
VIBES: A Variational Inference
Engine for Bayesian Networks

Christopher M. Bishop
Microsoft Research

Cambridge, CB3 0FB, U.K.
research.microsoft.com/∼cmbishop

David Spiegelhalter
MRC Biostatistics Unit

Cambridge, U.K.
david.spiegelhalter@mrc-bsu.cam.ac.uk

John Winn
Department of Physics

University of Cambridge, U.K.
www.inference.phy.cam.ac.uk/jmw39

Abstract

In recent years variational methods have become a popular tool
for approximate inference and learning in a wide variety of proba-
bilistic models. For each new application, however, it is currently
necessary first to derive the variational update equations, and then
to implement them in application-specific code. Each of these steps
is both time consuming and error prone. In this paper we describe a
general purpose inference engine called VIBES (‘Variational Infer-
ence for Bayesian Networks’) which allows a wide variety of proba-
bilistic models to be implemented and solved variationally without
recourse to coding. New models are specified either through a
simple script or via a graphical interface analogous to a drawing
package. VIBES then automatically generates and solves the vari-
ational equations. We illustrate the power and flexibility of VIBES
using examples from Bayesian mixture modelling.

1 Introduction

Variational methods [1, 2] have been used successfully for a wide range of models,
and new applications are constantly being explored. In many ways the variational
framework can be seen as a complementary approach to that of Markov chain Monte
Carlo (MCMC), with different strengths and weaknesses.

For many years there has existed a powerful tool for tackling new problems using
MCMC, called BUGS (‘Bayesian inference Using Gibbs Sampling’) [3]. In BUGS
a new probabilistic model, expressed as a directed acyclic graph, can be encoded
using a simple scripting notation, and then samples can be drawn from the posterior
distribution (given some data set of observed values) using Gibbs sampling in a way
that is largely automatic. Furthermore, an extension called WinBUGS provides a
graphical front end to BUGS in which the user draws a pictorial representation of



the directed graph, and this automatically generates the required script.

We have been inspired by the success of BUGS to produce an analogous tool for
the solution of problems using variational methods. The challenge is to build a
system that can handle a wide range of graph structures, a broad variety of com-
mon conditional probability distributions at the nodes, and a range of variational
approximating distributions. All of this must be achieved whilst also remaining
computationally efficient.

2 A General Framework for Variational Inference

In this section we briefly review the variational framework, and then we charac-
terise a large class of models for which the variational method can be implemented
automatically. We denote the set of all variables in the model by W = (V, X) where
V are the visible (observed) variables and X are the hidden (latent) variables. As
with BUGS, we focus on models that are specified in terms of an acyclic directed
graph (treatment of undirected graphical models is equally possible and is some-
what more straightforward). The joint distribution P (V, X) is then expressed in
terms of conditional distributions P (Wi|pai) at each node i, where pai denotes the
set of variables corresponding to the parents of node i, and Wi denotes the variable,
or group of variables, associated with node i. The joint distribution of all variables
is then given by the product of the conditionals P (V, X) =

∏
i P (Wi|pai).

Our goal is to find a variational distribution Q(X|V ) that approximates the true
posterior distribution P (X|V ). To do this we note the following decomposition of
the log marginal probability of the observed data, which holds for any choice of
distribution Q(X|V )

ln P (V ) = L(Q) + KL(Q‖P ) (1)

where

L(Q) =
∑

X

Q(X|V ) ln
P (V, X)
Q(X|V )

(2)

KL(Q‖P ) = −
∑

X

Q(X|V ) ln
P (X|V )
Q(X|V )

(3)

and the sums are replaced by integrals in the case of continuous variables. Here
KL(Q‖P ) is the Kullback-Leibler divergence between the variational approximation
Q(X|V ) and the true posterior P (X|V ). Since this satisfies KL(Q‖P ) ≥ 0 it follows
from (1) that the quantity L(Q) forms a lower bound on ln P (V ).

We now choose some family of distributions to represent Q(X|V ) and then seek a
member of that family that maximizes the lower bound L(Q). If we allow Q(X|V )
to have complete flexibility then we see that the maximum of the lower bound
occurs for Q(X|V ) = P (X|V ) so that the variational posterior distribution equals
the true posterior. In this case the Kullback-Leibler divergence vanishes and L(Q) =
lnP (V ). However, working with the true posterior distribution is computationally
intractable (otherwise we wouldn’t be resorting to variational methods). We must
therefore consider a more restricted family of Q distributions which has the property
that the lower bound (2) can be evaluated and optimized efficiently and yet which
is still sufficiently flexible as to give a good approximation to the true posterior
distribution.



2.1 Factorized Distributions

For the purposes of building VIBES we have focussed attention initially on distri-
butions that factorize with respect to disjoint groups Xi of variables

Q(X|V ) =
∏

i

Qi(Xi). (4)

This approximation has been successfully used in many applications of variational
methods [4, 5, 6]. Substituting (4) into (2) we can maximize L(Q) variationally
with respect to Qi(Xi) keeping all Qj for j 6= i fixed. This leads to the solution

ln Q?
i (Xi) = 〈ln P (V, X)〉{j 6=i} + const. (5)

where 〈·〉k denotes an expectation with respect to the distribution Qk(Xk). Taking
exponentials of both sides and normalizing we obtain

Q?
i (Xi) =

exp〈ln P (V,X)〉{j 6=i}∑
Xi

exp〈ln P (V, X)〉{j 6=i}
. (6)

Note that these are coupled equations since the solution for each Qi(Xi) depends on
expectations with respect to the other factors Qj 6=i. The variational optimization
proceeds by initializing each of the Qi(Xi) and then cycling through each factor in
turn replacing the current distribution with a revised estimate given by (6). The
current version of VIBES is based on a factorization of the form (4) in which each
factor Qi(Xi) corresponds to one of the nodes of the graph (each of which can be a
composite node, as discussed shortly).

An important property of the variational update equations, from the point of view of
VIBES, is that the right hand side of (6) does not depend on all of the conditional
distributions P (Wi|pai) that define the joint distribution but only on those that
have a functional dependence on Xi, namely the conditional P (Xi|pai), together
with the conditional distributions for any children of node i since these have Xi in
their parent set. Thus the expectations that must be performed on the right hand
side of (6) involve only those variables lying in the Markov blanket of node i, in
other words the parents, children and co-parents of i, as illustrated in Figure 1(a).
This is a key concept in VIBES since it allows the variational update equations to
be expressed in terms of local operations, which can therefore be expressed in terms
of generic code which is independent of the global structure of the graph.

2.2 Conjugate Exponential Models

It has already been noted [4, 5] that important simplifications to the variational
update equations occur when the distributions of the latent variables, conditioned
on their parameters, are drawn from the exponential family and are conjugate with
respect to the prior distributions of the parameters. Here we adopt a somewhat dif-
ferent viewpoint in that we make no distinction between latent variables and model
parameters. In a Bayesian setting these both correspond to unobserved stochastic
variables and can be treated on an equal footing. This allows us to consider con-
jugacy not just between variables and their parameters, but hierarchically between
all parent-child pairs in the graph.

Thus we consider models in which each conditional distribution takes the standard
exponential family form

ln P (Xi|Y ) = φi(Y )Tui(Xi) + fi(Xi) + gi(Y ) (7)

where the vector φ(Y ) is called the natural parameter of the distribution. Now
consider a node Zj with parent Xi and co-parents cp(i)

j , as indicated in Figure 1(a).
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Figure 1: (a) A central observation is that the variational update equations for node
Xi depend only on expectations over variables appearing in the Markov blanket of
Xi, namely the set of parents, children and co-parents. (b) Hinton diagram of 〈W 〉
from one of the components in the Bayesian PCA model, illustrating how all but
three of the PCA eigenvectors have been suppressed.

As far as the pair of nodes Xi and Zj are concerned, we can think of P (Xi|Y )
as a prior over Xi and the conditional P (Zj |Xi, cp

(i)
j ) as a (contribution to) the

likelihood function. Conjugacy requires that, as a function of Xi, the product
of these two conditionals must take the same form as (7). Since the conditional
P (Zj |Xi, cp

(i)
j ) is also in the exponential family it can be expressed as

ln P (Zj |Xi, cp
(i)
j ) = φj(Xi, cp

(i)
j )Tuj(Zj) + fj(Zj) + gj(Xi, cp

(i)
j ). (8)

Conjugacy then requires that this be expressible in the form

ln P (Zj |Xi, cp
(i)
j ) = φ̃j→i(Zj , cp

(i)
j ) Tui(Xi) + λ(Zj , cp

(i)
j ) (9)

for some choice of functions φ̃ and λ. Since this must hold for each of the parents of
Zj it follows that ln P (Zj |Xi, cp

(i)
j ) must be a multi-linear function of the uk(Xk) for

each of the parents Xk of node XZj . Also, we observe from (8) that the dependence
of ln P (Zj |Xi, cp

(i)
j ) on Zj is again linear in the function uj(Zj). We can apply a

similar argument to the conjugate relationship between node Xj and each of its
parents, showing that the contribution from the conditional P (Xi|Y ) can again be
expressed in terms of expectations of the natural parameters for the parent node
distributions. Hence the right hand side of the variational update equation (5) for
a particular node Xi will be a multi-linear function of the expectations 〈u〉 for each
node in the Markov blanket of Xi.

The variational update equation then takes the form

ln Q?
i (Xi) =



〈φi(Y )〉Y +

M∑

j=1

〈φ̃j→i(Zj , cp
(i)
j )〉

Zj ,cp
(i)
j





T

ui(Xi) + const. (10)

which involves summation of bottom up ‘messages’ 〈φ̃j→i〉Zj ,cp
(i)
j

from the children

together with a top-down message 〈φi(Y )〉Y from the parents. Since all of these
messages are expressed in terms of the same basis ui(Xi), we can write compact,
generic code for updating any type of node, instead of having to take account
explicitly of the many possible combinations of node types in each Markov blanket.



As an example, consider the Gaussian N (X|µ, τ−1) for a single variable X with
mean µ and precision (inverse variance) τ . The natural coordinates are uX =
[X,X2]T and the natural parameterization is φ = [µτ,−τ/2]T. Then 〈u〉 = [µ, µ2 +
τ−1]T, and the function fi(Xi) is simply zero in this case. Conjugacy allows us to
choose a distribution for the parent µ that is Gaussian and a prior for τ that is
a Gamma distribution. The corresponding natural parameterizations and update
messages are given by

uµ =
[

µ
µ2

]
, 〈φ̃X→µ〉 =

[ 〈τ〉〈X〉
−〈τ〉/2

]
, uτ =

[
τ

ln τ

]
, 〈φ̃X→τ 〉 =

[
−〈(X − µ)2〉

1/2

]
.

We can similarly consider multi-dimensional Gaussian distributions, with a Gaus-
sian prior for the mean and a Wishart prior for the inverse covariance matrix.

A generalization of the Gaussian is the rectified Gaussian which is defined as
P (X|µ, τ) ∝ N (X|µ, τ) for X ≥ 0 and P (X|µ, τ) = 0 for X < 0, for which moments
can be expressed in terms of the ‘erf’ function. This rectification corresponds to
the introduction of a step function, whose logarithm corresponds to fi(Xi) in (7),
which is carried through the variational update equations unchanged. Similarly, we
can consider doubly truncated Gaussians, which are non-zero only over some finite
interval.

Another example is the discrete distribution for categorical variables. These are
most conveniently represented using the 1-of-K scheme in which S = {Sk} with
k = 1, . . . , K, Sk ∈ {0, 1} and

∑
k Sk = 1. This has distribution P (S|π) =

∏K
k=1 πSk

k
and we can place a conjugate Dirichlet distribution over the parameters {πk}.

2.3 Allowable Distributions

We now characterize the class of models that can be solved by VIBES using the
factorized variational distribution given by (4). First of all we note that, since a
Gaussian variable can have a Gaussian parent for its mean, we can extend this hier-
archically to any number of levels to give a sub-graph which is a DAG of Gaussian
nodes of arbitrary topology. Each Gaussian can have Gamma (or Wishart) prior
over its precision.

Next, we observe that discrete variables S = {Sk} can be used to construct ‘pick’
functions which choose a particular parent node Ŷ from amongst several conjugate
parents {Yk}, so that Ŷ = Yk when sk = 1, which can be written Ŷ =

∏K
k=1 Y Sk

k .
Under any non-linear function h(·) we have h(Y ) =

∏K
k=1 h(Yk)Sk . Furthermore the

expectation under S takes the form 〈h(Y )〉S =
∑

k〈Sk〉h(Yk). Variational inference
will therefore be tractable for this model provided it is tractable for each of the
parents Yk individually.

Thus we can handle the following very general architecture: an arbitrary DAG
of multinomial discrete variables (each having Dirichlet priors) together with an
arbitrary DAG of linear Gaussian nodes (each having Wishart priors) and with
arbitrary pick links from the discrete nodes to the Gaussian nodes. This graph
represents a generalization of the Gaussian mixture model, and includes as special
cases models such as hidden Markov models, Kalman filters, factor analysers and
principal component analysers, as well as mixtures and hierarchical mixtures of all
of these.

There are other classes of models that are tractable under this scheme, for example
Poisson variables having Gamma priors, although these may be of limited interest.

We can further extend the class of tractable models by considering nodes whose



natural parameters are formed from deterministic functions of the states of several
parents. This is a key property of the VIBES approach which, as with BUGS, greatly
extends its applicability. Suppose we have some conditional distribution P (X|Y, . . .)
and we want to make Y some deterministic function of the states of some other nodes
ψ(Z1, . . . , ZM ). In effect we have a pseudo-parent that is a deterministic function of
other nodes, and indeed is represented explicitly through additional deterministic
nodes in the graphical interface both to WinBUGS and to VIBES. This will be
tractable under VIBES provided the expectation of uψ(ψ) can be expressed in terms
of the expectations of the corresponding functions uj(Zj) of the parents. The pick
functions discussed earlier are a special case of these deterministic functions.

Thus for a Gaussian node the mean can be formed from products and sums of the
states of other Gaussian nodes provided the function is linear with respect to each
of the nodes. Similarly, the precision of the Gaussian can comprise the products
(but not sums) of any number of Gamma distributed variables.

Finally, we have seen that continuous nodes can have both discrete and continuous
parents but that discrete nodes can only have discrete parents. We can allow discrete
nodes to have continuous parents by stepping outside the conjugate-exponential
framework by exploiting a variational bound on the logistic sigmoid function [1].

We also wish to be able to evaluate the lower bound (2), both to confirm the
correctness of the variational updates (since the value of the bound should never
decrease), as well as to monitor convergence and set termination criteria. This can
be done efficiently, largely using quantities that have already been calculated during
the variational updates.

3 VIBES: A Software Implementation

Creation of a model in VIBES simply involves drawing the graph (using operations
similar to those in a simple drawing package) and then assigning properties to each
node such as the functional form for the distribution, a list of the other variables
it is conditioned on, and the location of the corresponding data file if the node is
observed. The menu of distributions available to the user is dynamically adjusted
at each stage to ensure that only valid conjugate models can be constructed.

As in WinBUGS we have adopted the convention of making logical (deterministic)
nodes explicit in the graphical representation as this greatly simplifies the spec-
ification and interpretation of the model. We also use the ‘plate’ notation of a
box surrounding one or more nodes to denote that those nodes are replicated some
number of times as specified by the parameter appearing in the bottom right hand
corner of the box.

3.1 Example: Bayesian Mixture Models

We illustrate VIBES using a Bayesian model for a mixture of M probabilistic PCA
distributions, each having maximum intrinsic dimensionality of q, with a sparse
prior [6], for which the VIBES implementation is shown in Figure 2. Here there are
N observations of the vector t whose dimensionality is d, as indicated by the plates.
The dimensionality of the other variables is also determined by which plates they
are contained in (e.g. W has dimension d× q×M whereas τ is a scalar). Variables
t, x, W and µ are Gaussian, τ and α have Gamma distributions, S is discrete and
π is Dirichlet.

Once the model is completed (and the file or files containing the observed variables



Figure 2: Screen shot from VIBES showing the graph for a mixture of probabilistic
PCA distributions. The node t is coloured black to denote that this variable is
observed, and the node ‘alpha’ has been highlighted and its properties (e.g. the
form of the distribution) can be changed using the menus on the left hand side.
The node labelled ‘x.W+mu’ is a deterministic node, and the double arrows denote
deterministic relationships.

are specified) it is then ‘compiled’, which involves allocation of memory for the
variables and initializing the distributions Qi (which is done using simple heuristics
but which can also be over-ridden by the user). If desired, monitoring of the lower
bound (2) can be switched on (at the expense of slightly increased computation) and
this can also be used to set a termination criterion. Alternatively the variational
optimization can be run for a fixed number of iterations.

Once the optimization is complete various diagnostics can be used to probe the
results, such as the Hinton diagram plot shown in Figure 1(b).

Now suppose we wish to modify the model, for instance by having a single set of
hyper-parameters α whose values are shared by all of the M components in the
mixture, instead of having a separate set for each component. This simply involved
dragging the α node outside of the M plate using the mouse and then recompiling
(since α is now a vector of length q instead of a matrix of size M × q). This literally
takes a few seconds, in contrast to the effort required to formulate the variational
inference equations, and develop bespoke code, for a new model! The result is then
optimized as before. A screen shot of the corresponding VIBES model is shown in
Figure 3.

4 Discussion

Our early experiences with VIBES have shown that it dramatically simplifies the
construction and testing of new variational models, and readily allows a range of
alternative models to be evaluated on a given problem. Currently we are extending
VIBES to cater for a broader range of variational distributions by allowing the user
to specify a Q distribution defined over a subgraph of the true graph [7].

Finally, there are many possible extensions to the basic VIBES we have described



Figure 3: As in Figure 2 but with the vector α of hyper-parameters moved outside
the M ‘plate’. This causes there to be only q terms in α which are shared over the
mixture components rather than M × q. Note that, with no nodes highlighted, the
side menus disappear.

here. For example, in order to broaden the range of models that can be tackled we
can combine variational with other methods such as Gibbs sampling or optimization
(empirical Bayes) to allow for non-conjugate hyper-priors for instance. Similarly,
there is scope for exploiting exact methods where there exist tractable sub-graphs.
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