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Abstract-Resistive ballooning modes are unstable in the first region of ideal ballooning stability. We 
show that in contrast the second region is largely stable to resistive ballooning modes. 

1 I N T R O D U C T I O N  
TOKAMAK equilibria which are stable to ideal M H D  perturbations may be unstable 
to resistive modes (FURTH et al., 1963). Of particular interest is the resistive bal- 
looning mode which has been suggested by CHAKCE et al. (1979) as a candidate to 
explain the energy confinement degradation seen in L-mode scaling. Since resistive 
modes have a much lower growth rate than ideal modes they need only be considered 
in plasmas which are ideally stable. At low values of the radial pressure gradient 
Tokamak equilibria are stable to localised ideal M H D  ballooning modes; this is 
referred to as the first stable region. Higher pressure gradients destabilise the ideal 
ballooning mode, but at sufficiently large gradients the plasma is again ideally stable. 
This is known as the second region of stability. Figure 1 shows the well-known S-U 

diagram which illustrates the presence of two stable regions; this diagram is discussed 
again in Section 2. 

Resistive ballooning modes have, in common with tearing modes, the property 
that their stability is determined by the asymptotic matching of ideal M H D  solutions 
in an outer region to non-ideal solutions valid in the neighbourhood of the singular 
layers. Many physical effects come into play within the layers, but the influence of 
the ideal region, either stabilising or destabilising, is determined by one real quantity, 
A', which can be simply computed from the ideal ballooning equation. As in tearing 
mode theory, A' (the ratio of the large to the small solutions as the singularity is 
approached) is a measure of the energy available to drive the instability. 

CONNOR et al. (1983) and DRAKE and ANTOKSEN (1985) studied stability using 
single fluid resistive equations to describe the behaviour in the singular layer. For a 
fixed, finite value of the toroidal mode number n, it was found that instability 
occurred whenever A' exceeded some critical value AIc. However, CONNOR et al. 
(1985) found, using the two-fluid equations, that resistive ballooning modes should 
be unstable whenever A' > 0. CONKOR et al. (1983), DRAKE and ANTONSEN (1985) 
and CONNOR et al. (1985) all found that within the first region of ideal stability, 
A' > 0; therefore in this region resistive ballooning modes are unstable. 

In Section 2 we introduce the large aspect ratio model equilibrium which forms 
the basis of our investigations. Its resistive ballooning stability in the first region is 
examined in Section 3 and compared with other published results. 

Stability in the second region is studied in Section 4. CORREA-RESTREPO (1985) 
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showed that in certain situations the second region is unstable due to resistive 
interchange modes. We shall show more generally, however, that the second region 
is largely stable to both resistive ballooning and resistive interchange modes. 
Inclusion of the Shafranov shift effect, as described in Section 5 ,  further enhances 
the stability. 

Finally in Section 6 we discuss the relevance of the second region to fusion experi- 
ments and list some methods by which i t  may be accessed. 

2. T H E  M O D E L  T O K A M A K  E Q U I L I B R I U M  
To investigate the stability of resistive ballooning modes we consider a large aspect 

ratio Tokamak equilibrium constructed in the neighbourhood of a circular flux 
surface on which the poloidal magnetic field is taken to be a constant. This is the s-x 
model of CONNOR er al. (1978). Stability properties are determined from the second 
order equation 

d {[l + (48 - 0,) - x sin e)’] - 
d8 

+ %{cos 0 + sin O(s(8 - 8) - cx sin 0)) F = 0 (1) 

where F is the plasma displacement and 0 is the poloidal angle. As a result of the 
ballooning transformation (CONNOR et al., 1979) the angle 0 lies on [- CO, a]. The 
parameters s and x describing the shear and the radial pressure gradient respectively 
are defined by 

(31 
2Rq2 dp 
Bo2 dr 

c ( =  _ _ _ _  

where r and R are the minor and major radii, q is the safety factor, p is the plasma 
pressure, and Bo is the toroidal magnetic field on axis. 

Equation (1) describes plasma displacements in regions away from the reconnec- 
tion surface. For large values of 0 the solutions of equation (1) should be matched 
onto those from the resistive layer. Asymptotic behaviour of the solutions of equation 
(1) is given by 

where 

cx sin 0 x cos 8 + 
~ ( 8  - 0,) ~ ’ ( 0  - do)’ 

f ( 0 )  = 1 + 
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Instead of matching on to resistive solutions, we make use of the results of CONNOR 
e t  al. (1985) and determine the stability to resistive ballooning modes by constructing 
A' defined by 

h A' = - 
sa 

CONNOR et al. (1985) showed that these modes will be unstable if A' > 0. To calculate 
A' from equation (1) first consider the case where the parameter 0, = 0. The equation 
is then symmetric under 0 -+ - 8 and there are two classes of solution, one F ,  
with the initial conditions F(0)  = 1, F'(0)  = 0 and the other F -  having F(0)  = 0, 
F'(0)  = 1. The first of these is the resistive ballooning mode while the second is the 
micro-tearing mode. The full solutions are then matched onto the asymptotic form 
(4) at some large value O,,,. to obtain values for the coefficients a and b. A' is then 
calculated from equation (6). If, however, 8, # 0 then equation (1) must be solved 
on [ - O,,,, e,,,] and the full solution will be some mixture of the basic solutions 
F ,  and F-  (obtained now with Bo # 0), subject to the constraint that A'(O,,,) = 
A'( - O,,,). (This follows from the symmetry of the resistive layer equations which 
are independent of O0.) Again there will be two solutions which can be identified as 
a resistive ballooning and a micro-tearing mode. The value of 0, is chosen so as to 
maximise the value of A'. 

Since the asymptotic region corresponds to se % 1 the calculation of the numerical 
solution out to the asymptotic region becomes increasingly difficult for small values 
of s. There are effectively two length scales in the problem, 0 - 1 on which equi- 
librium quantities vary, and 0 - 1:s defining the asymptotic region. For s < 1 we 
can obtain averaged equations in which the short length scale is integrated out 
leaving much simpler equations on the long scale. This is done in detail in Appendix 
A. Evaluations of A' from the averaged equations are found to join on smoothly to 
those from the full equations at intermediate values of s. 

3. R E S I S T I V E  B A L L O O N I N G  I N  T H E  F I R S T  R E G I O N  
Ideal marginal stability boundaries correspond to solutions of equation (1) for 

which the coefficient a of the large solution vanishes. This defines an eigenvalue 
problem whose solutions are curves in the s-a plane along which A' = CO. This is 
shown in Fig. 1. 

Evaluating A' in the first ideally stable region we find that A' > 0. This is illus- 
trated in Fig. 2 which shows A' plotted as a function of a for s = 1. Also plotted in 
Fig. 2 is the A' given by DRAKE and ANTONSEN (1985) who considered a model 
equilibrium valid in the neighbourhood of the axis with f i  - E'. There is complete 
agreement with the CY < 1 limit of our results while for larger values of CI the results 
of DRAKE and ANTONSEN (1985) differ from those of the full high f i ( f i  - E )  equations 
and fail completely to represent the approach to the ideal unstable region. 

STRAUSS (198 1) has also considered resistive ballooning stability for an equilibrium 
constructed around the axis. Averaged equations were obtained valid when s < 1. 
Results for A' in the first region given in STRAUSS (1985) are in complete agreement 
with the s 4 1 limit of our results. 
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FIG. 1.-The s - U plane showing the ideal marginal stability curves and the first and 
second stable regions. 
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FIG. 2.-Plot of A' versus G( for s = 1 obtained from the solution of equation (1). The 
broken curve shows the corresponding A' calculated by DRAKE and ANTONSEX (1985) valid 

for x 1. 

Resistive ballooning has been studied by CORREA-RESTREPO (1 985) again for 
equilibria valid near the axis. An analytic expression for A' was obtained which gives 
A' > 0 throughout the first region. 
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4. RESISTIVE B A L L O O N I N G  I N  T H E  S E C O N D  R E G I O N  
Evaluation of A‘ in the second stable region using equation (1) shows that A‘ < 0 

throughout most of this region. This is shown on an s a  diagram in Fig. 3. For 
pressure gradients slightly greater than the second ideal marginal value there is a 
small region of resistive instability beyond which the resistive ballooning mode is 
stable. In plotting this diagram care must be taken to choose the correct values of 8, 
i.e. those which give rise to the largest unstable regions. Along the second ideal 
boundary this corresponds to values of 8, N n, while Bo N 0 is found to maximise 
the resistively unstable zone and is therefore used to plot the A‘ = 0 line. 

r 
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a 

FIG. 3.-The s - r plane showing the A’ = 0 curve. Note that throughout most of the 
second region resistive ballooning modes are stable. 

These results contrast with those of CORREA-RESTREPO (1985) who found the 
second region to be mostly unstable to resistive modes. However, Correa-Restrepo 
considered equilibria constructed in the neighbourhood of the magnetic axis, with q 
on axis close to unity. He found the resistive interchange mode to be unstable 
throughout most of the second region, and therefore did not go on to examine 
resistive ballooning modes. However, when q is substantially larger than one (e.g. in 
the “confinement region” away from the axis) the resistive interchange mode is very 
stable and need not be considered further. An evaluation of the expression for A’ 
given in CORREA-RESTREPO (1985) shows that indeed A’ > 0 just beyond the ideally 
stable region and that A‘ then passes through zero to give a resistive ballooning 
stable zone. For still large values of a, however, the A‘ of CORREA-RESTREPO (1985) 
changes sign again by passing through infinity. This does not represent an ideal 
marginal boundary since it corresponds to b -+ CO in equation (6) rather than a + 0. 
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5. I N C L U S I O N  O F  T H E  S H A F R A N O V  S H I F T  
In the equilibrium corresponding to equation (1) the poloidal component of the 

magnetic field was taken to be a constant around the flux surface. At high p values it 
is more realistic to include the modulation of the poloidal field due to the Shafranov 
shift effect. This is done by writing the poloidal field in the form 

where A > 0. A consistent equilibrium having this poloidal field was constructed by 
BISHOP and HASTIE (1985) using techniques described in BISHOP (1985). The corres- 
ponding ballooning equation and its asymptotic solutions are given in Appendix B. 

r 

FIG. 4.-The s - r plane showing the stabilising effect of the Shafranov shift 011 both the 
ideal marginal stability curves and the A’ = 0 line. Very little of the second region is now 

unstable to resistive ballooning modes. 

Note that when A = 0 the original s-c( model is recovered. Evaluation of A‘ in the 
second region with A = 0.1 increases the region of stability to resistive ballooning 
modes. This is shown in the s-CI plane in Fig. 4 which also shows the stabilising effect 
of A > 0 on the ideal stability boundaries. Again a careful study of the effects of 
varying Bo has been made in plotting this diagram, giving 6 ,  N 71 along the second 
ideal boundary and 19, = 0 along the A’ = 0 curve. 

6. C O N C L U S I O N S  
We have shown that while the first ideally stable region is generally unstable to 

resistive ballooning modes, the second region may be largely stable. If resistive 
modes do indeed play a role in cross-field transport in the first region then their 
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absence from the second region may be beneficial for Tokamak profiles lying wholly 
or partly in this region. The relevance of this depends of course on the practical 
accessibility of the second region. At least five methods of achieving this have been 
suggested: 

(i) Direct profile modification by localised auxiliary heating; the effects of 
qaxls > 1 were discussed theoretically by ANTONSEX et al. (1980) and MERCIER 
(1978), and a computer simulation using these results and showing stable 
access to the second region was give by SYKES and TURNER (1979). 

(ii) Generation of anisotropic pressure, again by auxiliary heating; if the per- 
pendicular pressure can be modulated so as to be larger on the inside of the 
flux surface then access to the second region becomes possible: FIELDING and 
HAAS (1978). 

(iii) Stabilisation of the ballooning mode by a population of energetic trapped 
particles: ROSENBLUTH et al. (1983); SPONG et al. (1985). 

(iv) Proximity of a magnetic separatrix as in a divertor Tokamak; this can give 
direct access to the second region: BISHOP (1986). Indeed the steep pressure 
gradients observed in the edge region of the H-mode discharge may represent 
the first experimental observation of second stability. 

(v) Shaped plasma cross-sections such as strongly indented beans (CHANCE et al., 
1983) may also give access to the second region. 
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A P P E N D I X  A 
Averaging of equation (1) is done by introducing two length scales: an equilibrium length scale 8, and a 

large scale U = SO. Averaging over the short scale 8 leads to a simplified equation in U :  

3 a4F F -  -~ 
d d F  2 r 2 s  

du du (1 + u ’ ) ~  S(1 + U’)’ = 
s2-(1 + u2)- + ~ 
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The asymptotic solutions to this equation are readily obtained in the form 

F(u) = a FL + b F, 

where 

fl = -1./(1, - 2) 

{(2r2/s - 3r4/8s2) + i(1. - 3)} 
f 2  = (1" - 4)(1, - 3) 

where the small solution has i. = - 1 and the large solution has 1. = 0. To calculate A' the solution of 
equation (Al )  with initial conditions F(0)  = 1 ,  F(0) = 0 is matched to the asymptotic form (A2) for 
large values of U .  The values of a and b thereby obtained are used to calculate A' from A' = b,/sa. 

A P P E N D I X  B 
The ballooning mode equation for A # 0 can be written 

+ ccg(cos 0 + G sin O)F = 0 

where 

g(0) = 1 - A C O S H  

with 

Q = s - 2(g2> + U (g3 COS 0) 

and the bracket notations are defined by 

1 
2n 

(X) = - J XdO, [XI = X - (X). (B5) 

Note that if A = 0 then equation (BI) reduces to equation (1). The asymptotic forms for the solutions of 
(Bl)  can be written 

F(0) = a F L  + 6 F s  (B6) 

with 

F 
Fs,L = (30) ''Lf 1 + + . . .] 

where 

4 

F, (0 )  = 1 f,sin(n0) 
n = 1  

fi = a(1 + A') - 3A( 1 + :) T 
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TLS = 

( I  + ; * 2 )  

and the indices i., and i,, corresponding respectively to small and large solutions, satisfy 

Again A’ is calculated from A’ = 6:s:. 


