor is
a fairly easy predictor to implement, we are not presenting
results for it here due to space concerns and the fact that
its performance was well below the other two prediction al-
gorithms discussed next.

3.1.2 Path Point

The intuition of the path point predictor (Path) is that
certain call sites in a program are highly correlated with the
behavior of objects allocated in procedures that occur below
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the call site in the dynamic call graph. These sites are found
by taking each allocated object’s behavior, and attaching
the behavior to each call site in the call path leading to the
object’s allocation. Once all of the objects have been seen,
we can then look at all the call sites leading to an allocation
and try to find sites where the behavior patterns attached
are uniform. For example, if call site 12345 was part of the
call chain for objects that were only referenced 10 times or
less, call site 12345 would be classified as a HR path point.

To implement this predictor, at program runtime, when
we enter call site 12345 we know that any object allocated
until we left call site 12345 should be classified as a HR
object. The implementation would require that we instru-
ment the appropriate path points in the optimized program
to modify a global variable indicating what prediction the
allocator should currently make. Based on our experience
with this predictor, few such path points exist in typical
programs. As a result, the runtime cost of the path point
predictor is low.

3.1.3 Stack Contents

The stack contents predictor (Stack) uses a subset of the
call chain at the time of the allocation (starting at the call
to the allocator and going up) to predict which segment to
allocate the object in. For example, in the training set, as-
sume that allocations with call sites 1234, 2345, and 3456 as
the last three call sites in the call chain always allocated HR
objects. In the optimized executable, if an allocation occurs
with call sites 1234, 2345, and 3456 as the last call sites in
the call chain, the object allocated will be placed in the HR
segment. This predictor is more costly to implement than
the previous two, but uses more context sensitive informa-
tion about the object allocated and therefore tends to make
better predictions.

The number of entries in the call chain that the predictor
uses is of particular importance with this predictor. If the
number is too large, the predictor can over-specialize the
prediction and not generate something that is useful across
data sets. If the number is too small, the predictor may
not capture meaningful information. Many programs put in
layers of abstraction around malloc, such as C++ object
constructors or array allocators. The depth needs to be set
deep enough to go up the stack past these layers, and get
into the actual meat of the program while avoiding over-
specification. In previous work [16], we showed that using
the last three entries from the call chain is effective for the
programs measured, and so a depth of three is the number
used in all the results presented here.

The stack contents predictor requires that the chain of
callers on the stack be determined at runtime. This problem
is similar in spirit to the problem of determining a trace of
basic blocks (or path) within a procedure. Work in the area
of path profiling by Ball and Larus [1] may be of use as a
starting point for the stack contents implementation. One
technique that can be used is called “bit-pushing”, where
before each call bits are pushed into a shift register that in-
dicate the identity of the call site. Using control-flow anal-
ysis similar to the path profiling analysis of Ball and Larus,
it may also be possible to significantly reduce the number of
shift operations needed to compute the call-chain informa-
tion necessary to uniquely identify each allocation context.
Also, these shift operations can potentially be hidden in the
otherwise dead cycles.

An alternate method of establishing the calling context
is to selectively inline the chains of callers that result in

predicted allocations of, for example, highly referenced ob-
jects. If the number of such call chains is small, then the
impact on program code size may be negligible. Research
by Chambers et al. [9] suggests that such selective inlining
may be effective for certain optimizations. In future work,
we intend to investigate the effectiveness of such inlining in
the context of storage allocation optimizations.

3.1.4 Other Predictors

Beyond the predictors mentioned, in previous work, we have
also considered other predictors such as object size and some
combinations of predictors, including combining the object
size with the stack contents predictor. Object size was found
to be a poor predictor, so it is not included in this study.
Combining the object size and the stack contents predictor
was found to be effective, but for our example programs
the results were very similar to those obtained using the
stack contents predictor alone, so those results are also not
presented.

4 Evaluation Methods

The infrastructure we use in our studies is a network of high
performance DEC Alpha workstations. As mentioned, we
instrument the programs used in our studies with the ATOM
toolkit [17]. ATOM allows programmers to instrument ex-
isting binaries with additional code to gather runtime data,
without interfering with that program’s execution.

4.1 Programs

Table 1 lists the six programs in our collection, and gives
some information about what they do. These C programs
were selected because they are all allocate heap objects ex-
tensively, and Espresso and Sis have been reported on in
previous related work (e.g., see [6]). A breakdown of basic
information about the programs and the data sets we used
for training and testing is presented in Table 2. In addi-
tion to the standard size metrics presented, we include some
information on the number of allocation sites in the pro-
grams. The Depth 1 column shows the number of sites that
call malloc, while the Depth 3 column shows the number of
sites considered by the Stack predictor (Section 3.1.3).

In our study we used training, threshold and testing data
for all of our programs to cross validate our results. Specif-
ically, by cross validation, we mean that for all the results
presented in Section 5, we used the training data set to gen-
erate the predictors, the threshold data to set the thresh-
olds, and the testing data to evaluate the effectiveness of
our methods. Using the same input for both training and
testing would have provided an idealized understanding of
the potential performance of a profile-based approach, but
it is not informative about the effectiveness of the method
in practice.

4.2 Evaluation

To evaluate the effectiveness of our predictors, we again in-
strumented the original programs using ATOM with a set
of different procedures than those used to collect the data
for the training phase. This instrumentation was necessary
to drive the tycho cache simulator [11], and the basic LRU
virtual memory simulator [22] we used to gather the data
presented in Section 5.
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Chameleon Chameleon an N-level channel router. The training and threshold inputs were two of the
inputs provided with the release code (ex4 and ex1 respectively) and the testing input was
ex3. The program has approximately 8,000 lines of source code.

Espresso Espresso, version 2.3, is a logic optimization program. The training, threshold and testing
inputs were three of the inputs provided with the release code (mlp4, cps, and largest,
respectively). The program has approximately 15,500 lines of source code.

Gs Gs 5.03, This program is a PostScript interpreter and display engine. It has approximately
196,000 lines of source code. The training, threshold, and testing inputs were ms-thesis,
ud-doc, and whole-program, respectively.

Sis Sis, Release 1.1, is a tool for synthesis of synchronous and asynchronous circuits. It includes
a number of capabilities such as state minimization and optimization. The program has
approximately 172,000 lines of source code. The training, threshold, and testing inputs
were sis-markex, sis-speedup, and simplify, respectively.

Vis Vis is a platform used to run test cases on verification. It performs a number of tasks
such as reachability analysis and model checking. The program has approximately 160,000
lines of source code. The training, threshold, and testing inputs were s444, sbc, and eight-
queens, respectively.

Yacr Yacr 2.1 “Yet Another Channel Router”. This program has approximately 10,000 lines
of source code. The training, threshold, and testing inputs were ex1, ex4, and seidl1,
respectively.

Table 1: General information about the test programs.

Source Instrs Total Total Total Total Max. Max. Dynamic
Program Executed Bytes Objects Loads Stores Bytes Objects Alloc. Sites

(×106) (×106) (×103) (×106) (×106) (×106) (×103) Depth 1 Depth 3
Chameleon (tr) 17 0.783 19.8 1.76 0.27 0.78 19.8 6 64
Chameleon (thresh) 93 3.71 103.6 10.70 1.74 3.49 103.4 6 70
Chameleon (test) 15 0.68 16.4 1.63 0.23 0.68 16.4 6 71
Espresso (tr) 72 5.47 61.3 9.23 2.40 0.047 0.5 83 358
Espresso (thresh) 511 23.32 190.0 78.93 20.67 0.24 3.0 90 413
Espresso (test) 2130 186.26 1668.3 292.26 100.25 0.36 4.4 87 418
Gs (tr) 8680 1311.18 101.5 913.84 615.70 3.19 0.2 7 31
Gs (thresh) 1267 58.00 3.3 127.12 38.42 3.12 0.2 7 31
Gs (test) 823 81.28 2.0 81.68 27.92 3.00 0.2 7 31
Sis (tr) 581 34.53 370.6 83.96 14.88 0.84 22.3 14 936
Sis (thresh) 368 48.89 791.0 23.57 9.67 0.99 26.2 14 827
Sis (test) 2513 231.13 3.68 200.84 48.86 1.64 43.6 14 562
Vis (tr) 157 8.06 170.9 1.427 4.03 2.22 24.8 19 784
Vis (thresh) 183 17.76 266.1 19.45 5.63 3.84 86.4 19 778
Vis (test) 990 95.04 1.29 121.68 33.57 9.81 342.2 15 534
Yacr (tr) 6 0.22 4.6 0.78 0.09 0.22 4.6 40 94
Yacr (thresh) 11 0.56 12.0 1.69 0.21 0.41 11.9 39 109
Yacr (test) 38 1.17 15.2 8.51 0.63 1.17 15.2 35 78

Table 2: Performance information about the memory allocation behavior for each of the test programs. Total Bytes and Total Objects
refer to the total bytes and objects allocated by each program. Max. Bytes and Max. Objects show the maximum number of bytes and
objects, respectively, that were allocated by each program at any one time. Instrs Executed refers the the total number of instructions
executed. Total Loads/Stores refers to the total number of heap references the programs executed.
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To implement the multiple segments of memory nec-
essary to segregate objects, we used vmalloc [19], a cus-
tomizable storage allocator implemented by K. Phong Vo.
Vmalloc allows its users to define separate regions of storage
and manage those regions with different management poli-
cies. The original intent of vmalloc was that programmers
would explicitly allocate objects in specific regions, based
on the programmer’s knowledge about the object. Our ap-
proach, however, is naturally implemented as a wrapper
around vmalloc that presents a standard malloc interface
to the programmer. The purpose of the wrapper code, in
this case, is to determine what segment to place objects in
based on the predictors described in the previous section.

For our evaluation, we used vmalloc to determine where
objects allocated to different segments should be placed, but
we have not yet implemented the wrapper code that imple-
ments the different predictors described. As a result, we are
able to present memory performance data that would corre-
spond to the actual implementation of our methods, but we
are not able to provide estimates of the CPU overhead neces-
sary to implement the predictors. The CPU overhead of the
stack contents predictor, which has the highest CPU over-
head of the predictors we describe here, is also considered
by Barrett and Zorn [2]. They computed the per allocation
cost to be between 9 and 94 instructions.

The memory layout we chose to use for the segments
was dictated in part by using vmalloc. We wanted each
of the four memory segments (HR, HR, SL, and other) to
be contiguous in memory so that we had more control over
the range of addresses allocated to each segment. Because
vmalloc currently uses sbrk to increase the size of a memory
segment, we used an initial alignment of two megabytes per
memory segment. This means that each segment started
with two megabytes of space, and if that space was ex-
hausted, the heaps were grown in two megabyte chunks.

Because each heap segment started at an address two
megabytes greater than the address of the previous segment,
we were initially concerned with increasing the number of
cache conflicts in the lower cache lines. To avoid this, we
offset each segment 64 kilobytes from the start of the previ-
ous heap. For caches over 64 kilobytes, this offset keeps the
first lines of each heap from conflicting in the cache.

5 Results

In this section we present cache and virtual memory results
for our six test programs. We first consider how effective our
methods are at segregating objects by looking more closely
at the placement of objects in segments. Then we present
and discuss the effects our methods have on the virtual mem-
ory performance of the programs, both in general and then
by looking in depth at each program. In the last section
we consider how our object segregation affects cache perfor-
mance.

5.1 Placing Objects into Segments

In this section, we consider how effective our methods are at
placing objects in different segments. Throughout the sec-
tion, we present absolute results for the Default allocator
(an unsegmented allocator implemented by using vmalloc
and a single memory segment), and results relative to de-
fault for two of the predictor schemes we considered.

Table 3 shows the number of physical pages each program
uses in the Default case, the number of pages relative to

this number in each of the four segments using our predic-
tors, and the relative total number of pages. A sum greater
than one means our predictors required more physical pages
of memory than the Default allocation scheme; a number
less than one means our predictors reduced the total number
of physical pages needed.

The first thing to note is that the different predictors
perform differently, and sometimes quite badly. For exam-
ple, The Path predictor in one case (Vis) makes almost no
predictions at all. For the Path predictor, Espresso has
allocated 4.6 times as many pages to the “other” segment
as the Default allocator allocated for the whole program
(also note that Espresso is the smallest application we mea-
sured).

The table also shows that, overall, the size of the HR
segment using the different predictors tends to be small,
which is the intent of creating an HR segment. Except for
Gs, the HR segment never used more than 13% of the pages
needed by the default allocator in both the predictors. Gs

had a very large HR segment though, but in the case of both
the Path and Stack predictors, all the rest of the objects
in Gs fell into the HR segment.

In the case of the SL segment, it is used only infrequently
by any of the predictors or programs. One reason for this is
that both Yacr and Chameleon never allocate short-lived
objects. Both of these programs free memory rarely if ever,
so all of the objects they allocate live for most of the life of
the program.

Table 4 shows the average number of references per page
for each segment, in absolute numbers for Default, and
relative to Default for the rest of the segments in each pre-
dictor. This metric, references per page, allows us to quickly
see if our predictors are successfully segregating HR objects
onto some pages, and HR objects onto other pages. What we
would like to see are numbers that differ from one. A num-
ber higher than one means a page has an increased reference
density, while a number less than one means a reduced den-
sity (relative to the reference density in Default). Because
the number of bytes allocated and the number of references
stays constant across the allocation schemes, A good result
would be some regions with a number much greater than 1
and some with a number much less than 1. If all the regions
had a number close to 1, or every region had a number less
than one, our techniques would have failed to increase the
reference density of the program.

The table shows that the Stack predictor is successful
at segregating objects onto pages that are more highly refer-
enced than the pages allocated using the Default allocator.
The HR segment in the Stack predictor (for all programs
except Espresso) shows a much higher reference density
than the Default segment. Espresso, due to its small
size, is anomalous in a number of respects, which we discuss
in detail in a later section. The Stack predictor has also
been successful at moving unreferenced objects into the HR
segment, where the reference density, in all cases, is lower
than Default. Finally, the table shows that the SL segment
has value in increasing reference density, but only in specific
cases. In particular, the Stack predictor is very effective
at increasing the reference density of short-lived objects in
the Sis program. For Vis, it is important to note, that even
though the SL segment has a density less than one, its den-
sity is still twice that of the “other” segment.

At first glance our results appear to contradict Barrett
and Zorn’s results [2] about the number of short-lived ob-
jects in a program. Barrett concluded that over 90% of the
objects allocated by their test programs were short-lived.
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8-Kilobyte Pages per Segment
Absolute Relative to Default

Program Default Path Stack
other SL HR (abs.) nonHR Total other SL HR (abs.) nonHR Total

Chameleon 116 0.974 0.000 0.009 (1) 0.026 1.017 0.560 0.000 0.129 (15) 0.319 1.017
Espresso 54 4.593 0.519 0.093 (5) 0.000 5.222 1.000 0.000 0.037 (2) 0.000 1.074
Gs 395 0.000 0.000 1.091 (431) 0.585 1.681 0.000 0.000 0.681 (269) 0.585 1.271
Sis 318 0.906 0.000 0.003 (1) 0.053 0.965 0.374 0.028 0.050 (16) 0.742 1.195
Vis 1993 1.000 0.002 0.000 (0) 0.000 1.003 0.930 0.028 0.064 (127) 0.000 1.022
Yacr 174 0.891 0.000 0.109 (19) 0.000 1.011 0.891 0.000 0.109 (19) 0.000 1.011

Table 3: Number of 8-kilobyte pages per memory segment, absolute and per segment relative to Default.

References per 8-Kilobytes Page by Segment
Absolute Relative to Default

Program Default Path Stack

×103 other SL HR nonHR other SL HR nonHR
Chameleon 16.1 1.012 0.000 1.189 0.168 0.550 0.000 4.960 0.158
Espresso 7268.8 0.154 0.531 0.170 0.000 0.978 0.000 0.605 0.000
Gs 277.5 0.000 0.000 0.915 0.003 0.000 0.000 1.462 0.008
Sis 785.2 1.098 0.000 0.000 0.103 0.755 17.369 1.112 0.229
Vis 77.9 1.000 0.018 0.000 0.000 0.378 0.740 9.861 0.000
Yacr 52.5 0.544 0.000 4.720 0.000 0.544 0.000 4.718 0.000

Table 4: The number of references per 8-kilobyte page, absolute and per segment relative to Default.

Our results do not share this conclusion however, and there
are a number of reasons for this. First, Barrett was classify-
ing objects based on the number of bytes allocated between
birth and death, while we use number of instructions be-
tween these two events. Second, we consider only two of the
five programs Barrett did, Gs and Espresso. For Gs, Bar-
rett placed hooks directly into the PostScript interpreter to
track objects, while our work looks only at the malloc inter-
face. For Gs, this is particularly important, as this program
does its own internal memory management. Espresso uses
a large number of reallocs to dynamically resize memory ob-
jects. We believe that Barrett modeled a realloc as a free
followed by a malloc. This leads to seeing a large number of
short-lived objects, instead of one longer-lived object that
has been realloced, which is our model for reallocs.

5.2 Virtual Memory Performance

In this section we consider the virtual memory impact of ob-
ject segregation, first in the ideal case and then with respect
to page faults. Throughout this section, in addition to the
Default allocator and our two predictors, we also consider
Random, a predictor that allocates objects to the four seg-
ments at random. Random is included as a control to test
the validity of our hypothesis that our prediction methods
are the cause of the performance improvements we see.

To understand how effective our methods are at increas-
ing spatial reference locality, we measured the total number
of references to each page for each program, using Default

and the different predictors. We then sorted the pages in
each program for each predictor by reference count, with
the most frequently referenced page first. We then com-
puted the cumulative references to the first j pages, ranging
j from 1 to n, the maximum number of pages (for the given
program/predictor). Finally, to facilitate a comparison, we
plotted the relative cumulative reference function by divid-
ing the cumulative reference function for each predictor at

point j by the cumulative reference function for Default at
point j, ranging j from 1 to n.

Figure 3 shows the relative cumulative reference func-
tion for each predictor, computed as described above. Since
each graph is normalized, the value for Default is always
one. Also, since the functions are cumulative, the different
curves always converge to the value one since the number
of references is constant across all predictors. We continue
to present a relative value for the allocators that use more
pages then Default by observing that we can continue to
add pages to default even if it never used those pages. Thus
the points on the graph after the Default line stops are
relative to the total number of references the Default allo-
cator saw. Note also that the y-axis begins at 0.5 to make
the figures easier to read.

To interpret the graphs, if the value of the curve is above
one, there are more references to the most highly referenced
set of pages than there are with the Default allocator; if
below one, there are fewer references. The interesting part
of these graphs is the left side. For four of our six programs
there is a sizable increase in the number of references to these
most highly referenced pages (up to 15.6 times default for
Vis), showing that our predictors (and Stack in particular)
are packing references better than the Default allocator.
This is not a measure of performance improvement, just a
demonstration that our techniques do pack more references
onto the most highly referenced pages. The right side of
Figure 3 has all the graphs tending toward one because when
all of the pages are considered for each allocator, we see the
same number of total references, thus the relative value is
one.

Figure 4 shows relative page fault miss rates for our six
programs. Like the previous figure, the curves show the miss
rates of our methods relative to Default for a given memory
size. As with the previous figure, Default is always set at
one, and our predictors vary from less than one, meaning
we have reduced the number of page faults, to more than

7



0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120

R
at

io

VM Size (in pages)

chameleon

Default
Path

Stack
random

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400

R
at

io

VM Size (in pages)

espresso

Default
Path

Stack
random

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500 600 700 800 900 1000

R
at

io

VM Size (in pages)

gs

Default
Path

Stack
random

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400

R
at

io

VM Size (in pages)

sis

Default
Path

Stack
random

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500

R
at

io

VM Size (in pages)

vis

Default
Path

Stack
random

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180

R
at

io

VM Size (in pages)

yacr

Default
Path

Stack
random

Figure 3: Cumulative percentage of references per page, relative to default, for each of the test programs.
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Figure 4: Page fault rate, relative to default, for each of the test programs.
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Figure 5: Cumulative reference function for Espresso and Yacr, not relative to default.

one, meaning we have increased the number of page faults.
Each curve also exhibits a “drop-down” point where the
value of the curve becomes zero. This point indicates the
memory size at which the only page faults that occur are fill
page faults. To continue to graph the other allocators after
Default has “dropped-down” we present results relative to
the last non-zero VM miss result from Default.

We do not present graphs for any fixed size of memory,
because all of that information in encompassed in Figure 4.
For any fixed x-axis value, the graph will show the relative
page fault numbers for each allocator.

In the figure, both Sis and Vis have a sizable perfor-
mance benefit from using the Stack predictor across a range
of memory sizes. This can be seen by the fact that Stack re-
duced the number of page faults by 80% or more, depending
on the amount of physical memory available.

In the results for Sis, you see somewhat aberrant be-
havior on the right side of the graph, where our predictors
can vary widely from the Default predictor. This variance
is caused by the fact that these graphs are relative to De-

fault. At the far right side of the graphs, the number of
page faults incurred by the Default allocator is very small,
and even a small number of extra page faults for a partic-
ular predictor can cause the relative rate for that predictor
to increase dramatically.

Finally, Random does uniformly poorly, which is what
we would expect. This poor performance means that ran-
domly distributing objects across four segments has a decid-
edly negative effect on the virtual memory performance.

5.3 Program by Program Analysis

CHAMELEON For the Chameleon application, Fig-
ure 3 shows that our predictions place slightly more refer-
ences on the highly referenced pages than the Default pre-
dictor. Stack does the best, with roughly 1.6 times as many
references to the first page, and roughly 1.1 times as many
to the first 25 pages. Figure 4 shows that in a very mem-
ory constrained environment the Stack predictor improves
performance significantly, but if the program has more than

a certain minimum number of pages (roughly 40 pages), all
of the algorithms (even Random) do equally well.

The other interesting feature of Chameleon in Figure 4
is the fact that the Default predictor uses fewer total pages
than the other predictors. This is caused by an interaction
between the vmalloc allocator, the objects being allocated,
and the segmentation, which results in some amount of in-
ternal or external fragmentation.

ESPRESSO Due to its small size, Espresso appears
to have very little opportunity for spatial locality optimiza-
tions. Figure 5 shows that even in the Default case, the
program heavily references a very small number of pages
(54 total, for Default). Espresso also has a fragmenta-
tion problem—with the Path and Random predictors tak-
ing many more pages of memory than the other predictors.
For Espresso, this behavior is caused by the large num-
ber of reallocs used in the program. With a single memory
segment, it is easier to reuse space made available by dead
objects or objects that have been moved in order to allow
them to grow.

GS The Gs part of Figure 3 is relatively uninterest-
ing. Our techniques do improve the number of references to
highly referenced memory pages by some small amount, but
less so than in other programs.

Figure 4 is much more interesting with respect to Gs.
For a fairly wide range of memory sizes the Stack predictor
reduced the number of page faults up to 50%. The other
interesting section of this graph is the “drop-down” point
for the Stack predictor. This point is less than the De-

fault predictor’s “drop-down”, even though Table 3 shows
the Stack predictor using almost 1.3 times as many pages.
The reduction in “drop-down” point comes from segregating
objects which are never referenced onto HR pages.

SIS Sis responds well to our object segregation tech-
niques. In Figure 3, we show that the Stack predictor in-
creases the number of references to the most highly refer-
enced pages for Sis. It places almost 1.2 times the number
of references that the Default allocator does to the 14 most
highly referenced pages.
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Figure 6: 32K and 256K direct mapped cache. Miss rate relative to Default.

This increased reference density is also apparent in the
page fault rate for Sis (Figure 4). The Stack predictor
dramatically decreases the number of page faults encoun-
tered by the program at any memory size up to 182 pages,
reducing this number by as much as 95%.

On the right hand side of the Sis graph in Figure 4
though, there is some anomalous behavior from the Stack

predictor. Stack reduces the number of page faults for most
memory sizes, but around 200 pages it has a large increase
in the relative number of faults. This spike in the graph
is caused by the fact that the graph is relative, and at the
far right side a few extra page faults can cause a dramatic
increase in miss rate.

VIS Vis has its reference density greatly improved by
the Stack predictor as well. This increase in density carries
over to the virtual memory performance, resulting in up to
an 90% reduction in page faults.

The Random predictor appears to have a strange be-
havior around the 300 page mark. Random dramatically
increases in miss rate, then quickly drops back down. This
behavior results from Random placing important objects so
they occupy a couple of more pages than they do in the De-

fault case. At the point where Default gets all of these
important objects into memory but Random does not, the
relative miss rate increases dramatically. With the addition
of a few more pages of memory though, the Random predic-
tor’s miss rate falls back to normal. This is because Random

can use these extra few pages for important objects, while
Default is placing less highly referenced objects onto those
pages.

YACR The most interesting feature of Yacr is the
multiple spikes in Figure 4. These spikes, first described
with respect to Vis, above, are much more noticeable here.
With 21 physical memory pages, Default places all the
important objects so they fall in memory, while all the other
algorithms fail and need an additional page. This results in
the abrupt spike in the graph. At the 105 page mark, we
see the inverse of this behavior. Stack and Path manage
to place all of a second category of objects into memory,
while Default needs four additional pages in order to get

the same performance. The different categories of objects
can be clearly seen in Figure 5, the non relative version of
the Yacr graph from Figure 3. There are two very obvious
inflection points in the graph showing that there are three
types of objects: the highly referenced ones represented by
the few pages at the far left of the graph, medium referenced
objects represented by the middle of the graph, and objects
with a smaller reference density, which account for the tail
on the right side of the graph.

5.4 Cache Performance

Figure 6 shows the impact of our object segregation on the
cache performance of our test programs. Figure 6 presents
results with a direct-mapped 32KB cache and a
direct-mapped 256KB cache with 32-byte lines.

Overall the cache miss rate in the 32KB direct-mapped
cache is better with Stack than with Default. All of our
test programs except Gs and Yacr experienced reduced
cache miss rates, and the total for all the programs was
approximately an 8% reduction in cache misses. This re-
duction in miss rate is probably attributable to placing HR
objects on contiguous pages in memory. If there are fewer
than 32KB of these objects, there will be no conflict cache
misses between them. Even if there are more than 32KB
of these objects, this sequential layout minimizes conflicts.
In the Default case it’s quite possible that one cache line
has no conflicts while another line has three or more HR
objects mapped to it. The other interesting aspect of the
32KB cache graph is the uniformly poor performance of the
Random allocator.

For the 256KB cache graph though, our predictors per-
form less well. The performance of our test programs on
the 256KB cache mirrors their performance in the VM tests.
The two programs with the most dramatic VM performance
improvement, Sis and Vis, have the largest cache improve-
ment, while the program that had the least improvement,
Yacr, has the worst performance for the Stack predic-
tor. Espresso, which had fragmentation problems with
the Path and Random predictors, shows cache performance
degradation for these predictors. Overall these results are
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understandable. If the reference density of the program has
not been improved by our optimizations, the cache perfor-
mance does not improve. Our current implementation does
very little to try and improve cache performance though,
and since our optimizations are at a much coarser grain than
the 32-byte cache line, significant performance improvement
would have been unexpected.

In future work, we are considering augmenting our run-
time system with more cache information. One extension
we are considering is using the fact that we know where in
memory the majority of HR objects reside to insure that no
other objects conflict with these in the cache.

6 Summary

Computing technology trends indicate that it is increasingly
important to achieve good locality of reference in programs
that perform significant amounts of dynamic storage allo-
cation. In this paper, we propose and evaluate a technique
that identifies object behavior and segregates objects based
on that behavior.

Our results show that there is a large opportunity to
improve program performance in constrained memory situa-
tions in four of our six programs. Furthermore, in two of our
programs we were able to reduce the number of page faults
substantially. Using the technique of profile-based optimiza-
tion, we are able to identify and segregate objects based on
lifetime and reference density so that the most frequently
referenced data pages were referenced up to 8.5 times more
frequently than they were using the default allocator. This
increase in spatial reference locality reduced the page fault
rate up to 95% in some memory sizes.

In the future, we hope to be able to continue this work
and extend it into new areas. In the short term, we plan to
add more cache awareness to the prediction metrics, such as
insuring that no pages conflict with HR pages in the cache.
This should help improve our cache performance, which cur-
rently is not substantially better than Default. Also, we
will implement an actual instance of a predictor allocator
so we can more accurately assess the performance costs and
benefits of our approach. We are also considering how these
prediction techniques can be of value in a garbage-collected
language such as Java.
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