
Fast Scalable Robust Node Enumeration

Richard Black1, Austin Donnelly1, Alexandru Gavrilescu2, and Dave Thaler2

1 Micrsoft Research Ltd., 7 J.J. Thomson Avenue, Cambridge, CB3 0FB, UK
2 Microsoft Corp., One Microsoft Way, Redmond, WA 98052, USA

{rjblack, austind, alexang, dthaler}@microsoft.com

Abstract. In a Local Area Network of computers, often a machine wants to learn
of the existence of all the others satisfying some condition. Specifically, there are
a number of existing discovery algorithms which permit an enumerator to reliably
discover protocol participants, many of them idealised. This paper provides a new
technique which controls the load placed on the network, minimises the time to
completion, handles networks with significant loss, and scales over many orders
of magnitude. Most significantly, the protocol also deals with the possibility of
a malicious enumerator; an important contribution needed for current real-world
networks. We also address the effects of several systems and engineering aspects,
including scheduler jitter and clock quantisation.

1 Introduction

In a Local Area Network of computers, often a machine wants to learn of the existence
of all the others satisfying some condition (such as being prepared to co-operate to
perform a task). There are a number of existing discovery algorithms which permit
an enumerator to reliably discover protocol participants. For example, various service
discovery protocols (such as SSDP [3]) fall into this category, as do node discovery
protocols (such as Browser [8]).

Some discovery protocols such as IGMP [2] do not wish to enumerate all the partic-
ipants, but only wish to know whether there is at least one participant satisfying some
property present. We do not consider this class of problem in this paper.

Closer to our problem is the case of link-local broadcast or multicast pings; they
differ in that that they do not include reliability (though some of our techniques could
perhaps be applied to that domain).

In this paper we consider the application in which enumeration of participants is
initiated by a single enumerator broadcasting a Request message. In response to this,
responders send a Response message, thus revealing their presence to the enumerator.

To avoid an implosion of traffic at the enumerator, a scalable enumeration mech-
anism requires a scheduling method whose purpose is to decide when the responder
should send its Response. For example, the most common scalability method is a sim-
ple random delay within a fixed time interval.

We require a solution which also provides reliability (with high probability all nodes
are enumerated), promptness (a small network takes a shorter time than a large network)
and defence against a malicious enumerator. We say more about our requirements in

R. Boutaba et al. (Eds.): NETWORKING 2005, LNCS 3462, pp. 252–263, 2005.
c© IFIP International Federation for Information Processing 2005



Fast Scalable Robust Node Enumeration 253

section 3.1, and comparison with previous work in section 2, but first we state more
clearly what we mean by a malicious enumerator.

A malicious node on a local area network can engage in a number of extremely
disruptive actions. It can consume all the bandwidth and prevent normal communica-
tion. It can also fake its source address in packets so as to reroute (“steal”) traffic for
another node. Given the possibility of such villainy it may seem pointless to discuss the
operation of a protocol in the presence of malicious nodes. What we are attempting to
defend against, however, is the incorrect apportionment of blame for bad behaviour on
the network. Specifically, we wish to prevent a bad node from using a small amount of
bandwidth to trigger good nodes to use a large amount of bandwidth. Our requirement
is a protocol which cannot be tricked into causing the aggregate traffic load of good
nodes to exceed the specified target rate.

In this paper we cover related work in section 2. In section 3 we introduce two
load-adaptive algorithms which would be expected to have similar idealised behaviour:
one which keeps a fixed probability of transmission and varies the periods over which
it adapts to the load on the network, and one which operates on a fixed timescale but
varies the probability. We evaluate these by analysis and simulation, showing that they
behave differently in practice. Finally we recommend the preferred algorithm.

2 Related Work

There have been many examples of distributed load control for Media Access since
randomised distributed media access was first implemented in 1970 in the Aloha sys-
tem [1]. The most famous and commonly used is probably that in Ethernet, binary
exponential back-off. Our work is dissimilar to controlling the load at the Media Ac-
cess level; a MAC protocol is designed to arbitrate a single segment at full line rate,
not a LAN comprised of many segments and where we want to consume only a small
fraction of the available resource.

In work on scalable address allocation [5] and scalable reliable sessions [7], the
problem under consideration was ensuring, regardless of whether there were a small or
large number of potential responders, that a reasonable number (neither too large nor
too small) responded to the request. Again our work is dissimilar in that the intention
is that all responders should eventually respond, but at a rate which is below the rate
directly achievable from the media in use.

Other work considers the problem of having agents in a network gathering and shar-
ing information about each other in order to increase their knowledge of the network.
Most packet routeing techniques work like this, either at a network layer directly, or at
an overlay layer. There have been hundreds of publications in the field of ad-hoc sensor
wireless networks addressing that problem which we do not attempt to list.

Our work is different in that all the agents are expected to be attached to substantially
the same network, and only the enumerator is attempting to gather the information. In
particular we address the case where one node’s communication may interfere with
another’s and so the aggregate load must be controlled.

A specific example of more closely related work is resource discovery [6]. However,
that work addresses the case where there is no centralised coordination point. In our



254 R. Black et al.

work we address the problem where there is a centralised coordination point, but the
responders do not trust it to provide correct load control on the network.

Many other discovery systems (e.g., [6, 8]) assume that one node can be trusted to
pass on the discovery of other nodes. Once again, our work is different in that the prob-
lem we address precludes this because (a) each node may have to include information
with its response which makes responses too large to combine and (b) nodes may not
trust each other.

Finally, Scalable Timers and RTCP [9, 4] have some similarities in that overall trans-
mission of information is used to control each nodes transmission of information; how-
ever in those works each node sends many packets and the goal is a long term stability.
In the enumeration problem each node is sending only once (unless retransmission is
required) and is not attempting to find a long-term rate.

3 Enumeration Algorithms

In this section we give more detail on the requirements on our protocol. We then de-
scribe an idealised algorithm to use as a performance goal; it is impractical because it
requires an oracle to be consulted to determine scaling information. Subsequently we
describe our two practical algorithms which we will compare in section 4.

3.1 Requirements

To provide reliability, the enumerator must repeatedly retransmit its Requests. We do
not wish responders to send a response to each request therefore the enumerator ac-
knowledges Responses and responders only re-respond on receipt of a request without
an acknowledgement. For efficiency, we assume that a large number of acknowledge-
ments can be piggybacked with each Request by listing the responders’ addresses in the
enumerator’s Request packet. Such a behaviour is illustrated in figure 1 where requests
are being sent with a fixed interval TE of 200 ms.

The corresponding behaviour of each Responder is illustrated in figure 2. The first
request causes it to move to a pausing state; after some time it will send its Response
and move to the sent state. In the sent state an acknowledgement causes it to transition
to the done state, whereas a negative acknowledgement (a Request in which it is not
acknowledged) causes it to return to the pausing state. A positive acknowledgement
also causes a transition from the pausing state to the done state; this transition can occur
when a response and a negative acknowledgement cross due to concurrency, followed
by a positive acknowledgement.

Fig. 1. Enumerator sends regular Requests, acknowledging Responses received in prior period



Fast Scalable Robust Node Enumeration 255

To provide timeliness, we desire that the enumeration complete as quickly as pos-
sible consistent with the desired network load (i.e., we do not want to statically limit
the enumeration to proceeding at the slowest rate that might be needed for the largest
possible network). Since the enumerator may be malicious we cannot (as many previ-
ous techniques do) trust it to control the rate at which responses are sent; hence one
feature of the scheduling methods we present is that responders independently measure
the load on the network due to the enumeration and use this to time their Response
transmissions.

Specifically, we require that Responses are sent in such a way that they can be seen
by all the Responders in the system and that by counting such Responses, Responders
can execute a distributed load control function. In our descriptions below we describe
the methods as using broadcast (or multicast) so that the responses can be counted,
however variations are possible in which responders broadcast with some probability z
and send directed (uni-cast) responses with probability (1 − z). Provided z is not too
small (there are still a statistically valid number of responses seen), it is still possible
to estimate the overall number of responses by dividing the observed number by z.
Such a change does not reduce the number of packets sent on the network, but it does
reduce the number of broadcasts on the network which may be favourable. A potential
disadvantage of such a change is that it implicitly assumes that the loss probability of
broadcasts and unicasts is the same, which may not be true on wireless networks.

The enumerator stops transmitting Requests once there have been no Responses for
long enough that there can be no more responders waiting to respond. Obviously any
practical enumerator must defend against a responder which never ceases to transmit
Responses, but that does not affect load control, and is not the aspect of malicious
behaviour which we are considering in this paper.

Note that one cannot assume that retransmissions are initiated smoothly during op-
eration; a malicious enumerator can arrange to withhold Request messages for a long
time and then send a non-acknowledging Request which would cause many responders
to be reactivated simultaneously.

Finally, there are several engineering requirements which are necessary for a practi-
cal implementation. First, the state retained by each responder must be strictly limited:
it is impractical for them to keep a record of the address of the sender of every response
they have seen, only the number of such responses seen. Second, we do not permit
any significant computation other than increasing a counter when a response packet is
received; computation is permitted only when a request packet is seen, or on a timer.

Fig. 2. A responder’s state transitions



256 R. Black et al.

3.2 Notation

Assume M Response packets are each sent independently at a time chosen randomly
and uniformly from an interval T , such that the average load per unit time over the
whole interval is α = M/T . Then the probability that the number of packets received
in unit time, denoted X , has a value k can be approximated by the Poisson distribution:

P (X = k) =
αk

k!
· e−α

For example, if α = 1 the probability that a period of unit time has more than three
packets is less than 2%, and the probability that it has more than four packets is about
one third of one percent. This evaluation of α gives some degree of confidence that
such random transmission rarely leads to bursts. We let I = 1/α be the average inter-
Response time; hence T = MI .

Using q to represent the independent probability of loss on the network, the proba-
bility of a Response and a corresponding Acknowledgement both being received suc-
cessfully is (1 − q)2. The probability p of failure is thus p = 1 − (1 − q)2.

Analytically, the number of Response / Acknowledgement exchanges required using
a loss probability q (and combined Response / Acknowledgement loss p) until one of
them is successful can be calculated. The expected number of exchanges for a single
node is given by the mean of a geometric distribution with probability (1−p) of success,
which is 1/(1 − p) = 1/(1 − q)2.

We use N to represent the number of responders on the network; and Nmax to
represent the design maximum value for N . The expected number of exchanges for N
nodes is thus N/(1 − q)2 over a time NI/(1 − q)2.

3.3 A Best-Case Bound Using Perfect Knowledge

We provide an approximation of a best-case bound on any practical algorithm by con-
sidering an impractical algorithm in which the enumerator consults an oracle to obtain
the true number of responders on the network, and the responders trust that information.

The enumerator sends out the number of responders, N , in the initial Request mes-
sage. Each responder schedules a Response at a random time distributed uniformly from
the first round which is between 0 and T1 = NI .

In the event of a negative acknowledgement (caused by loss) a responder does not
retransmit until the next round (since other responders are still using the current round).
Each Request message contains the number of responders still to be seen, hence a re-
sponder estimates the loss rate q on the network by comparing this with the initial value
of N . As mention in section 3.2 above, if a similar loss rate applied to the Acknowl-
edgements then the number of responders that will still be active can be estimated each
round by multiplying N by (1 − (1 − q)2). This new value becomes the length of the
next round in which to uniformly send a linear response.

This impractical algorithm minimises the amount of time needed to enumerate N
nodes while maintaining the average load.



Fast Scalable Robust Node Enumeration 257

3.4 Successive Linear

This practical enumeration algorithm proceeds as a number of loosely-synchronised
rounds. The ith round has a duration Ti, which is calculated from the result of the
previous round. The first round has constant duration T1, defined below. At the start
of each round, every responder selects a random number: with probability φ it sends
a Response (at a time chosen randomly, spread uniformly over the round’s duration)
during the round.

During a round, responders count Responses seen from other responders during the
round; suppose the number seen by the end of the round is ri. The expected value of ri

is given by
E[ri] = φ · Ri,

where Ri is the actual number of responders that were yet to send at the start of round
i. Using ri as the estimate E[ri], yields an estimate for Ri. Of these Ri, approximately
ri have already transmitted, so the estimate of the number remaining at the start of the
next round Ni+1 is given by:

Ni+1 = Ri − ri ≈ ri

φ
− ri

The responder needs to calculate Ti+1, the duration of the next round, so that it can
either schedule its Response appropriately or wait the round out. We know that in this
next round, on average φNi+1 responders will transmit a Response, therefore to space
them out with average time interval I , we use a round duration of:

Ti+1 = φNi+1I = Iφ · (ri

φ
− ri) = Iri(1 − φ).

As each round progresses, ri decreases and so too does Ti. When ri gets below a thresh-
old rmin, we decide there are sufficiently few responders on the network that further
recursive subdivision is pointless, and that the remaining responders should send a Re-
sponse at times uniformly distributed between now and Ni+1I .

The constant T1 (time for the initial round) is calculated based on the worst case of
Nmax responders on the network. In the first round φNmax responders will respond,
so to meet the desired minimum inter-Response time of I , we need to spread those
responses over time T1 = φNmaxI .

In the Sent state a responder continues to count Responses. When an unacknowl-
edging Request message causes the responder to move back into the Paused state; its
estimate of ri is therefore the number of packets received since the start of the round in
which it sent its response.

Suppose a malicious enumerator sends a negative acknowledgment after xI . For
any nacked responder, the round in which it transmitted is ended either prematurely or
extended. If it is extended then its ri count will be larger than φRi and so it will not
overload the network. If it is ended prematurely then the x nodes will each have an ri

value of approximately x; thinking that there are x(1/φ− 1) nodes on the network they
will each transmit with probability φ over their next interval giving rise to an additional
relative load of xφ/(x(1/φ − 1)) = φ2/(1 − φ). This is not dependent on x, for small
φ is small, and in practice the different periods caused by clock jitter make even this
effect disappear. Successive Linear is therefore robust to a malicious enumerator.



258 R. Black et al.

3.5 Block Adjust

This practical enumeration algorithm is similar to Successive Linear except that instead
of fixing φ and varying Ti we fix the time over which sampling is performed to a length
Tb (the “block time”), and adjust the probability of transmission based on the number
of responses seen in a previous round.

At the start of round i each responder has estimated that there are Ni responders left
to transmit their responses. Every responder samples its random number generator and
chooses a time uniformly distributed between zero and NiI . If this is less than Tb then
the responder sends its packet at the chosen time. If the time is greater than Tb then the
responder does not send a packet in this round, but counts the number of responses seen
during the interval Tb of the round, ri and uses it to estimate Ni+1 as follows.

If Ri is the true number at the start of the round then the expected value of ri is:

E[ri] =
Tb

NiI
· Ri.

As before we can use ri as the estimate E[ri] and hence estimate Ri. Of these Ri, ap-
proximately ri have already transmitted, so the estimate of the number Ni+1 remaining
at the start of the next round is given by:

Ni+1 =
riNiI

Tb
− ri

Eventually some Ni will cause NiI ≤ Tb at which point the responder will transmit in
the current round and is finished. We also set N1 to Nmax to set the initial load.

Since a retransmission of a Response packet may be required, each responder con-
tinues network loading estimates until it has been acknowledged. In this way, the load
due to retransmissions by other responders is continuously being monitored. Thus a
value for Ni is always available, should a Negative Acknowledgement cause the Re-
sponder to return to the Pending state.

Recall that a malicious enumerator can negatively acknowledge a large number of
responders simultaneously. This could cause a load of N/Ni in the extreme case so we
deal with this by increasing the estimate of the number of responders by the worst case
number which can have become unacknowledged by a Request. Specifically, every time
a Request message arrives the number of Response messages received in total (since
the Responder left the idle state) is sampled and stored; call this value Nmb. At the end
of round i the current value of Nmb is compared against the value of Nmb at the end
of round i − 1 (this value is stored in a further variable pNmb). If the value is greater
(Nmb > pNmb) then the difference (equal to the worst case number of Responders that
can have moved from Sent state to Pausing state due to Request messages in that round)
is therefore added to Ni. Note that pNmb is set on round boundaries and not when a
Request message arrives. This adjustment value is an over-estimate for two reasons: first,
the enumerator may have positively acknowledged some responders; second, some of the
retransmissions from those responders may already have occurred in the previous round.

Several engineering changes are made to the Block Adjust method to take account of
real life situations. First, to take account of the fact that jitter is not zero biased, the logic
attempts to measure the actual duration Ta of the round (though we do not assume that



Fast Scalable Robust Node Enumeration 259

this has perfect accuracy). Secondly, even using Ta, hosts that are unlucky enough to get
many successive large jitters may increasingly over-estimate the number of responders
on the network. To stop any possibility of this getting out of hand the logic limits Ni to
100Nmax. Thirdly, we are concerned about the effects of badly written device drivers
which may cause packets to be dropped for a significant fraction of a block. Therefore
we limit the reduction in the estimated number of hosts in any one round to a factor of
three (approximately half an order of magnitude). The final estimator for Ni+1 is:

Ni+1 = max

(
Ni

3
, min

(
100Nmax,

riNiI

Ta
− ri + (Nmb − pNmb)

))

4 Results and Evaluation

We give an evaluation in this paper using a simulator written specifically for the pur-
pose. This permits us to evaluate the technique under controlled loss, and jitter, and for
networks much larger than can be constructed in the laboratory, in addition to compar-
ing with the impractical technique.

The constants chosen for all the methods are designed to give an average load, α,
of 1 packet per millisecond (thus I = 1ms). This makes them more easily comparable.
We set TE to be 200 ms, Nmax to 10000, rmin to 4, Tb to 100 ms and φ to 0.1. We also
assumed that time intervals can be measured accurately to a resolution of 20 ms. These
are compatible with real world values.

It is unrealistic to expect perfect synchronisation, so for some experiments we in-
troduce an extra delay to the time at which responders request to be woken, e.g., to
transmit a Response or at the end of a round. This jitter parameter (which is applied
randomly and uniformly) is intended to model sender OS-induced wakeup uncertainty
together with variations in queueing delays from network and receiver OS; it is always
additive (i.e., not zero-biased) because these effects can only ever delay an event, never
result in it occurring early.

For loss we simulate receiver loss because that is pessimal for all the calculations
(worse than realistic loss): a lost packet contributes to network load, but does not con-
tribute to either (a) progress or (b) any load reducing control mechanism.

Several key aspects of the differences between the algorithms can be seen in figure 3
which shows the network load (averaged over 50 ms buckets and ten simulations) for
the three algorithms with 3000 hosts, 100 ms of jitter, and 10% of loss.

– The Successive Linear algorithm uses well below the permitted load during the first
1000 ms due to its inability to adjust its behaviour before the end of its first period.

– The block adjust algorithm, during its first period Tb, transmits at the same rate
(appropriate for a network of size Nmax) as Successive Linear, but rapidly achieves
target load.

– Even the impractical algorithm takes a short time to achieve the target load because
of the effect of jitter and loss on the network (e.g., because about 10% of the hosts
do not see the initial request packet).

– The impractical algorithm has a dip in its usage of the network after 3000 ms; this is
the effect of the jitter on its switch from the first phase (in which every node sends



260 R. Black et al.

Fig. 3. Network load for 3000 hosts showing differences between algorithms

exactly once) to the second phase in which unacknowledged nodes retransmit after
they believe the first phase to be over.

– Although Successive Linear briefly achieves the target load it has difficulty main-
taining it and has a long tail. Since the jitter is not zero biased it effectively increases
the sampling period; since the sampling period gets shorter in each round, the error
increases in relative magnitude with the result that the method increasingly over-
estimates the load that is actually present.

– Using N = 3000, q = 0.1, and I = 1 ms in our earlier analytical result (without
jitter), we get a completion time of 3703 ms, which is consistent with our simulated
results here (which do include jitter).

– The block adjust algorithm has a small overshoot near to the start. This is an artefact
caused by the large jitter. Since transmission times are delayed by up to 100 ms, the
load during any particular period Tb is significantly affected by delayed transmis-
sions from a previous period. This causes the under-damping; however as can be
seen the method rapidly stabilises.

We also compared the methods at every half order of magnitude from 1 Responder to
the design goal of Nmax = 10000 responders. To get an idea of how fragile the methods
are we also tested them at half an order of magnitude more (30,000) responders; as can be
expected the network load in the first period (T1 for Successive Linear, and Tb for Block
Adjust) was approximately three times the target, but subsequently the load returned
to target.



Fast Scalable Robust Node Enumeration 261

Fig. 4. Completion times

4.1 Completion Time

Figure 4 shows the finishing time for these methods (compared against the Impractical
method) both for increasing numbers of hosts, and for increasing amounts of jitter.

It can be seen that with higher number of responders the finishing times become
similar and dominated by NI . For fewer nodes, however, Block Adjust is superior
because it can adapt more quickly; Successive Linear cannot begin to adjust until the
end of the first time period at φNmaxI .

With higher jitter all methods take longer to complete because jitter is not zero
biased. Nevertheless it can be seen that Block Adjust is less negatively impacted than
Successive Linear.

The effect of loss on these methods can be seen by looking at the baseline data in
figure 5. With higher levels of loss all methods take longer because retransmissions are
required. Block Adjust retains its advantage over Successive Linear as loss increases.

4.2 Improvements

We originally described acknowledgements as being sent in the subsequent request
packet. It is possible, however, to use any spare space within a Request packet to re-
acknowledge previously acknowledged responders. The effects can be seen in table 1 by
comparing the columns marked “repeat” with the original base-line (marked “none”).
Since responders whose responses are received at the enumerator but where the (first)
acknowledgement is lost now have additional chances of seeing an acknowledgement
before retransmitting their response, the overall load on the network is reduced, leading
to a quicker completion time.



262 R. Black et al.

Table 1. Time to completion showing several changes to the three algorithms

% loss Impractical Successive Linear Block Adjust
None Repeat Closer Both None Repeat Closer Both None Repeat Closer Both

00 2228 2228 2166 2303 4746 4746 4701 4711 3054 3054 3020 2964
10 5334 4863 4775 4401 5880 5169 5500 4956 4269 3833 3773 3423
20 6573 5261 5738 4377 7952 5788 6849 5272 5596 4516 4740 3802
30 9002 6676 8026 5197 10336 6433 8365 5935 7719 5447 6050 4419

Fig. 5. Finish time showing both enhancements against the unenhanced case

The benefit of repeated acknowledgements is likely to be increased if a greater frac-
tion of the request packet is carrying repeated acknowledgements (i.e., each response is
acknowledged a greater number of times). This can be achieved by reducing TE (since
the number of new acknowledgements expected in each request is TE/I). In fact, low-
ering TE may also have a beneficial effect because even though more of the permitted
overall load of the protocol on the network is consumed by the requests, the nodes
which must retransmit responses discover this sooner; though they cannot do so until
the load permits, the overall effect is that the tail is shorter, and completion is quicker.
Merely reducing TE from 200 ms to 100 ms so that requests are sent closer together in
time has an effect shown in table 1 under the column “Closer”.

Finally, the combined beneficial effect of both changes can be seen in the column
header “Both”. This is also shown graphically in figure 5.



Fast Scalable Robust Node Enumeration 263

5 Conclusion

We have introduced new techniques for discovery of nodes which are reliable, scalable,
prompt, and robust to loss and jitter. Most importantly, our contribution is not suscepti-
ble to a malicious enumerator and cannot be provoked to overload a network. Of these
the Block Adjust algorithm is found to be more responsive under realistic conditions.

We also show that using more bandwidth for repeated acknowledgements is over-
all beneficial to the protocol by reducing unnecessary retransmissions, even though it
reduces the bandwidth available to Responses.

References

1. Norm Abramson. The Aloha System - Another Alternative for Computer Communications.
In Fall Joint Computer Conference, AFIPS Conference, 1970.

2. B. Cain and S. Deering and I. Kouvelas and B. Fenner and A. Thyagarajan. Internet Group
Management Protocol, Version 3. The Internet Society, October 2002. RFC 3376.

3. Yaron Goland, Ting Cai, Paul Leach, Ye Gu, and Shivaun Al-
bright. Simple Service Discovery Protocol/1.0. The UPnP Forum,
http://www.upnp.org/download/draft cai ssdp v1 03.txt, version
1.0, draft 3 edition, October 1999.

4. H. Schulzrinne and S. Casner and R. Frederick and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. The Internet Society, January 1996. RFC 1889, see particularly
section 6.2.

5. Mark Handley. Session Directories and Scalable Internet Multicast Address Allocation. In
SIGCOMM 1998, volume 28(4) of Computer Communications Review, pages 105–116, Oc-
tober 1998. See especially section 3.1.

6. Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Resource discovery in distributed net-
works. In Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing, pages 229–237. ACM Press, 1999.

7. Roger Kermode and David Thaler. Support for Reliable Sessions with a Large Number
of Members. In Networked Group Communication, November 1999. First International
COST264 Workshop.

8. Microsoft Corporation. Windows 2000 Server TCP/IP Core Networking Guide, Appendix I
- Windows 2000 Browser Service. Microsoft Press, May 2002. ISBN 0735617988, Also at
http://www.microsoft.com/resources/documentation/windows/2000/
server/reskit/en-us/tcpip/part4/tcpappi.mspx.

9. Puneet Sharma and Deborah Estrin and Sally Floyd and Van Jacobson. Scalable Timers for
Soft State Protocols. In Proceedings of the INFOCOM sixteenth annual joint conference of
the IEEE Computer and Communications Societies, page 222. IEEE Computer Society, 1997.

http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt
http://approjects.co.za/?big=resources/ documentation/windows/2000/
server/reskit/en-us/tcpip/part4/tcpappi.mspx

	Introduction
	Related Work
	Enumeration Algorithms
	Requirements
	Notation
	A Best-Case Bound Using Perfect Knowledge
	Successive Linear
	Block Adjust

	Results and Evaluation
	Completion Time
	Improvements

	Conclusion

