
Bazaar: Enabling Predictable Performance in Datacenters

Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, Antony Rowstron
MSR Cambridge, UK

Technical Report
MSR-TR-2012-38

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1. INTRODUCTION
The resource elasticity offered by cloud providers is of-

ten touted as a key driver for cloud adoption. Providers
expose a minimal interface– users or tenants simply ask
for the compute instances they require and are charged
on a pay-as-you-go basis. Such resource elasticity en-
ables elastic application performance; tenants can de-
mand more or less compute instances to match perfor-
mance needs.

While simple and elegant, there is a disconnect be-
tween this low-level interface exposed by providers and
what tenants actually require. Tenants are primarily in-
terested in predictable performance and costs for their
applications [1,2]; for instance, satisfying constraints re-
garding their application completion time [3,4,5]. With
today’s setup, tenants bear the burden of translating
these high-level goals into the corresponding resource
requirements. Given the multiplicity of resources in a
datacenter (compute instances, network, storage), such
a mapping requires determining how application perfor-
mance scales with individual resources, which is often
non-trivial.

The difficulty of mapping tenant goals is further exac-
erbated by shared datacenter resources. While tenants
get dedicated compute instances with today’s cloud of-
ferings, other resources like the internal network and
the cloud storage are shared and their performance can
vary significantly [6,7,8]. This leads to unpredictable
performance for a wide-variety of applications, includ-
ing user-facing online services [9,7], data analytics [7,10]
and HPC applications [11]. Therefore, the task of de-
termining the resources needed to achieve tenant goals
with today’s setup is intractable.

Apart from hurting cloud usability, the disconnect be-
tween tenants and providers impedes cloud efficiency
too. A lot of applications running in cloud datacen-
ters are malleable in their resource requirements with
multiple resource combinations yielding the same per-
formance. For instance, a completion time goal for a
MapReduce job may be achieved through a few virtual
machines (VMs) with a lot of network bandwidth be-
tween them, a lot of VMs with a little network band-
width, or somewhere in between these extremes. Ten-
ants making resource choices in isolation so as to satisfy
their goals can result in sub-optimal choices that reduce
system throughput.

Overall, the skewed division of functionality between
tenants and providers imposed by today’s setup hurts
both entities; tenants cannot achieve predictable per-
formance while providers lose revenue due to inefficient
operation.

The problem of unpredictable performance has prompted
efforts to provide guaranteed performance atop shared
datacenter resources like the internal network [2,12,13]
and cloud storage [14,15]. These proposals allow ten-

ants to explicitly request for resources beyond com-
pute instances, thus enabling true multi-resource elas-
ticity. While necessary, these techniques are not suffi-
cient. Even with guaranteed resources, automatically
inferring how the performance of an arbitrary applica-
tion scales with various resources is hard. Expecting a
programmer to explicitly understand and describe how
the program scales with each resource is also impracti-
cal.

In this paper, we take a first stab at enabling pre-
dictable application performance in cloud datacenters.
Our examination of typical cloud applications from three
different domains (data analytics, web-facing, MPI) shows
that they exhibit both resource malleability and perfor-
mance predictability, two key conditions that our tar-
get applications must satisfy. For such applications, we
devise mechanisms to choose the resource combination
that can achieve tenant performance goals and is most
suitable for the provider. Thus, the impetus of this pa-
per is on ensuring predictable performance while capi-
talizing on resource malleability.

We illustrate these mechanisms in the context of data
analytics by focusing on MapReduce as an example
cloud application. We designed Bazaar, a system that
takes tenant constraints regarding the completion time
(or cost) for their MapReduce job and determines the
resource combination most amenable to the provider
that satisfies the constraints. Our choice of MapReduce
was motivated by the fact that data analytics represent
a significant workload for cloud infrastructures [16,17],
with some multi-tenant datacenters having entire clus-
ters dedicated to running them [18,19,20]. Further, the
malleability and predictability conditions described above
hold very well for MapReduce.

Though our core ideas apply to general multi-resource
settings, we begin by focusing on two specific resources,
compute instances (N) and the network bandwidth (B)
between them. Bazaar uses a performance prediction
component to determine the resource tuples < N,B >
that can achieve the desired completion time. As mul-
tiple resource tuples may achieve the same completion
time, they are ranked in terms of the provider’s cost
to accommodate the tuple. Bazaar selects the resource
tuple with the least provider cost, thus improving pro-
vider efficiency. Overall, this paper makes the following
contributions:

• We measure the malleability of representative cloud
applications, and show that different combinations of
compute and network resources can achieve the same
application performance.

• We present a gray-box approach to predict how the
performance of a MapReduce job scales in terms of
multiple resources. The prediction is fast, low over-
head and has good accuracy (<12% average error).

1

• We devise a metric for the cost of multi-resource re-
quests from the provider’s perspective. This allows
one resource tuple to be compared against another.

• We present the design and implementation of Bazaar,
and use it to illustrate how tenants can achieve their
performance goals in a multi-resource setting.

Using extensive large-scale simulations and deploy-
ment on a small testbed, we show that smart resource
selection to satisfy tenant goals can yield significant
gains for the provider. The provider can accept 3-14%
more requests. Further, bigger (resource intensive) re-
quests can be accepted which improves the datacenter
goodput by 7-87%.

Since there are no well established pricing models for
multi-resource requests like the ones considered here,
this paper intentionally focuses on completion time goals
and datacenter goodput. Towards the end of the paper,
we briefly discuss a novel pricing model that, when cou-
pled with Bazaar, can allow tenants to achieve their cost
goals too. We also discuss how exploiting malleability
of more than two resources can be accomodated with
Bazaar, and, as an example, provide a case-study ex-
ploiting malleability along the time domain. Our find-
ings show that exploiting time malleability can further
reduce median job completion time by more than 50%.
Overall, we argue that the higher-level tenant-provider
interface enabled by Bazaar benefits both entities. Ten-
ants achieve their goals, while the resource selection
flexibility improves datacenter goodput and hence, pro-
vider revenue.

On a broader note, the resource elasticity enabled by
cloud computing can allow tenants to trade-off higher
costs for better performance. Bazaar makes this trade-
off explicit for MapReduce-like applications. We believe
that if such elasticity of performance and costs were to
be extended to a broader set of applications, it would
remove a major hurdle to cloud adoption.

2. BACKGROUND AND MOTIVATION
Cloud providers today allow tenants to ask for vir-

tual machines or VMs on demand. The VMs can vary
in size– small, medium or large VMs are typically of-
fered reflecting the available processing power, memory
and local storage. For ease of exposition, the discussion
here assumes a single VM class. A tenant request can
be characterized by N , the number of VMs requested.
Tenants pay a fixed amount per hour per VM; thus,
renting N VMs for T hours costs $kv ∗NT , where kv is
the hourly VM price. For Amazon EC2, kv = $0.08 for
small VMs.

Data analytics in the cloud. Analysis of big data
sets underlies many web businesses [21,16,17] migrat-
ing to the cloud. Data-parallel frameworks like MapRe-
duce [22], Dryad [23], or Scope [19] cater to such data

analytics, and form a key component of cloud work-
loads. Despite a few differences, these frameworks are
broadly similar and operate as follows: Each job typi-
cally consists of three phases, (i). reading input data and
applying a grouping function, (ii). shuffling intermediate
data among the compute nodes across the network, (iii).
applying an aggregation function to generate the final
output. For example, in the case of MapReduce, these
phases are known as map, shuffle, and reduce phases.
Computation may involve a series of such jobs.

Predictable performance. The parallelism provided
by data parallel frameworks is an ideal match for the
resource elasticity offered by cloud computing since the
completion time of a job can be tuned by varying the re-
sources devoted to it. Tenants often have high-level per-
formance or cost requirements for their data-analytics.
Such requirements may dictate, for example, that a job
needs to finish in a timely fashion. However, with to-
day’s setup, tenants are responsible for mapping such
high-level completion time goals down to specific re-
sources needed for their jobs [3,4]. This has led to a
slew of proposals for optimization, mostly focusing on
MapReduce– determining good configuration parame-
ters [4], storage and compute resources [3], and better
scheduling [24]. Recent efforts like Elasticiser [5] address
the problem at a higher-level and strive to determine the
number and type of VMs needed to ensure a MapRe-
duce job achieves the desired completion time.

Yet, the performance of most data analytic jobs de-
pends on factors well-beyond the number of VMs de-
voted to them. For instance, apart from the actual pro-
cessing of data, a job running in the cloud also in-
volves reading input data off the cloud storage service
and shuffling data between VMs over the internal net-
work. Since the storage service and the internal network
are shared resources, their performance can vary signif-
icantly [6,7,8]. This, in turn, impacts application per-
formance, irrespective of the number of assigned VMs.
For instance, Schad et al. [7] found that the completion
time of the same job executing on the same number
of VMs on Amazon EC2 can vary considerably, with
the underlying network contributing significantly to the
variation. Thus, without accounting for resources beyond
simply the compute units, the goal of determining the
number of VMs needed to achieve a desired completion
time is practically infeasible. We show evidence of this
in § 4.2.2.

At the same time, ignoring the tenant’s requirements
hurts providers as well. For instance, it results in poor
VM placement and high contention across the internal
datacenter network. This leads to poor performing jobs
that prevent the provider from accepting subsequent
tenant requests. Such outliers have been shown to drag
down the system throughput and, hence, the provider
revenue by as much as 60% [2].

2

Multi-resource elasticity. Performance issues with
shared resources, such as the ones described above, have
prompted a slew of proposals that offer guaranteed per-
formance atop such resources [2,12,13,14,15]. With these,
tenants can request resources beyond just VMs; for in-
stance, [2,12,13] allow tenants to specify the network
bandwidth between their VMs. We note that provid-
ing tenants with a guaranteed amount of individual re-
sources makes the problem of achieving high-level per-
formance goals tractable.

This paper exploits such multi-resource elasticity and
builds upon efforts that provide guaranteed resources.
We consider a two resource tenant-provider interface
whereby tenants can ask for VMs and internal network
bandwidth. As proposed in [2,12], a tenant request is
characterized by a two tuple <N,B> which gives the
tenant N VMs, each with an aggregate network band-
width of B Mbps to other VMs of the same tenant.
However, before discussing how such resource elasticity
can be exploited, we first quantify its impact on typical
cloud applications.

2.1 Malleability of data-analytics applications
We first focus on data analytic frameworks, and use

MapReduce as a running example. Our goal is to study
how its performance is affected when varying different
resources.

Hadoop Job Input Data Set

Sort 200GB using Hadoop’s RandomWriter
WordCount 68GB of Wikipedia articles
Gridmix 200GB using Hadoop’s RandomTextWriter
TF-IDF 68GB of Wikipedia articles

LinkGraph 10GB of Wikipedia articles

Table 1: MapReduce jobs and the size of their
input data

We experimented with the small yet representative
set of MapReduce jobs listed in Table 1. These jobs
capture the use of data analytics in different domains
and the varying complexity of such workloads (through
multi-stage jobs). Sort and WordCount are popular for
MapReduce performance benchmarking, not to mention
their use in business data processing and text anal-
ysis respectively [25]. Gridmix is a synthetic bench-
mark modeling production workloads, Term Frequency-
Inverse Document Frequency or TF-IDF is used in infor-
mation retrieval, and LinkGraph is used to create large
hyperlink graphs. Of these, Gridmix, LinkGraph, and
TF-IDF are multi-stage jobs.

We used Hadoop MapReduce on Emulab to execute
the jobs while varying the number of nodes devoted to
them (N). We also used rate-limiting on the nodes to
control the network bandwidth between them (B). For
each <N,B> tuple, we executed a job fives times to
measure the completion time for the job and its indi-
vidual phases. While the experiment setup is further

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Network Bandwidth (Mbps)

N=10
N=20

(a) LinkGraph

 0

 2000

 4000

 6000

 8000

 50 100 150 200 250 300

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Network Bandwidth (Mbps)

N=10
N=20

(b) Sort

Figure 1: Completion time for jobs with varying
network bandwidth. Error bars represent Min–
Max values.

detailed in §4.1, here we just focus on the performance
trends.

Figure 1(a) shows the completion time for LinkGraph
on a cluster with 10 and 20 nodes and varying net-
work bandwidth. As the bandwidth between the nodes
increases, the time to shuffle the intermediate data be-
tween map and reduce tasks shrinks, and thus, the com-
pletion time reduces. However, the total completion time
stagnates beyond 250 Mbps. This is because the local
disk on each node provides an aggregate bandwidth of
250 Mbps. Hence, increasing the network bandwidth be-
yond this value does not help since the job completion
time is dictated by the disk performance. This is an ar-
tifact of the disks on the testbed nodes. If the disks were
to offer higher bandwidth, increasing the network band-
width beyond this value would still shrink the comple-
tion time. This was also confirmed by the experiments
that we ran on our testbed (see Section 4.3) where we
used in-memory data shuffle to avoid incurring the disk
bottleneck.

The same trend holds for the other jobs we tested. For
instance, Figure 1(b) shows that the completion time
for Sort reduces as the number of nodes and the net-
work bandwidth between the nodes is increased. Note
however that the precise impact of either resource is job-
specific. For instance, we found that the relative drop
in completion time with increasing network bandwidth
is greater for Sort than for WordCount. This is because
Sort is I/O intensive with a lot of data shuffled which
means that its performance is heavily influenced by the
network bandwidth between the nodes.

Apart from varying network bandwidth, we also exe-
cuted the jobs with varying number of nodes. While the
results are detailed in Section 4.1 (Figures 6(a) and 7(a)),
we find that the completion time for a job is inversely
proportional to the number of nodes devoted to it. This
is a direct consequence of the data-parallel nature of
MapReduce.

2.2 Malleability of other cloud applications
The findings in the previous section extend to other

3

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 100 1000

T
h
ro

u
g
h
p
u
t

(r
eq

s/
se

c)

Network Bandwidth (Mbps)

N=4
N=2
N=1

(a) Web application

 0

 2000

 4000

 6000

 8000

 10000

 10 100 1000

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Network Bandwidth (Mbps)

N=8
N=12
N=16

(b) MPI application

Figure 2: Performance for cloud applications
varies with both N and B.

cloud applications as well. We briefly discuss two such
typical examples here.

Three-tier, web application. We used a simple, un-
optimized ASP.net web application with a SQL back-
end as a representative of web-facing workloads mi-
grating to the cloud. We varied the number of nodes
(N) running the middle application tier and the band-
width (B) between the application tier (middle nodes)
and the database-storage tier (backend nodes). We used
the Apache benchmarking tool (ab) to generate web re-
quests and determine the peak throughput for any given
resource combination. Figure 2(a) shows that the appli-
cation throughput improves in an expected fashion as
either resource is increased.

MPI application. We used an MPI application gen-
erating the Crout-LU decomposition of an input matrix
as an example for cloud HPC and scientific workloads.
Figure 2(b) shows the completion time for a 8000x8000
matrix with varying N and B. Given the processor-
intensive nature of the application, increasing the num-
ber of nodes improves performance significantly. As a
contrast, the impact of the network is limited. For in-
stance, improving the bandwidth from 10 to 100 Mbps
improves completion time by 15-25% only.

Overall, the experiments above lead to two obvious yet
key findings. First, the performance of typical cloud ap-
plications depends on resources beyond just the num-
ber of compute instances. Second, they confirm the re-
source malleability of such applications– an application
can achieve the same performance with different resource
combinations, thus allowing one resource to be traded-
off for the other. For instance, the throughput for the
web application above with two nodes and 250 Mbps
of network bandwidth is very similar to that with four
nodes and 125 Mbps of network. Table 2 further empha-
sizes this for data analytic applications by showing ex-
amples where a number of different compute-node and
bandwidth combinations achieve almost the same com-
pletion time for the LinkGraph and WordCount jobs.
Our evalaution later shows that this flexibility is impor-
tant in the context of enabling predictable performance

for tenants; it allows for improved cloud efficiency and
hence, greater provider revenue.

Hadoop Job – <Nodes, Bandwidth (Mbps)>
Completion Time (sec) alternatives

LinkGraph – <34, 75>, <20, 100>
300 (±5%) <10, 150>, <8, 250>
LinkGraph – <30, 60>, <10, 75>
400 (± 5%) <8, 150>, <6, 200>
WordCount – <30, 45>, <20, 50>
900 (± 3%) <10, 100>, <8, 300>
WordCount – <32, 50>, <20, 75>
630 (± 3%) <14, 100>, <12, 300>

Table 2: Examples of WordCount and LinkGraph
jobs achieving similar completion times with dif-
ferent resource combinations.

2.3 Scope and assumptions
In this paper, we aim to capitalize on resource mal-

leability while satisfying tenant high-level performance
goals. To this end, we identify two conditions that our
target applications must satisfy:

(1). Resource malleability. The application performance
should vary with two or more resources. Further, it
should be possible to trade-off one resource for the other
without impacting performance.

(2). Performance predictability. It should be feasible
to predict the performance of the application when run-
ning on a given set of resources.

The results in this section suggest that the first con-
dition holds for a fair fraction of cloud applications. To
help ground our arguments, we hereon focus on MapRe-
duce as an example cloud application. Based on this, we
design Bazaar, a sytem that enables predictable perfor-
mance for data analytic workloads in multi-tenants dat-
acenters offering guaranteed VM and network resources.
We note that MapReduce is a very suitable candidate
for this exercise since– (i). it is popular as a data an-
alytic framework and has significant presence in cloud
workloads [16,17] and (ii). it satisfies both our condi-
tions very well. Its performance scales with the two re-
sources we consider (condition 1) and as we show later,
the well-defined architecture of MapReduce lends itself
well for automatic analysis and low-overhead profiling
(condition 2). However, as discussed in Section 5, the
core ideas in this paper can be extended both to appli-
cations beyond MapReduce and beyond two resources.
This is especially true as performance prediction for
other cloud applications (eg., web [26] and ERP appli-
cations [27]) could be used instead of our MapReduce
profiling tool without affecting Bazaar’s overall opera-
tion.

3. Bazaar DESIGN
Figure 3 shows Bazaar’s design model. Tenants submit

the characteristics of their job, and high-level require-
ments such as the job completion time and/or desired

4

Tenant
Job details

Completion
time goal

Performance
Prediction

Resource
Selection

Cloud

Candidate
Resource Tuples

<N1, B1>,
<N2, B2>,

….

Bazaar

Datacenter

State

Chosen Resource
Tuple <N, B> and
(estimated) cost

Figure 3: Bazaar design model.

cost to Bazaar. In the context of MapReduce, the job
characteristics include the MapReduce program, input
data size and a representative sample of the input data.
Bazaar translates tenant requirements to multiple re-
source tuples <N,B>, each comprising the number of
VMs and the network bandwidth between the VMs. Us-
ing the current state of the datacenter, Bazaar selects
the resource tuple that is most amenable for the pro-
vider and the job cost. Note that this description as-
sumes that Bazaar operates as a provider-side tool; yet,
this is not necessary. Bazaar can also be implemented
as a third-party service with appropriate interfaces to
the cloud provider to obtain the required information.

As shown in the figure, Bazaar translates tenant goals
into resource tuples using two components–

(1). A performance prediction component that uses
job details to predict the set of resource tuples that can
achieve the desired completion time.

(2). A resource selection component that selects which
resource tuple should be allocated. This choice is made
so as to minimize the impact of the request on the pro-
vider’s ability to accommodate future tenant requests.

The following subsections describe these two compo-
nents in detail.

3.1 Performance prediction
Translating tenant goals requires Bazaar to predict

the completion time of a MapReduce job executing on
a specific set of resources. Performance prediction has
been extensively studied in a variety of domains such as
operating systems [28], user software [29], databases [30].
In the context of MapReduce, efforts like Mumak [31]
and MRPerf [32] have built detailed MapReduce simu-
lators that can be used for prediction. However, this re-
sults in significant complexity and non-trivial prediction
times. To allow for an exploration of different resource
combinations, Bazaar requires fast yet reasonably accu-
rate prediction. Inspired by profiling-based approaches
for fast database query optimization [30], we capitalize
on the well-defined nature of the MapReduce framework
to achieve faster and simpler prediction for MapReduce
jobs.

We design a prediction tool called MRCute or MapRe-
duce Completion Time Estimator. MRCute takes a gray-
box approach to performance prediction by complement-
ing an analytical model with job profiling. We first de-

Map

Wave 1

map

map

.

.

.

Map

Wave N

map

map

.

.

.

...

Reduce

Wave

Execution Time

reduce

reduce

.

.

.

Tmap Treduce
Tshuffle

(a) Job execution timeline.

Map Phase

B
D

map

B
P

map

𝑩𝒎𝒂𝒑 = 𝐦𝐢𝐧 𝑩𝑫, 𝑩𝒎𝒂𝒑
𝑷

BD
Disc

(b) Map phase.

Figure 4: Timeline of a MapReduce job and
overview of the map phase.

velop a high-level model of the operation of MapReduce
jobs and construct an analytical expression for a job’s
completion time (white-box analysis). The resulting ex-
pression consists of job-specific and infrastructure-specific
parameters. We determine these parameters by profiling
the tenant job with a sample dataset on the provider’s
infrastructure (black-box analysis).

Given the program P for a MapReduce job, size of
the input data |I|, a sample of the input data Is, and
a resource tuple <N,B>, MRCute estimates the job
completion time:

MRCute(P, |I|, Is, N,B)→ Testimate. (1)

3.1.1 Job modeling and profiling
As shown in Figure 4(a), the execution of MapReduce

jobs comprises three phases, each comprising multiple
tasks. All tasks in a phase may not run simultaneously.
Instead, the tasks execute in waves. For instance, the
map phase in Figure 4(a) has N waves.

Typically, the three phases in a job execute sequen-
tially. Hence, the completion time for a job is the sum of
the time to complete individual phases, i.e., Testimate =
Tmap+Tshuffle+Treduce. The completion time for each
phase depends on the number of waves in the phase, the
amount of data consumed or generated by each task in
the phase and the phase bandwidth. The phase band-
width is the rate at which a given phase processes data.
For instance, the completion time for the map phase
is given by Tmap = Wmap ∗ Imap

Bmap
, where Wmap is the

number of waves in the phase, Imap is the data con-
sumed by each map task and Bmap is the map phase
bandwidth. Of these, it is particularly challenging to
determine the phase bandwidth. Since each phase uses
multiple resources (CPU, disk, network), the slowest or
the bottleneck resource governs the phase bandwidth.
To determine the bandwidth for individual phases, and
hence, the completion time of a MapReduce job, we de-
velop an anlytical model by applying bottleneck analy-
sis [33] to the MapReduce framework.

For example, during the map phase (Figure 4(b)),
each map task reads its input off the local disk, applies
the map function and writes the intermediate data to
local disk. Thus, a map task involves the disk and CPU,

5

and the map phase bandwidth is governed by the slow-
est of the two resources. Hence,Bmap = Min{BD, BPmap},
where BD is the disk I/O bandwidth and BPmap is the
rate at which data can be processed by the map func-
tion of the program P (assuming no other bottlenecks).
To simplify exposition, the complete description of the
analytical model is provided in the Appendix.

Besides the input parameters specified in eq. 1, our
analytical model for a job’s completion time involves
two other types of parameters: i). Parameters specific
to the MapReduce configuration, such as the map slots
per VM, which are known to the provider. ii). Param-
eters that depend on the infrastructure and the actual
tenant job. These include the data selectivity of map
and reduce tasks (Smap and Sreduce), the map and re-
duce phase bandwidths (Bmap and Breduce), and the
physical disk bandwidth (BD).

To determine the latter set of parameters, we profile
the MapReduce program P by executing it on a sin-
gle machine using a sample of the input data Is. The
profiler determines the execution time for each task and
each phase, the amount of data consumed and generated
by each task, etc. All this information is gathered from
the log files generated during execution, and is used to
determine the data selectivity and bandwidth for each
phase. Concretely,

Profiler(P, Is)→ {Smap, Sreduce, Bmap, Breduce, BD}.

For instance, the ratio of the data consumed by in-
dividual map tasks to the map task completion time
yields the bandwidth for the job’s map phase (Bmap).
The reduce phase bandwidth is determined similarly.
Since the profiling involves only a single VM with no
network transfers, the observed bandwidth for the shuf-
fle phase is not useful for the model. Instead, we mea-
sure the disk I/O bandwidth (BD) under MapReduce-
like access patterns, and use it to determine the shuffle
phase bandwidth.

The job profiler assumes that the phase bandwidth
observed during profiling is representative of actual job
operation. Satisfying this assumption poses two chal-
lenges:

1). Infrastructure heterogeneity. Ideally, the ma-
chine used for profiling should offer the same perfor-
mance as any other machine in the datacenter. While
physical machines in a datacenter often have the same
hardware configuration, their performance can vary, es-
pecially disk performance [34]. Indeed, we observed vari-
able disk performance even during our small-scale ex-
periments which significantly degrades prediction per-
formance; to counter this, MRCute maintains statistics
regarding the disk bandwidth of individual machines
(see §4.1).

2). Representative sample data. The sample data
used for profiling should be representative and of suf-

ficient size. If too small, external factors such as the
OS page cache can influence the measurements and the
observed bandwidth will be different from that seen by
the actual job. We use MapReduce configuration pa-
rameters regarding the memory dedicated to each task
to determine the minimum size of the sample data (see
§4.1.1).

3.1.2 Candidate resource tuples
Bazaar uses MRCute to determine the resource tuples

that can achieve the completion time desired by the
tenant. This involves two steps. First, the tenant job
is profiled to determine infrastructure-specific and job-
specific parameters. These parameters are then plugged
into the analytical expression to estimate the job’s com-
pletion time when executed on a given resource tuple
<N,B>. The latter operation is low overhead and is
repeated to explore the entire space for the two re-
sources. In practice, we envision the provider will offer
a few classes (in the order of 10-20) of internal network
bandwidth which reduces the search space significantly.
For each possible bandwidth class, Bazaar determines
the number of compute instances needed to satisfy the
tenant goal. These < N,B > combinations are the can-
didate resource tuples for the tenant request.

3.2 Resource selection
Since all the candidate tuples for a specific job achieve

similar completion times, the provider has the flexibil-
ity regarding which resource tuple to allocate. Bazaar
takes advantage of this flexibility by selecting the re-
source tuple most amenable to the provider’s ability to
accommodate subsequent tenants. This comprises the
two following sub-problems.

The feasibility problem involves determining the
set of candidate resource tuples that can actually be
allocated in the datacenter, given its current utiliza-
tion. For our two dimensional resource tuples, this re-
quires ensuring that there are both enough unoccupied
VM slots on physical machines and enough bandwidth
on the network links connecting these machines. Okto-
pus [2] presents a greedy allocation algorithm for such
tuples which ensures that if a feasible allocation exists,
it is found. We use this algorithm to determine feasible
resource tuples.

The resource selection problem requires selecting
the feasible resource tuple that maximizes the provider’s
ability to accept future requests. However, in our set-
ting, the resources required for a given tuple depend not
just on the tuple itself, but also on the specific alloca-
tion. For instance, consider a tuple <4, 200> requiring
4 VMs each with 200 Mbps of network bandwidth to
other VMs. If all these VMs are allocated on a single
physical machine, no bandwidth is required on the net-
work link for the machine. On the other hand, if two of

6

the VMs are allocated on one machine and two on an-
other machine, the bandwidth required on their network
links is 400 Mbps (2*200 Mbps).

To address this, we use the allocation algorithm to
convert each feasible resource tuple to a utilization vec-
tor capturing the utilization of physical resources in the
datacenter after the tuple has been allocated. Specifi-
cally,

Allocation(< N,B >)→ U =< u1, . . . , ud >,

where U is a vector with the utilization of all datacenter
resources, i.e., all physical machines and links. Hence,
the vector cardinality d is the total number of machines
and links in the datacenter. For a machine k, uk is the
fraction of the VM slots on the machine that are occu-
pied while for a link k, uk is the fraction of the link’s
capacity that has been reserved for the VMs that have
been allocated.

Overall, given the set of utilization vectors correspond-
ing to the feasible tuples, we are interested in minimiz-
ing the number of rejected requests in the future. This
problem has been studied in various contexts, such as
online ad allocation [35], online routing and admission
control in virtual circuit networks [36], etc. Depending
on the context, one can show that different cost func-
tions (that measure the cost for accepting a request
or allocation) yield optimal scheduling for different re-
source allocation models [37]. We experimented with
a number of such cost functions and found that asso-
ciating a feasible tuple with a cost function reflecting
the resource imbalance it causes performs significantly
better in terms of minimizing rejected requests. In our
setting, resource imbalance translates to choosing the
utilization vector that balances the capacity left on re-
sources after the request has been allocated. Precisely,
our heuristic aims to optimize the following across all
resources

minimize
d∑
j=1

(1− uj)2.

Hence, the resource imbalance is defined as the square
of the fractional under-utilization for each resource. The
lower this value, the better the residual capacity across
resources is balanced. In literature, this is referred to as
the Norm-based Greedy heuristic [38]. An extra com-
plication in our setting is that the hierarchical nature
of typical datacenters implies that there is a hierarchi-
cal set of resources corresponding to datacenter hosts,
racks and pods. Below we describe in detail how this
heuristic is extended to our scenario.

3.2.1 Resource imbalance heuristic
The resource imbalance heuristic applies trivially to a

single machine scenario. Consider a single machine with
a network link. Say the machine has Nmax VM slots of

600

600

1000 Mbps

600500

500

1000

1000 Mbps

State 1

Allocation involves two physical machines
Resource Imbalance = Imbalance on machine1 +
link1 + machine2 + link2
= (0)2 slots + (500/1000)2 Mbps + (½)2 slots +
(500/1000)2 Mbps

Total resource imbalance = ¼ + ½ = ¾

VMs
allocated
to tenant

Empty VM
slots

Top of Rack
(ToR) Switch

Top of Rack
(ToR) Switch

(a). Request <3 VMs, 500 Mbps> (b). Request <6 VMs, 200 Mbps>

State 2
Allocation involves three machines
Imbalance on machine1 + link1 +
machine2 + link2 + machine3 + link3
 = 3 * {(0)2 slots + (600/1000)2 Mbps}

Total resource imbalance
 = 3 * (600/1000)2 = 1.08

Figure 5: Selecting amongst two feasible re-
source tuples. Each physical machine has 2 VM
slots and an outbound link of capacity 1000
Mbps. Each link is annotated with its residual
bandwidth.

which N left are unallocated. Further, the outbound link
of the machine has a capacity Bmax of which Bleft is
unallocated. The utilization vector for this machine is

< u1, u2 >=< 1− N left

Nmax
, 1− Bleft

Bmax
> .

Thus, the resource imbalance for the machine is

2∑
j=1

(1− uj)2 =
{
N left

Nmax

}2

+
{
Bleft

Bmax

}2

.

Since physical machines in a datacenter are arranged
in racks which, in turn, are arranged in pods, there is a
hierarchy of resources in the datacenter. To capture the
resource imbalance at each level of the datacenter, we
extend the set of datacenter resources to include racks
and pods. Hence, the datacenter utilization is given by
the vector < u1, . . . , um >, where m is the sum of phys-
ical machines, racks, pods and links in the datacenter.
For a rack k, uk is the fraction of VM slots in the rack
that are occupied and the same for pods. Hence, for
a resource tuple being considered, the overall resource
imbalance is the sum of the imbalance at individual re-
sources, represented by set C, whose utilization changes
because of the tuple being accepted, i.e.,

∑
j∈C(1−uj)2.

A lower resource imbalance indicates a better posi-
tioned provider. Hence, Bazaar chooses the utilization
vector and the corresponding resource tuple that mini-
mizes this imbalance. Since the allocation algorithm is
fast (median allocation time is less than 1ms), we sim-
ply try to allocate all feasible tuples to determine the
resulting utilization vector and the imbalance it causes.

3.2.2 Resource selection example
We now use a simple example to illustrate how Bazaar’s

imbalance-based resource selection works. Consider a
rack of physical machines in a datacenter with 2 VM

7

slots and a Gigabit link per machine. Also, imagine a
tenant request with two feasible tuples <N,B> (B in
Mbps): <3, 500> and <6, 200>. Figure 5 shows allo-
cations for these two resource tuples. Network links in
the figure are annotated with the (unreserved) residual
bandwidth on the link after the allocation. The figure
also shows the imbalance values for the resulting data-
center states. The former tuple has a lower imbalance
and is chosen by Bazaar.

To understand this choice, we focus on the resources
left in the datacenter after the allocations. After the
allocation of the <3, 500> tuple, the provider is left
with five empty VM slots, each with an average net-
work bandwidth of 500 Mbps (state-1). As a contrast,
the allocation of <6, 200> results in two empty VM
slots, again with an average network bandwidth of 500
Mbps (state-2). We note that any subsequent tenant
request that can be accommodated by the provider in
state-2 can also be accommodated in state-1. However,
the reverse is not true. For instance, a future tenant re-
quiring the tuple <3, 400> can be allocated in state-1
but not state-2. Hence, the first tuple is more desirable
for the provider and is the one chosen by the resource
imbalance metric.

4. EVALUATION
In this section, we evaluate Bazaar focusing on its two
main components, namely MRCute, and resource selec-
tion. Our evaluation combines MapReduce experiments,
simulations and a testbed deployment. Specifically:

(1). We quantify the accuracy of MRCute. Results
indicate that MRCute accurately determines the re-
sources required to achieve tenant goals with low over-
head and an average prediction error of less than 12%
(§4.1).

(2). We use large scale simulations to evaluate the
benefits of Bazaar. Capitalizing on resource malleability
significantly improves datacenter goodput (§4.2).

(3). We deploy and benchmark our prototype on a
small scale 26-node cluster. We further use this deploy-
ment to cross-validate our simulation results (§4.3).

4.1 Performance prediction
We use MRCute to predict the job completion of the

five MapReduce jobs described in §2.1 (Table 1). For
each job, MRCute predicts the completion time for vary-
ing number of nodes (N) and the network bandwidth
between them (B). As detailed in §3.1, the prediction
involves profiling the job with sample data on a single
node, and using the resulting job parameters to drive
the analytical model.

To determine actual completion times, we executed
each job on a 35-node Emulab cluster with Cloudera’s
distribution of Hadoop MapReduce. Each node has a
quad-core Intel Xeon 2.4GHz processor, 12 GB RAM

 0

 4000

 8000

 12000

 16000

 20000

 24000

 4 8 12 16 20 24 28 32

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Number of nodes

50Mbps (obs)
50Mbps (pred)
300Mbps (obs)

300Mbps (pred)

(a) Varying Nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 50 100 150 200 250 300

C
o
m

p
le

ti
o
n

 T
im

e
 (

se
c)

Network Bandwidth (Mbps)

N=10 (obs)
N=10 (pred)
N=20 (obs)

N=20 (pred)

(b) Varying Bandwidth

Figure 6: Predicted completion time for Sort, an
I/O intensive job, matches the observed time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 8 12 16 20 24 28 32

C
o
m

p
le

ti
o
n
 T

im
e
 (

se
c)

Number of nodes

50Mbps (obs)
50Mbps (pred)
300Mbps (obs)

300Mbps (pred)

(a) Varying Nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300

C
o
m

p
le

ti
o
n

 T
im

e
 (

se
c)

Network Bandwidth (Mbps)

N=10 (obs)
N=10 (pred)
N=20 (obs)

N=20 (pred)

(b) Varying Bandwidth

Figure 7: Predicted completion time for Word-
Count, a processing intensive job, matches the
observed time.

and a 1Gbps network interface. The unoptimized jobs
were run with default Hadoop configuration parameters.
The number of mappers and reducers per node is 8 and
2 respectively, HDFS block size is 128 MB, and the to-
tal number of reducers is twice the number of nodes
used. While parameter tuning can improve job perfor-
mance significantly [5], our focus here is not improving
individual jobs, but rather predicting the performance
for a given configuration. Hence, the results presented
here apply as long as the same parameters are used for
job profiling and for the actual execution. In the next
paragraphs, we examine in detail the prediction results
of the various jobs, and the factors introducing errors
in our model.

We first focus on the results for Sort and WordCount,
two jobs at extreme ends of the spectrum. Sort is an
I/O intensive job while WordCount is processor inten-
sive. Figures 6 and 7 plot the observed and predicted
completion time for five runs of these jobs when vary-
ing N and B. The figures show that the predicted and
observed completion times are close throughout, with
8.9% prediction error on average for Sort and 20.5% at
the 95th percentile.

To understand the root cause of the prediction er-
rors, we look at the per-phase completion time. Fig-
ure 8 presents this breakdown for Sort with varying
number of nodes. The bars labeled Obs and Pred rep-
resent the observed and predicted completion time re-
spectively. The figure shows that the predicted time for

8

Hadoop Job Stages Sample Data Size Profiling Time Prediction error (all runs) Prediction error (B=300Mbps)
Average 95%ile Average 95%ile

Sort 1 1GB 100.8s 8.9% 20.5% 4.56% 6.56%
WordCount 1 450MB 67.5s 8.4% 19.7% 4.19% 12.34%
Gridmix 3 16GB 546s 11.5% 17.8% 15.2% 20.05%
TF-IDF 3 3GB 335s 5.6% 9.7% 3.45% 4.75%

LinkGraph 4 3GB 554.8s 8.2% 12.3% 5.15% 9.8%

Table 3: Profiling information and the prediction error of MRCute for various Hadoop jobs

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

Obs Pr
ed

Hom Obs Pr
ed

Hom Obs Pr
ed

Hom Obs Pr
ed

Hom

Ti
m

e
 (

se
c)

Reduce
Shuffle

Map

N=32N=24N=16N=8

Figure 8: Per-phase breakdown of the observed
(Obs) and predicted (Pred) completion time for
Sort with bandwidth = 300 Mbps. Hom repre-
sents the predicted time assuming homogeneous
disk performance.

the map phase is very accurate; most of the prediction
error results from the shuffle and reduce phases.

The reason for this difference in the prediction accu-
racy is that the map phase typically consists of a num-
ber of waves. Consequently, any straggling map tasks
in the earlier waves get masked by the latter waves and
they do not influence the observed phase completion
time significantly. In contrast, the shuffle and reduce
phases execute in a single wave since the number of re-
duce tasks is the same as the number of reduce slots on
the nodes. As a result, any straggling reduce tasks re-
sulting from failures, uneven data distribution, or other
factors, inflate the phase and in turn, the job comple-
tion time. Since we opted for simplicity and fast predic-
tion times, our model does not account for stragglers
beyond those resulting from disk performance. Overall,
such straggler introduce errors in the predicted comple-
tion time.

Nevertheless, even though we do not model task fail-
ures, in some cases the predicted completion time can
still be accurate. For example, the discrepancy in the
shuffle and reduce phase times at 8 nodes in Figure 8
is due to failures. During the job execution, some re-
duce tasks failed and were restarted by Hadoop. The
restarted reduce tasks begin their network transfers later
than other reducers and this extends the actual shuf-
fle phase time. However, the reduce phase time shrinks
since the restarted reduce tasks have less disk contention.
Overall, the shuffle phase lasts longer, the reduce phase
is shorter and hence, despite the failed tasks, the com-
pletion time stays the same.

Benchmarking disk performance. While we can

get away with not modeling failures, variability in disk
performance cannot be ignored. To highlight the impor-
tance of benchmarking individual disks for their I/O
bandwidth, the bars in figure 8 labeled Hom (Homo-
geneous) show the predicted times when MRCute does
not account for disk performance heterogeneity, and in-
stead, uses a constant value for the disk I/O bandwidth
in the analytical model. Since the performance of the
disks on individual nodes varies, such an approach un-
derestimates the reduce phase time which leads to a
high prediction error. To account for this variability,
MRCute maintains statistics regarding the disk band-
width of individual machines in the datacenter. In prac-
tice, this can be obtained by profiling the machines pe-
riodically, for instance, when they are not allocated to
tenants.

Beyond Sort and WordCount, the predicted estimates
for the other two jobs show similar trends. For brevity,
we summarize the prediction errors in Table 3. Over-
all, we find a maximum average error of 11.5% and a
95th percentile of 20.5% across all runs (resp. 15.2% and
20.05% when B is 300Mbps). Apart from Gridmix, the
error is lower when the network bandwidth is 300Mbps
or higher. This is due to the poor I/O bandwidth of-
fered by the disk on the testbed nodes. At this range,
the network stops being the bottleneck and the comple-
tion time is dictated by the disk and CPU.

4.1.1 Prediction overhead
MRCute profiles a job on sample input data to de-

termine the job parameters. This imposes two kinds of
overhead.

(1). Sample data. We use information about the MapRe-
duce configuration parameters, such as when data is
spilled to the disk, to calculate the size of the sample
data needed for the job. This is shown in Table 3. Other
than Gridmix, the jobs require <3 GB of sample data,
a non-negligible yet small value compared to typical
datasets used in data intensive workloads [39]. Grid-
mix is a multi-stage job with high selectivity. Hence,
we need more sample data to ensure enough data for
the last stage when profiling as data gets aggregated
across stages. This overhead could be reduced by pro-
filing individual stages separately but requires detailed
knowledge about the input required by each stage.

(2). Profiling time. Table 3 also shows the time to
profile individual jobs. For Sort and WordCount, the

9

profiling takes around 100 seconds. For the multi-stage
jobs, profiling time is higher since more data needs to be
processed. However, a job needs to be profiled only once
to predict the completion time for all resource tuples,
and we expect typical jobs to last at least a few hour.

To summarize, these experiments indicate that MRCute
can indeed generate good completion time estimates for
MapReduce jobs. While the prediction accuracy could
be improved with more detailed modeling and profil-
ing, this would come at expense of higher estimation
time. Fast and low overhead prediction is important for
our setup. We expect SLAs for data analytic jobs to
allow for some variance (±10%). Alternatively, Bazaar
can account for such prediction errors by actually esti-
mating the resources required to complete a tenant job
in, say, 90% of the desired completion time. Hence, the
prediction error can be well accommodated.

4.2 Resource selection
Performance prediction allows Bazaar to determine

the candidate resource tuples that can satisfy a tenant’s
completion time goals. Here, we evaluate the potential
gains resulting from smart selection of the resource tu-
ple to use.

4.2.1 Simulation setup
Given the small size of our testbed, we developed a

simulator to evaluate Bazaar at scale. The simulator
coarsely models a multi-tenant datacenter. It uses a
three-level tree topology with no path diversity. Racks
of 40 machines with one 1 Gbps link each and a Top-
of-Rack switch are connected to an aggregation switch.
The aggregation switches, in turn, are connected to the
datacenter core switch. By varying the connectivity and
the bandwidth of the links between the switches, we
vary the oversubscription of the physical network. The
results in the following sections involve a datacenter
with 16,000 physical machines and 4 VMs per machine,
resulting in a total of 64,000 VMs. The network has an
oversubscription of 1:10 and we vary this later. Each
VM has a local disk. While high-end SSDs can offer
bandwidth in excess of 200 MB/s for even random ac-
cess patterns [40], we conservatively use a disk I/O band-
width of 125 MB/s = 1 Gbps such that it can saturate
the network interface.
MapReduce jobs. We use a simple model for MapRe-
duce jobs. The program P associated with a job is char-
acterized by four parameters– the rate at which data
can be processed by the map and reduce function when
there are no I/O bottlenecks (BPmap, B

P
reduce) and the

selectivity of these functions (Smap, Sreduce). Given the
input size, the selectivity parameters are used to de-
termine the size of the intermediate and output data
generated by the job. Note that an I/O intensive job

like Sort can process data fast and has high values for
BPmap and BPreduce, while a processor intensive job like
WordCount has low values. To capture the entire spec-
trum of MapReduce jobs, we choose these parameters
from an exponential distribution with a mean of 500
Mbps. We also experiment with other mean values.
Tenant Requests. Each tenant request consists of a
MapReduce job, input size and a completion time goal.
This information is fed to the analytical model to de-
termine the candidate resource tuples for the job. From
these candidate tuples, one tuple <N,B> is chosen
based on the selection strategies described below. The
corresponding resources, N VMs with B Mbps of net-
work bandwidth, are requested from the cloud provider
who allocates these VMs on the datacenter using the al-
location algorithm in [2]. If the provider cannot allocate
the request because of insufficient resources, the request
is rejected.

We simulate all three phases of MapReduce jobs. We
do not model the disk and CPU operations. Instead,
the duration of the map and the reduce phase is simply
calculated a priori by invoking the MRCute analytical
model with the program parameters described above
and the disk bandwidth. As part of the shuffle phase,
we simulate all-to-all traffic matrix with N2 network
flows between the N VMs allocated to the tenant. Given
the bandwidth between VMs, we use max-min fairness
to calculate the rate achieved by each flow. The shuffle
phase completes when all flows complete.
Resource selection strategies. We evaluate three
strategies to select a resource tuple.

(1). Baseline. This strategy does not take advantage of
a job’s resource malleability. Instead, one of the candi-
date tuples is designated as the baseline tuple<Nbase, Bbase>.
The job is executed using this baseline resource tuple.

(2). Bazaar-R (random selection). A tuple is randomly
selected from the list of candidates, and if it can be al-
located in the datacenter, it is chosen. Otherwise the
process is repeated. This strategy takes advantage of re-
source malleability to accommodate requests that oth-
erwise would have been rejected. However, it does not
account for the impact that the selection of a tuple bears
on the provider.

(3). Bazaar-I (imbalance-based selection). For each tu-
ple, we determine how it would be allocated and calcu-
late the resulting utilization vector and resource imbal-
ance. The tuple with the lowest resource imbalance is
chosen.
Workload. To model the operation of cloud datacen-
ters, we simulate tenant requests arriving over time. By
varying the tenant arrival rate, we vary the target VM
occupancy for the datacenter. Assuming Poisson tenant
arrivals with a mean arrival rate of λ, the targetted oc-
cupancy on a datacenter with M total VMs is λNT

M ,
where T is the mean completion time for the requests

10

 0

 5

 10

 15

 20

 25

 30

 10 25 50 75 100

R
ej

ec
te

d
 r

eq
u
es

ts
 (

%
)

Target Occupancy (%)

Baseline
Bazaar-R
Bazaar-I

(a) Mean BW = 500Mbps

 0

 5

 10

 15

 20

 25

 30

 100 300 500 700 900

R
ej

ec
te

d
 r

eq
u
es

ts
 (

%
)

Bandwidth (Mbps)

Baseline
Bazaar-R
Bazaar-I

(b) Target Occupancy = 75%

Figure 9: Percentage of rejected requests, vary-
ing mean bandwidth and target occupancy.

and N is the mean number of requested VMs in the
Baseline scenario.
Simulation breadth. The VM-level interface offered
by today’s cloud providers entails that most measure-
ment studies focus on the number of VMs (or in general,
machines) used by tenant jobs. Given the lack of infor-
mation on requirements of typical tenants, our evalua-
tion explores the entire space for most parameters; these
include the resources needed to achieve tenant goals,
target occupancy, and physical topology oversubscrip-
tion. This is not only useful for completeness, but fur-
ther provides evidence of Bazaar’s performance at the
extreme points.

4.2.2 Selection benefits
We simulate the arrival and execution of 15,000 ten-

ant requests. The desired completion time for each re-
quest is chosen such that the number of compute nodes
(Nbase) and network bandwidth (Bbase) required in the
Baseline scenario is exponentially distributed. The mean
value for Nbase is 50, which is consistent with the mean
number of VMs that tenants request in cloud datacen-
ters [41].

Workloads and metrics. Two primary variables are
used in the following experiments to capture different
workloads. First, we vary the mean bandwidth required
by tenants (Bbase). This reflects tenants having vary-
ing completion time requirements. Second, we vary the
target occupancy to control the tenant request arrival
rate.

From a provider’s perspective, we look at two metrics
to quantify the potential benefits of resource selection.
First is the fraction of requests that are rejected. How-
ever, this, by itself, does not represent the full picture
since individual requests are of different sizes, i.e., each
request processes a different amount of data. To capture
this, we also look at the sum of input data consumed
across all requests. This represents the total useful work
in the datacenter and is, thus, termed as the datacenter
goodput.

Impact of varying mean bandwidth and tar-
get occupancy. Figure 9(a) plots the percentage of

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 25 50 75 100

G
oo

d
p
u
t

 (
re

la
ti
ve

 t
o

B
as

el
in

e)

Target Occupancy (%)

Bazaar-I
Bazaar-R

(a) Mean BW = 500Mbps

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 300 500 700 900

G
oo

d
p
u
t

 (
re

la
ti
ve

 t
o

B
as

el
in

e)

Bandwidth (Mbps)

Bazaar-I
Bazaar-R

(b) Target Occupancy = 75%

Figure 10: Datacenter goodput with varying
mean bandwidth and varying target occupancy.

rejected requests with varying target occupancy. For all
selection strategies, the rejection ratio increases with in-
creasing target occupancy. This is because requests start
arriving faster and hence, a greater fraction have to be
rejected. The figure shows that, depending on the oc-
cupancy, Bazaar-I results in 3-14% fewer requests being
rejected. Bazaar-R rejects around 2-5% more requests
than Bazaar-I. However, as we explain below, the actual
benefit of the imbalance-based selection is larger.

To put this in perspective, operators like Amazon EC2
target an average occupancy of 70-80% [42]. Figure 9(b)
plots the rejected requests for a target occupancy of
75%. The figure shows that the difference between the
fraction of requests rejected by both Bazaar strategies
as compared to Baseline increases with increasing mean
bandwidth. Increasing the bandwidth required by the
job implies tighter completion time requirements which,
in turn, means there are greater gains to be had from se-
lecting the appropriate resource combination. At mean
bandwidth of 900 Mbps, Bazaar-I rejects 19.9% fewer
requests than Baseline.

Figure 10 shows the datacenter goodput for the Bazaar
selection strategies relative to Baseline. Depending on
the occupancy and bandwidth, Bazaar-I improves the
throughput by 7-87% over Baseline, while Bazaar-R pro-
vides improvements of 0-66%. As an example, at typical
occupancy of 75% and a mean bandwidth of 500 Mbps,
Bazaar-I and Bazaar-R offer 56% and 39% benefits rel-
ative to Baseline respectively. Note that the gains with
Bazaar-R show how resource malleability can be used
to accommodate tenant requests that would otherwise
have been rejected. The further gains with Bazaar-I rep-
resent the benefits to be had by smartly selecting the
resources to use.

In figure 10(a), the relative improvement in goodput
with Bazaar strategies first increases with target occu-
pancy and then declines. This pattern emerges as at
both low and high occupancy, there is not as much
room for improvement. Requests either arrive far apart
in time and most can also be accepted by Baseline,
or in the other extreme, the arrival rate is high and

11

the datacenter is heavily utilized. In figure 10(b), the
gains increase with increasing bandwidth. As explained
above, this results from shrinking completion time re-
quirements which allow Bazaar strategies to accept more
requests as compared to Baseline. Further, Bazaar is
able to accept bigger requests resulting in even higher
relative gains.

Impact of simulation parameters. We also deter-
mined the impact of other simulation parameters on
Bazaar performance and the results stay qualitatively
the same. Due to space constraints, we only show the
results of varying oversubscription and briefly discuss
the impact of varying the mean disk and map and re-
duce bandwidth below.

Figure 11 shows the relative goodput with varying
network oversubscription. Even in a network with no
oversubscription [43,44], Bazaar-I is able to accept 10%
more requests and improves the goodput by 27% rela-
tive to Baseline. Further, the relative improvement with
Bazaar increases with increasing oversubscription be-
fore flattening out. This is because the physical net-
work becomes more constrained and Bazaar can benefit
by reducing the network requirements of tenants while
increasing their VMs.

We also ran experiments using different values of the
disk bandwidth. As expected, low values of the disk
bandwidth reduce the benefits of Bazaar-I. When the
disk bandwidth is extremely low (250 Mbps), increasing
the network bandwidth beyond this value does not im-
prove performance (2% over baseline). Thus, there are
very few candidate resource tuples and the gains with
Bazaar are small. However, as the disk bandwidth im-
proves, there are more candidate tuples to choose from
and, hence, the performance of Bazaar improves.

Finally, we varied the mean task bandwidth (map and
reduce) and also the datacenter size (up to a maximum
of 32,000 servers and 128,000 VMs) and the results con-
firmed the trends observed in Figure 9 and 10.

Comparison with today’s setup. Today, cloud pro-
viders do not offer any bandwidth guarantees to ten-
ants. VMs are allocated using a greedy locality-aware
strategy and bandwidth is fair-shared across tenants
using TCP. In Figure 12(a), we compare the perfor-
mance of Bazaar-I against a setup representative of to-
day’s scenario, which we denote as Fair-sharing . For
low values of occupancy, Fair-sharing achieves a better
performance than Bazaar-I. The reason is that Bazaar-I
reserves the network bandwidth throughout the entire
duration of a tenant’s job. This also includes the map
and reduce phase, which are typically characterized by
little or no network activity. In contrast, in Fair-sharing,
the network bandwidth is not exclusively assigned to
tenants and, hence, due to the statistical multiplexing,
it obtains a higher utilization. Yet, for high values of oc-
cupancy, which are typical of today’s datacenters [42],

the performance of Fair-sharing drops significantly. This
is due to the high congestion incurred in the core of
the network, caused by the sub-optimal placement of
VMs and corresponding flows. The main drawback of
Fair-sharing, however, is highlighted in Figures 12(b)
and 12(c), which show that i) rejected requests signifi-
cantly increase, and ii) job completion time (and hence
tenant cost) is extended for at least 50% of the jobs due
to network contention and for 12% of the jobs the actual
completion time is at least twice the desired completion
time.

4.3 Deployment
We complement our simulation analysis with exper-

iments on a small-scale testbed using a prototype im-
plementation of Bazaar. The testbed consists of 26 Dell
Precision T3500 servers with a quad core Intel Xeon
2.27GHz processor and 12 GB RAM, running Windows
Server 2008 R2. Servers have one 1 Gbps Intel PRO/1000
NIC each and are all connected to the same switch.

The goal of these experiments is twofold. First, we
want to demonstrate the feasibility of Bazaar, measur-
ing the overhead introduced per request. Second, we
want to cross-validate the accuracy of our simulator by
comparing the results obtained in the testbed with the
results obtained in the simulator when running the same
workload.
Feasibility analysis. To evaluate the performance of
our Bazaar prototype at scale, we measured the time to
allocate tenant requests on a datacenter with 128,000
VMs. This includes both the time to generates the set
of candidate resource tuples using the analytical model
(Section 3.1.1) and to select the resources (Section 3.2).
This does not include the job profiling time. Over 10,000
requests, the median allocation time is 950.17 ms with a
99th percentile of 983.29 ms. Note that this only needs
to be run when a tenant is admitted, and, hence, the
overhead introduced is negligible.
Cross-validation. To validate the accuracy of our sim-
ulator, we ran scaled-down experiments on our testbed
and replicated the same workload in the simulator. We
configured one of the testbed servers as the cluster head
node and the rest of the servers as compute nodes. The
head node is responsible of generating tenant requests
and allocate them on the compute nodes. As in Sec-
tion 4.2.1, we do not execute the map and reduce phase
but we do account for the time spent in each of the two
phases using our prediction model. In the shuffle phase,
we generate an all-to-all traffic matrix with an average
input data size of 4.75 GB per job. We use the Win-
dows Traffic Control API [45] on individual machines
to enforce the rate limits. To remove disk bottlenecks,
we generate all data to shuffle in memory.

Figure 13 compares the accepted requests and good-
put across the simulator and testbed for Baseline and

12

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 1 5 10 20

G
oo

d
p
u
t

 (
re

la
ti
ve

 t
o

B
as

el
in

e)

Oversubscription (1:X)

Bazaar-I
Bazaar-R

Figure 11: Network oversub-
scription (occupancy is 75%).

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 25 50 75 100

G
oo

d
p
u
t

 (
re

la
ti
ve

 t
o

B
as

el
in

e)

Target Occupancy (%)

Bazaar-I
Fair-sharing

(a) Datacenter goodput.

 0

 5

 10

 15

 20

 25

 30

 35

 10 25 50 75 100

R
ej

ec
te

d
 r

eq
u
es

ts
 (

%
)

Disk bandwidth (Mbps)

Bazaar-I
Fair-sharing

(b) Rejected requests.

 0

 0.25

 0.5

 0.75

 1

 0.25 1 4 16

C
D

F
(r

eq
u
es

ts
)

Actual / desired completion time

Bazaar-I
Fair-sharing

(c) CDF of completion time.

Figure 12: Comparing against today’s setup (Mean BW is 500 Mbps).

 0

 1

 2

 3

 4

 5

Ba
se

lin
e

Ba
za

ar
-I

D
if
fe

re
n
ce

 (
%

)

Accepted requests
Goodput

Figure 13: Cross-vali-
dation between simu-
lation and testbed.

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 25 50 75 100

G
oo

d
p
u
t

 (
re

la
ti
ve

 t
o

B
as

el
in

e)

Target Occupancy (%)

Bazaar-T
Bazaar-I

Strawman

Figure 14: Datacenter
goodput when exploit-
ing time malleability.

Bazaar-I. Like in the previous experiments, we use a
target occupancy of 75%, mean Bbase of 500 Mbps with
total requests scaled down to 500 and mean Nbase equal
to 7. In all cases, the maximum difference in the number
of accepted requests and goodput is roughly 2%, and 4%
respectively. We also rewired the servers to obtain an
oversubscription ratio of 1:5, achieving similar results.
Although our testbed reflects a small scale deployment,
the benefits in the specific scenario relative to the Base-
line were still 9% and 2.5% for Bazaar-I and Bazaar-R
respectively. This provides further evidence that once
the disk bottleneck from the shuffle phase is removed,
resource malleability offers significant benefits.

4.4 Beyond two resources: time malleability
Our evaluation considered application malleability along

two dimensions, i.e., N and B. However, the ideas pre-
sented throughout the paper can be extended to other
resources, e.g., storage, or even exploit the malleability
along the time axis. Here, we briefly explore this oppor-
tunity. The idea is that if additional resources (beyond
those needed to accommodate a given tenant’s request)
are available, the provider can devote these additional
resources to tenant jobs, so that the job completion time
is reduced. In this way, the resources used by the job can
be reclaimed earlier and, hence, a larger number of re-
quests can potentially be accommodated in the future.
Tenants would benefit too since they would experience
shorter than desired completion times.

We denote this further selection strategy as Bazaar-
T . The key difference between Bazaar-T and Bazaar-I

is that the latter only considers tuples < N,B > that
yield a completion time T = Tdesired while Bazaar-T
also consider tuples where T < Tdesired. Among these,
Bazaar-T selects the tuple that minimizes the product
of the tuple resource imbalance and T . Figure 14 shows
that, at high values of the target occupancy, exploiting
time flexibility significantly improves the ability of the
provider to accommodate more requests and, hence, the
goodput increases. Bazaar-T is also beneficial for ten-
ants as the median completion time is reduced by more
than 50% and for 20% of the jobs the completion time
is reduced by 8̃0%. In Figure 14 we also consider a naive
approach, Strawman , that always selects the tuple that
yields the lowest completion time, irrespective of the re-
source imbalance. Such a strategy performs poorly as
it tends to over-provision the resources for the early re-
quests, which reduces the ability to accommodate future
ones.

5. DISCUSSION
Bazaar-T provides another example of how Bazaar

achieves a better alignment of provider-tenant inter-
ests. This opens up interesting opportunities to investi-
gate new pricing models. Today, tenants pay based on
the amount of time they use compute resources. Such a
resource-based pricing model could also be naively ex-
tended for a multi-resource setting. However, this re-
sults in a mismatch of tenant and provider interests.
The cheapest < N,B > resource tuple to achieve the
tenant’s goal may not concur with the provider’s pre-
ferred resource combination. Further, resource based
pricing entails tenants paying based on a job’s actual
completion time. Hence, from a pricing perspective, there
is a disincentive for the provider to reduce the comple-
tion time.

By decoupling tenants from the underlying resources,
Bazaar offers the opportunity of moving away from re-
source based pricing. Instead, tenants could be charged
based only on the characteristics of their job, the input
data size and the desired completion time. Introducing
such job-based pricing benefits both entities. Tenants
specify what they desire and are charged accordingly;
providers decide how to efficiently accommodate the
tenant request based on job characteristics and current

13

datacenter utilization. Further, since the final price does
not depend on the completion time, providers now have
an incentive to complete tenant jobs on time, possibly
even earlier than the desired time as in Bazaar-T.

Bazaar, when combined with job-based pricing, can
enable a symbiotic tenant provider relationship where
tenants benefit due to fixed costs upfront and better-
than-desired performance while providers use the in-
creased flexibility to improve goodput and, consequently,
total revenue. By serving as a conduit for exchange of
information between tenants and providers, Bazaar pro-
vides benefits for both entities.

6. REFERENCES
[1] Michael Armburst et al., “Above the Clouds: A Berkeley

View of Cloud Computing,” University of California,
Berkeley, Tech. Rep., 2009.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Towards Predictable Datacenter Networks,” in
SIGCOMM, 2011.

[3] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues,
“Conductor: Orchestrating the Clouds,” in LADIS, 2010.

[4] K. Kambatla, A. Pathak, and H. Pucha, “Towards
Optimizing Hadoop Provisioning in the Cloud,” in
HotCloud, 2009.

[5] H. Herodotou, F. Dong, and S. Babu, “No One (Cluster)
Size Fits All: Automatic Cluster Sizing for Data-intensive
Analytics,” in ACM SOCC, 2011.

[6] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp:
comparing public cloud providers,” in IMC, 2010.

[7] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime
measurements in the cloud: observing, analyzing, and
reducing variance,” in VLDB, 2010.

[8] “Measuring EC2 system performance,”
http://bit.ly/48Wui.

[9] A. Iosup, N. Yigitbasi, and D. Epema, “On the
Performance Variability of Production Cloud Services,”
Delft University of Technology, Tech. Rep., 2010.

[10] M. Zaharia, A. Konwinski, A. D. Joseph, Y. Katz, and
I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” in OSDI, 2008.

[11] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn,
“Case study for running HPC applications in public
clouds,” in HPDC, 2010.

[12] P. Soares, J. Santos, N. Tolia, and D. Guedes,
“Gatekeeper: Distributed Rate Control for Virtualized
Datacenters,” HP Labs, Tech. Rep. HP-2010-151, 2010.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang, “SecondNet: A Data Center
Network Virtualization Architecture with Bandwidth
Guarantees,” in CoNEXT, 2010.

[14] A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA:
proportional allocation of resources for distributed storage
access,” in FAST, 2009.

[15] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:
Performance differentiation for storage systems using
adaptive control,” ACM Trans. Storage, vol. 1, 2005.

[16] “Hadoop Wiki: PoweredBy,” http://goo.gl/Bbfu.

[17] “Amazon Elastic MapReduce,”
http://aws.amazon.com/elasticmapreduce/.

[18] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain,
J. Sen Sarma, R. Murthy, and H. Liu, “Data Warehousing
and Analytics Infrastructure at Facebook,” in SIGMOD,
2010.

[19] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou, “SCOPE: easy and
efficient parallel processing of massive data sets,” in
VLDB, 2008.

[20] “Amazon Cluster Compute,” Jan. 2011,
http://aws.amazon.com/ec2/hpc-applications/.

[21] “Big Data @ Foursquare ,” http://goo.gl/FAmpz.

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in OSDI, 2004.

[23] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks,” in EuroSys, 2007.

[24] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Delay Scheduling: a Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling,” in EuroSys, 2010.

[25] T. White, Hadoop: The Definitive Guide. O’Reilly, 2009.

[26] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and
Y.-M. Wang, “Webprophet: automating performance
prediction for web services,” in NSDI, 2010.

[27] D. Tertilt and H. Krcmar, “Generic Performance
Prediction for ERP and SOA Applications,” in ECIS, 2011.

[28] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and
E. Zadok, “Operating system profiling via latency
analysis,” in OSDI, 2006.

[29] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal,
“Dynamic instrumentation of production systems,” in
USENIX ATC, 2004.

[30] M. Kremer and J. Gryz, “A Survey of Query Optimization
in Parallel Databases,” York University, Tech. Rep., 1999.

[31] “Mumak: Map-Reduce Simulator,” http://bit.ly/MoOax.

[32] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A
Simulation Approach to Evaluating Design Decisions in
MapReduce Setups,” in MASCOTS, 2009.

[33] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik,
Quantitative system performance: computer system
analysis using queuing network models, 1984.

[34] E. Krevat, J. Tucek, and G. R. Ganger, “Disks Are Like
Snowflakes: No Two Are Alike,” in HotOS, 2011.

[35] N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens,
“Near optimal online algorithms and fast approximation
algorithms for resource allocation problems,” in EC, 2011.

[36] A. Kamath, O. Palmon, and S. Plotkin, “Routing and
admission control in general topology networks with
poisson arrivals,” in ACM-SIAM SODA, 1996.

[37] A. Borodin and R. El-Yaniv, Online Computation and
Competitive Analysis. Cambridge University Press, 2005.

[38] S. Lee, R. Panigrahy, V. Prabhakaran,
V. Ramasubramanian, K. Talwar, L. Uyeda, and
U. Wieder, “Validating Heuristics for Virtual Machines
Consolidation,” MSR, Tech. Rep. MSR-TR-2011-9, 2011.

[39] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Comm.of ACM, 51(1),2008.

[40] “Tom’s Hardware Blog,” http://bit.ly/rkjJwX.

[41] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Sharing
the Datacenter Network,” in NSDI, 2011.

[42] “Amazon’s EC2 Generating 220M,” http://bit.ly/8rZdu.

[43] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“VL2: a scalable and flexible data center network,” in
SIGCOMM, 2009.

[44] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in
SIGCOMM, 2008.

[45] “Traffic Control API,” http://bit.ly/nyzcLE.

[46] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris, “Reining in the
Outliers in Map-Reduce Clusters using Mantri,” in OSDI,
2010.

APPENDIX
1). Phase bandwidth. We described the model of the
map phase in Section 3.1.1. Following the same logic for
the reduce phase, Breduce = Min{BD, BPreduce}. Dur-

14

http://bit.ly/48Wui
http://goo.gl/Bbfu
http://aws.Alpha XR/elasticmapreduce/
http://aws.Alpha XR/ec2/hpc-applications/
http://goo.gl/FAmpz
http://bit.ly/MoOax
http://bit.ly/rkjJwX
http://bit.ly/8rZdu
http://bit.ly/nyzcLE

BN

network

Disc

B
D B

D

Reduce

B
P

reduce B
D

Reduce PhaseShuffle Phase

𝑩𝒓𝒆𝒅𝒖𝒄𝒆 = 𝐦𝐢𝐧 𝑩𝑫, 𝑩𝒓𝒆𝒅𝒖𝒄𝒆
𝑷

merge

𝑩𝒔𝒉𝒖𝒇𝒇𝒍𝒆 = {
𝟏

𝐦𝐢𝐧 𝑩𝑵, 𝑩𝑫
+

𝟏

𝑩𝑫
}−𝟏

Disc

merge

Figure 15: Detailed description of the re-
sources involved in the shuffle and reduce
phase.

ing the shuffle phase, reduce tasks complete two oper-
ations. Each reduce task first reads its partition of the
intermediate data across the network and then merges
and writes it to disk. Hence, bandwidth =Min{BD, BN},
where BN is the network bandwidth. Next, the data
is read off the disk and the final merge is performed
in memory before the data is consumed by the reduce
phase. This operation is bottlenecked at the disk, i.e.,
bandwidth = BD. Given that the two operations occur
in series, the shuffle phase bandwidth is

Bshuffle =
{

1
Min{BD, BN}

+
1
BD

}−1

.

2). Data consumed. For a MapReduce job with M
map tasks, R reduce tasks and input of size |I|, each
map task consumes |I|M bytes, while each reduce task
consumes |I|

Smap∗R bytes and generates |I|
Smap∗Sreduce∗R

bytes with Smap and Sreduce being the data selectivity
of map and reduce tasks respectively.

3). Waves. For a job using N VMs with Mc map
slots per-VM, the maximum number of simultaneous
mappers is N ∗Mc. Consequently, the map tasks execute
in d M

N∗Mc
e waves. Similarly, the reduce tasks execute in

d R
N∗Rc

e waves, where Rc is the number of reduce slots
per-VM.

Since tasks belonging to a phase execute in waves, the
completion time for a phase depends on the number of
waves and the completion time for the tasks within each
wave. Hence, for the map phase,
Tmap = Wavesmap ∗ Inputmap

Bmap
= d M

N∗Mc
e ∗
{ |I|/M

Bmap

}
.

Using similar logic for the shuffle and reduce phase
completion time, the estimated job completion time is

Testimate = Tmap + Tshuffle + Treduce

= d M
N∗Mc

e
{ |I|/M

Bmap

}
+
⌈

R
N∗Rc

⌉{ |I|/{Smap∗R}
Bshuffle

}
+
⌈

R
N∗Rc

⌉
∗
{
|I|/{Smap∗Sreduce∗R}

Breduce

}
.

The previous discussion assumes that the map tasks
are scheduled so that their input is available locally and
the output generated by reducers is written locally with
no further replication. Further, the reduce tasks are sep-
arated from the map phase by a barrier and execute
once all the map tasks are finished [46]. While these
assumptions helped the presentation, MRCute does not

rely on them. For instance, to account for non data-local
maps, the network bandwidth is also considered when
estimating Bmap. Finally, we also assume that the set
of keys is evenly distributed across reducers. In case of
skewed key distribution, we need to sample the input to
determine the worst-case reducer load.

15

	Introduction
	Background and Motivation
	Malleability of data-analytics applications
	Malleability of other cloud applications
	Scope and assumptions

	Bazaar design
	Performance prediction
	Job modeling and profiling
	Candidate resource tuples

	Resource selection
	Resource imbalance heuristic
	Resource selection example

	Evaluation
	Performance prediction
	Prediction overhead

	Resource selection
	Simulation setup
	Selection benefits

	Deployment
	Beyond two resources: time malleability

	Discussion
	References

