
Efficient evaluation of pointer predicates with Z3
SMT Solver in SLAM2

Thomas Ball1, Ella Bounimova1, Vladimir Levin2, and Leonardo de Moura1

1 Microsoft Research Redmond, USA
2 Microsoft Redmond, USA

March 2010
MSR-TR-2010-24

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract. Static Driver Verifier (SDV) is a verification tool included
in the Windows 7 Driver Kit (WDK). SDV uses SLAM as the program
analysis engine. SDV 2.0 released with Windows 7 uses a re-designed
SLAM2 engine. SLAM2 improves the precision and performance of pred-
icate evaluation by using Z3 SMT solver. To handle predicates with
pointers in SLAM2, we propose a novel set of axioms that defines a
logical memory model, which is one of the underlying concepts and limi-
tations of SLAM. We also designed an algorithm of encoding predicates
passed to Z3 with uninterpreted functions over integers. In this paper,
we present the axioms and the encoding. We also show how the axioms
can be modified to achieve a better precision by refining the memory
model. Our profiling of SDV runs on real device drivers confirms that
the axioms and the encoding allowed SLAM2 to achieve a good balance
between the precision required by the logical memory model, and Z3
performance on complex predicates. Our presentation of the axioms and
the encoding in this paper is decoupled from SLAM2, such that they
could be utilized by other static analysis tools when dealing with pointer
predicates - often a bottleneck in such tools.

1 Introduction

Static Driver Verifier [BBC+06] (SDV) is a verification tool included in the
Windows 7 Driver Kit (WDK). SDV uses SLAM [BR01] as the program analysis
engine. SDV 2.0 released with Windows 7 uses a re-designed SLAM2 engine.
SLAM2 improves the precision and performance of predicate evaluation by using
Z3 SMT solver [MB08]. In particular, we take advantage of the Z3 feature to
provide a pre-defined set of axioms as a context for evaluation. Predicates that
are given to Z3 by SLAM2 in runs on Windows Device Drivers can be long and



may contain disjunctions, which could be a problem for SMT solvers. Because
of that, care has been taken to optimize calls to Z3 as much as possible. In
particular, for predicates involving pointers, we propose a novel set of axioms
that defines a logical memory model, which is one of the underlying concepts
and limitations of SLAM. For example, in SLAM, all array elements are merged
into one (first) element, pointer arithmetic is abstracted away, etc. Our axioms
postulate basic relations between pointers and locations in the SLAM memory
model. We also designed an algorithm of encoding predicates passed to Z3 with
uninterpreted functions over integers. For comparison, other static analysis tools
- for example, HAVOC [LQ08] - use a physical memory model, based on select-
update axioms, which may significantly degrade SMT solver performance.

Our profiling of SLAM2 runs on real Windows Device Drivers confirms effi-
ciency of the axioms and the encoding: Z3 was never found to be a bottleneck in
those runs when the tool run out of resources (time or memory). On the other
hand, we have evidence that precision of SLAM2 predicate evaluation is better
than that of SLAM1.

2 Definitions

In the presence of pointers, predicate evaluation should take into account rela-
tions between pointer variables and memory objects, or locations. In a predicate
on program variables that we pass to Z3, locations are represented as simple
variables, (for example, x, y, z), and terms. A term can be a direct and indi-
rect field access (for example, x.f, y−>g), array element access (for example,
x[0], x[i]), or dereference (for example, ∗x, ∗(x.f)).

We define locations as elements of an abstract domain L. Each location X has
a unique address represented by a function from locations to integers: A : L−>
INT . We represent a value stored in a location as a function V : L−>V , where
V is an abstract domain for values. The location domain L is partitioned into
two disjoint sets: normal locations L1 and abnormal locations L2. The domain of
normal locations is partitioned into three disjoint sets: basic locations LB , field
locations LF and implicit locations LI .

A variable from a predicate denotes a basic location. An access term (field
access or an array element access) denotes a field location. A dereference could
denote a location which is also denoted by another variable or an access term:
for example, in the context of predicate x == ∗y, variable x and dereference
∗y denote the same basic location. In such case, we say that this dereference
is aliased with the corresponding variable or access term. A dereference that
cannot be aliased with a variable or an access term is thought of as denoting
an implicit location - in other words, implicit location can only be referenced
through dereferences.

A predicate may contain dereference terms that cannot yield any normal
location. For example, dereference ∗p in the predicate (p == 0 ∧ ∗p == N)
cannot denote any normal location that would make this predicate satisfiable, for
any value of N . To deal with such predicates, we introduce abnormal locations.



Note that detection of an abnormal location could signal a bug in the program.
For example, the predicate above could represent an attempt of an execution of
the following incorrect C code: {p = 0; ∗p = N ; }.

We combine structure and array locations into a concept of an aggregate
location, by replacing field names with integers from an interval [0 .. N−1] 3,
where N is the number of fields in the structure, preserving the order of the
fields. Access terms of the form x[f ] are replaced with access terms of the form
x.f , where f is a non-negative integer, and both field names and constant indices
of arrays are referred to as field indices.

In the first set of axioms below, we do not consider predicates with access
terms x[n], where n is an expression other than an integer constant. In section 6.4,
we show how to handle a more general case, where n is an arbitrary expression.

Given a program, we consider a finite interval [0 .. N −1] of integers that
represent all field indices in this program. Here, N is the number of fields (in-
cluding array elements) in the largest (with respect to the total number of fields)
aggregate defined in the program. Intuitively, we consider aggregate locations as
graph structures, with parent locations (for example, a whole aggregate loca-
tion) connected to their child locations (for example, top-level fields) via one of
the two possible links: field indices or dereference links. Formally, we introduce
a location constructor function S(X,C), with X being a (parent) location and
C being a connection link from X to the (child) location S(X,C). A connection
link C is either a field index (an integer from interval [0 .. N−1]), or dereference
link D. The dereference link D is introduced as a unique abstract object to rep-
resent a pointer dereference location ∗X as S(X,D). Thus, constructor S(X,C)
is polymorphic on its second argument: the entire domain of links is the union
of two sets: [0 .. N−1] ∪D; we require that D /∈ [0 .. N−1].

All non-basic locations, both normal and abnormal, are generated by apply-
ing location constructor S to basic locations from the set LB . The set of the
basic axioms I.a below defines valid terms generated by this constructor, at the
same time defining dependencies between this constructor and the address and
value functions (A and V , introduced earlier).

Below is the core abstract version of the axioms. We call it “abstract” to
distinguish it from the implementation version in I.b. In the axioms below we
use capital letters F,G,X, Y to refer to semantic objects: field indices F,G and
locations X,Y .

3 Axioms I.a: the core version

In the axioms below, X and Y are abstract locations from the domain L, D
stands for integer −1 (dereference link encoding), the integer interval [0 .. N−1]

3 We follow here C convention for array indices; for languages with a different conven-
tion, indices would have to be converted into the C-style indices.



encodes field indices.

1. ∀X ∈ LN : A(X) > 0
2. ∀X,Y : A(X) = A(Y ) =⇒ X = Y
3. ∀X,F ∈ [0 .. N−1] : S(X,F ) /∈ LB

4. ∀X : A(S(X,D)) = V (X)
5. ∀X,Y, F ∈ [0 .. N−1], G ∈ [0 .. N−1] :

S(X,F ) = S(Y,G) =⇒ X = Y ∧ F = G
6. ∀X,Y, F ∈ [0 .. N−1] : V (X) = V (Y ) =⇒ V (S(X,F )) = V (S(Y, F ))

Axiom 1 requires that normal locations have meaningful addresses. Axiom
2 states that each location is uniquely identified by location’s address. In other
words, axiom 2 requires for function A to be injective. Axiom 3 requires that
constructor S generates only non-basic locations. Axiom 4 states that pointer
value is equal to the address of the location obtained by dereferencing the pointer.
From axioms 4 and 1, it follows that if the value of a pointer X is 0, the address
of the location S(X,D) is also 0, which means that this is an abnormal location
(axiom 1). Axiom 5 states that two field locations are identical only if they share
the same parent location and the same link associated with them. Axiom 6 is
a counterpart to axiom 5. It states that if two parent aggregate locations have
equal values, then the corresponding child locations that have the same link
associated with them also have equal values.

Next, we give the implementation version of the abstract axioms. In the
implementation version, all semantic objects - locations, links, addresses and
values - are encoded with integers and uninterpreted functions on integers. It
is the implementation version of the axioms that we give to Z3 SMT solver.
When we translate a predicate into the form for Z3, we encode basic locations
explicitly. All other locations are implicitly encoded by the constructor S(X,F ).
All normal locations are encoded with positive integers. Since the dereference
link D is encoded with −1, all the links belong to [−1 .. N−1]. Below, we define
translation rules for the conversion of a predicate into the encoded form.

4 Translation rules

We are using small letters f, v, x to refer to syntactic objects: fields, variables, and
locations terms, respectively. Below, x′ stands for the result of translation for the
term x by applying the translation rules (recursively); f ′ denotes encoding for
the field index f , B is the maximum number of basic locations on the program.

Given a predicate, replace the location terms in this predicate as defined by
the following rules:

1. Basic location encoding: each variable v is replaced with

a unique positive integer n, n < B.

2. Dereference *x is replaced with S(x’,D).

3. Direct field access x.f is replaced with S(x’,f’),

where f’ is a non-negative integer n, n < N.

4. Indirect field access x->f is replaced with S(S(x’,D),f’).



5 Axioms I.b: the core implementation version

In the implementation version of the axioms, X and Y are integers from the
interval 1 through B that encode abstract locations in LB , as defined in the
translation rules above. All other normal locations are thought of as implicitly
encoded with integers larger than B; abnormal locations are thought of as im-
plicitly encoded with non-positive integers; values are thought of as implicitly
encoded with any integers.

The implementation version of axioms I.a with the encoding specified above
is as follows:

1. ∀X > 0 : A(X) > 0
2. ∀X,Y : A(X) = A(Y ) =⇒ X = Y
3. ∀X,F ≥ 0 : S(X,F ) > B
4. ∀X : A(S(X,D)) = V (X)
5. ∀X,Y, F ≥ 0, G ≥ 0 :

S(X,F ) = S(Y,G) =⇒ X = Y ∧ F = G
6. ∀X,Y, F ≥ 0 : V (X) = V (Y ) =⇒ V (S(X,F )) = V (S(Y, F ))

6 Modifications of core axioms

In this section, we show how to modify Axioms I.a and I.b. There are two goals
that we want to achieve by the modifications: either to optimize Z3 evaluation
(section 6.1), or to make the axioms more precise, i.e., to add some elements
of the physical memory model (axioms 6.2 - 6.4). For the sake of simplicity, we
only give modifications for the implementation version I.b. However, the same
modifications can be done for the abstract version I.a.

6.1 Axioms II: optimized version

We can improve Z3 performance by modifying axioms 2 and 5 - which signifi-
cantly contribute to the evaluation complexity - by introducing inverse functions
for functions A and S. A−1 is the inverse function for A, and for S, S−1 and
S−2 are the inverse functions over the first and second argument (excluding the
dereference link), respectively. Then we can re-write axiom 2 as axiom 2.a, and
axiom 5 as two axioms 5.a and 5.b:

2a. ∀X : A−1(A(X)) = X
5a. ∀X,F ≥ 0 : S−1(S(X,F )) = X
5b. ∀X,F ≥ 0 : S−2(S(X,F )) = F

6.2 Axioms III: merging address of aggregate with the address of
its first field

The set of axioms I.a (or I.b) is sound for the evaluation of a predicate that
does not take into account the following C language conventions about physical



memory allocation: (i) address of the first field of a structure is the same as the
address of the entire structure; (ii) address of the first element of an array is the
same as the address of the entire array. Modification in this section accounts for
these conventions, thus extending the applicability of the axioms I. Note that
modification II is not applied in this case.

Axioms I.b are modified as follows: axiom 2 is replaced with the two axioms:
2a and 2b:

2a. ∀X > B : A(X) = A(S(X, 0))
2b. ∀X > B, Y : Y 6= S(X, 0) =⇒ (A(X) = A(Y ) =⇒ X = Y )

Axiom 2.b above states that axiom 2 from I.b holds only for those locations
where one of the locations is not a first element of another location.

6.3 Axioms IV: physical memory model, no unions

According to the C language, data type of a field (or an array element) can
be used to determine address of the next field (array element) in the structure
(array). Additionally, memory alignment should be taken into account in some
cases. Let’s consider a function T (X,F ) that defines those rules, where X is
an aggregate location, F is a field index, and return value is the address shift
between the field F and the next field F + 1. If we are given the F function for
a particular implementation, we can modify axioms I.b by adding the following
axiom:

7. ∀F, 0 ≤ F < N − 1 : A(X,F + 1) = A(X,F ) + T (X,F )

6.4 Axioms V: locations as field indices

To handle array elements with variable indices, we modify both the translation
rules and the axioms. The modification will be shown for the impementation
version of the axioms and rules, but could be extended on the abstract version
as well.

First, we add one new translation rule to the set defined in section 4. Consider
a term x[k], where k is a variable or a location term. If k is a variable, k′

is an integer that encodes k as a basic location; if k is a location term, k′ is
translation of k as defined by the (modified) translation rules. Then, x[k] is
translated into S(x′, V (n′)). Here, we also assume that integers belong to the
interval [0..N−1]. Second, the axioms are modified simply by adding a new axiom
to constrain results of the function V , which we need to distinguish encoding of
the dereference link D from the location values (which can now be used as field
indices):

∀X > 0 : V (X) 6= D



7 Conclusion

To evaluate predicates with pointers with Z3 in SLAM2, we designed a novel set
of axioms that defines a logical memory model used by SLAM, and an encoding
of the predicates passed to Z3 based on uninterpreted functions on integers. We
showed how the axioms can be modified to incorporate more details into the
memory model and to achieve a better precision. Our profiling of SDV runs on
real device drivers confirms that the axioms and the encoding allowed SLAM2
to achieve a good balance between the precision required by the SLAM logical
memory model, and Z3 performance on complex predicates. For SDV 2.0, the
true bugs/total bugs ratio is 90-98% on Windows 7 Microsoft drivers, depending
on the class of driver. The number of non-useful results (timeouts, “don’t know”
results) has been reduced greatly. In particular, for drivers shipped as WDK
samples, it is 3.5% for WDM drivers and 0.02% for KMDF drivers. We believe
that the axioms and the encoding presented in this paper could be utilized
by other static analysis tools when dealing with pointer predicates - often a
bottleneck in such tools.

References

[BBC+06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. In Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems, pages 73–85, 2006.

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In CAV, pages
260–264, 2001.

[LQ08] S. Lahiri and S. Qadeer. Back to the future: Revisiting precise program ver-
ification using smt solvers. In Principles of Programming Languages (POPL
’08), January 2008.

[MB08] Leonardo De Moura and Nikolaj Bjrner. Z3: An efficient smt solver. In In
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008.


