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Abstract

Variational methods are becoming increasingly popular for inference and learning in prob-
abilistic models. By providing bounds on quantities of interest, they offer a more controlled
approximation framework than techniques such as Laplace’s method, while avoiding the mix-
ing and convergence issues of Markov chain Monte Carlo methods, or the possible computa-
tional intractability of exact algorithms. In this paper we review the underlying framework
of variational methods and discuss example applications involving sigmoid belief networks,
Boltzmann machines and feed-forward neural networks.

1 Introduction

Probability theory provides a principled, consistent framework for quantification of uncertainty,
and as such underpins much of the current research in neural computing. A central concept
in probabilistic inference is that of marginalization involving summing (or integrating) over the
distribution of unobserved variables. For many models, however, these summations are com-
putationally intractable, and so it is necessary to resort to approximation schemes. Variational
methods [?] provide a new framework for inference and learning in probabilistic models, which
complement previous approaches and offer some specific advantages.

A probabilistic model defines a joint distribution over a set S of random variables. We
can partition these variables into two groups corresponding to visible (observed) variables V
and the remaining hidden (or latent) variables H. Typically the model is governed by a set of
adaptive parameters w, and is then described by a joint distribution P (H,V |w), conditioned
on the parameters. The distribution of observed variables is obtained by marginalization over
the hidden variables, so that

L(w) ≡ P (V |w) =
∑

H

P (H,V |w) (1)

where the sum over H is replaced by an integration in the case of continuous variables. The
quantity L(w) in (1) is the likelihood function, and maximization of the likelihood (or equiva-
lently its logarithm) can be used to estimate a value for the parameter vector w. The likelihood
also plays an important role in a Bayesian treatment of the parameters w. Another central quan-
tity of interest is the posterior distribution P (H|V ) of the hidden variables, given the observed
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variables. This is given, from Bayes’ theorem, by

P (H|V,w) =
P (H,V |w)

P (V |w)
(2)

which again involves the likelihood function. For complex probabilistic models, the summation
over H needed to evaluate L(w) may involve an exponentially large number of terms and may
therefore be computationally intractable.

Variational methods involve the introduction of an approximating distribution Q(H|V )
which, as we shall see shortly, provides an approximation to the true posterior distribution.
Consider the following transformation applied to the log likelihood function

lnP (V |w) = ln
∑

H

P (H,V |w) (3)

= ln
∑

H

Q(H|V )
P (H,V |w)

Q(H|V )
(4)

≥ L(Q,w) =
∑

H

Q(H|V ) ln
P (H,V |w)

Q(H|V )
(5)

where we have applied Jensen’s inequality. We see that the function L(Q,w) forms a rigorous
lower bound on the true log likelihood. The significance of this transformation is that, through a
suitable choice for the Q distribution, the quantity L(Q,w) may be tractable to compute, even
though the original log likelihood function is not. From (5) it is easy to see that the difference
between the true log likelihood lnP (V |w) and the bound L(Q,w) is given by

KL(Q‖P ) = −
∑

H

Q(H|V ) ln
P (H|V,w)

Q(H|V )
(6)

which is the Kullback-Leibler (KL) divergence between the approximating distribution Q(H|V )
and the true posterior P (H|V,w). The relationship between the various quantities is shown in
Figure 1.

Figure 1: The quantity L(Q,w) provides a rigorous lower bound on the true log likelihood
lnP (V |w), with the difference being given by the Kullback-Leibler divergence KL(Q‖P ) between
the approximating distribution Q(H|V ) and the true posterior P (H|V,w).

The goal in a variational approach is to choose a suitable form forQ(H|V ) which is sufficiently
simple that the lower bound L(Q,w) can readily be evaluated and yet which is sufficiently flexible
that the bound is reasonably tight. We generally choose some family of Q distributions and then
seek the best approximation within this family by maximizing the lower bound. Since the true
log likelihood is independent of Q we see that this is equivalent to minimizing the Kullback-
Leibler divergence. Note that for data sets consisting of N independent observations we need to
perform the variational optimization separately for each observation.
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Suppose we consider a completely free-form optimization over Q, allowing for all possible
Q distributions. Using the well-known result that the KL divergence between two distributions
Q(H) and P (H) is minimized by Q(H) = P (H) we see that the optimal Q distribution is given
by the true posterior, in which case the KL divergence is zero and the bound becomes exact.
However, this will not lead to any simplification of the problem. In order to make progress it is
necessary to consider a more restricted range of Q distributions.

One approach is to consider a parametric family of Q distributions of the form Q(H|V, ψ)
governed by a set of parameters ψ. We can then adapt ψ by minimizing the KL divergence
to find the best approximation within this family. In Section 2 we will see that the graphical
models perspective provides a natural framework for motivating suitable choices for parametric
Q distributions.

In some applications an alternative approach can be adopted which is to restrict the func-
tional form of Q(H|V ) by assuming that it factorizes over the component variables {hi} in H,
so that

Q(H|V ) =
∏

i

Qi(hi|V ). (7)

The KL divergence can then be minimized over all possible factorial distributions by performing
a free-form minimization over the Qi, leading to the following result

Qi(hi|V ) =
exp 〈 lnP (H,V |w)〉k 6=i

∑

j exp 〈 lnP (H,V |w)〉k 6=j

(8)

where 〈 · 〉k 6=i denotes an expectation with respect to the distributions Qk(hk|V ) for all k 6= i.
There is an interesting relationship between this variational framework and the expectation

maximization (EM) algorithm, as pointed out by Neal and Hinton [?]. If we return to the free-
form optimization over Q, then we have noted that this involves the evaluation of the posterior
distribution P (H|V,w) for a given value of w = wold and hence corresponds to the E-step of
the EM algorithm. If we back-substitute the result Q(H|V ) = P (H|V,wold) into L then we
obtain (up to an additive term independent of w) the expected complete-data log likelihood
whose maximization over w for fixed wold constitutes the M-step of the standard EM algorithm
[?]. It is well known that there is a generalized EM (GEM) algorithm in which at the M-step
the expected complete-data log likelihood is only increased and not fully maximized. The above
relationship to the variational lower bound demonstrates that it is also possible to generalize to
a partial E-step in which the Q distribution is adjusted to increase L(Q,w) without actually
reducing the KL divergence to zero. Since this generalized EM algorithm is increasing L at
every step it is guaranteed to result in a stable algorithm.

2 Directed Graphs: Sigmoid Belief Networks

As a first application of the variational framework we consider sigmoid belief networks, which
correspond to directed, acyclic graphs in which each node i represents a binary stochastic variable
Si ∈ {0, 1}. The joint distribution in a directed graph is defined by specifying the conditional
distribution of each variable given the states of its parent variables in the graph. In the case of
the sigmoid belief network, the probability of a node being ‘on’ is given by a sigmoidal function
of a linear combination of the parent values of the form

P (Si = 1|Πi) = σ





∑

j

wijSj



 (9)

where σ(z) ≡ (1 + e−z)−1 is the logistic sigmoid function, Πi denote the parents of Si in the
network, and wij represent the adaptive parameters in the model (note that we have implicitly
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absorbed a bias parameter for each node into the {wij}). The variables S can be grouped into
visible V and hidden H. Evaluation of the likelihood function, using (1), requires summing over
all 2|H| configurations of the states of the hidden units, where |H| denotes the number of hidden
variables. Although there are efficient algorithms for evaluating such sums in polynomial time
for simple graphs such as trees, they are no longer applicable to densely connected graphs, and
so for networks with more than a few hidden units we are forced to consider approximations.

A simple variational approach to learning in sigmoid belief networks was introduced by Saul
et al. [?] in which the Q distribution is chosen to be factorized (this is called mean field theory).
Specifically we consider a Q given by a product of Bernoulli distributions in the form

Q(H|V ) =
∏

i

µhi

i (1 − µi)
1−hi (10)

in which we have introduced a mean-field parameter µi corresponding to each of the hidden
variables hi. Even this severely restricted (fully factorized) choice of Q distribution does not
lead to an analytically tractable expression for the summation over H in (5) and a further
approximation is required. However, since this takes the form of a generalization of Jensen’s
inequality, it still maintains a rigorous bound on the true log likelihood. Setting the derivatives
of the bound with respect to the µi to zero then leads to a set of re-estimation equations for
µi which can be iterated until some convergence criterion is satisfied. This represents the E-
step of a generalized EM algorithm. The corresponding M-step is obtained by computing the
derivatives of the bound with respect to the parameters wij and taking a step in the negative
gradient direction.

Although mean field theory leads to a workable learning algorithm, it is based on a very
restricted class of Q distributions. It is natural to seek more flexible distributions, which nev-
ertheless remain tractable, in order to obtain an improved learning algorithm. One specific
limitation of a factorized approximation is that it cannot capture multi-modality, and this can
be overcome by considering a probabilistic mixture of mean field distributions of the form

Q(H|V ) =
M
∑

m=1

αmQ(H|V,m) (11)

in which each of the components Q(H|V,m) has the form (10) with its own independent set
of mean field parameters. A general framework for variational inference using mixtures was
proposed by Jaakkola and Jordan [?] and has been applied to sigmoid belief networks by Bishop
et al. [1]. Although this leads to a more complex framework than for simple mean field theory
it is nevertheless possible to obtain a computationally tractable algorithm while preserving a
rigorous lower bound on the log likelihood.

Insight into these approximations can be obtained by considering the corresponding graphical
representations as shown in Figure 2. Mean field theory treats the hidden nodes as independent
and is represented by a graph with no links, whereas a mixture of mean field distributions is
obtained by introducing an extra discrete latent variable m, giving a tree structured graph. This
graphical perspective motivates the use of other approximating distributions corresponding to
simple graphical structures. For instance, the Markov chain approximation, corresponding to
(d) in Figure 2, has been considered in [?].

3 Undirected Graphs: Boltzmann Machines

In this section we consider the application of variational methods to probabilistic models which
correspond to undirected graphs, and in particular we focus on the Boltzmann machine [?]. The
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Figure 2: (a) Graphical representation of a densely connected sigmoid belief network with visible
nodes in black and hidden nodes in white. (b) The corresponding mean field approximation. (c)
A mixture of mean field distributions. (d) A Markov chain approximation.

nodes of a Boltzmann machine graph represent two-state stochastic variables for which the joint
distribution has the Boltzmann form

P (S) =
exp(−E(S))

Z
(12)

in which S = {si} denotes the set of stochastic variables, and E(S) denotes the energy of a
particular configuration given by a quadratic function of the states

E(S) = −
∑

i

∑

j>i

wijsisj . (13)

Here wij = 0 for nodes which are not neighbours on the graph, and again biases are treated
implicitly. The normalization factor Z−1 in (12) is called the partition function in statistical
physics terminology, and is obtained by marginalizing the numerator over all configurations of
states

Z =
∑

S

exp(−E(S)). (14)

If there are L variables in the network, the number of configurations of states is 2L, and so
evaluation of Z may require exponential time (e.g. for fully connected models) and hence, in the
worst case, is computationally intractable.

Again, we can partition the units S into visible V and hidden H. Learning in the Boltzmann
machine is achieved by maximizing the likelihood (1) with respect to the parameters {wij} using
gradient methods. Differentiating the log of the likelihood (1) and using (12), (13) and (14) we
obtain

∂ lnP (V )

∂wij

= 〈sisj〉C − 〈sisj〉F (15)

where 〈 · 〉C denotes an expectation with respect to the clamped distribution P (H|V ) while
〈 · 〉F denotes expectation with respect to the free distribution P (H,V ).

Evaluation of the expectations in (15) requires summing over exponentially many states, and
so is intractable for densely connected models. The original learning algorithm for Boltzmann

5



machines made use of Gibbs sampling to generate separate samples from the joint and conditional
distributions over states, and used these to evaluate the required gradients. A serious limitation
of this approach, however, is that the gradient is expressed as the difference between two Monte
Carlo estimates and is thus very prone to sampling error. This results in a very slow learning
algorithm.

Mean field theory, equivalent to the use of a variational approximation involving a factor-
ized Q distribution, was developed for Boltzmann machines by Peterson et al. [?]. It allows
the stochastic averages 〈sisj〉 to be approximated by deterministic products of the correspond-
ing mean field parameters µiµj . Optimization of the Q distribution yields deterministic re-
estimation equations for the mean field parameters, and so we again obtain a generalized EM
algorithm in which optimization of Q is alternated with adaptation of the model parameters wij

using gradient ascent.
For most applications it is likely that the distribution in the unclamped phase of a Boltzmann

machine will be strongly multi-modal, and so mean field theory is likely to provide a poor
framework. In this case we can expect a significant improvement over mean field theory to
be obtained from the use of a mixture representation. Lawrence et al. [2] have successfully
applied mixtures of mean field distributions to Boltzmann machines, for which the second-
order expectation 〈sisj〉 is approximated by the deterministic expression

∑M
m=1 αmµ

m
i µ

m
j . They

demonstrated significantly improved inference compared with standard mean field theory, as
illustrated in Figure 3.
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Figure 3: Histograms of the differences between the true free expectation 〈sisj〉F and the mean field

approximation
∑M

m=1
αmµ

m
i µ

m
j for 100 randomly generated networks each having 55 independent param-

eters, for different numbers M of components in the mixture approximation, together with a summary
of the dependence of the sum-of-squares of the differences on M .

One limitation of the variational approach in the context of undirected graphs arises from
the presence of the partition function Z (absent in directed graphical models) which leads to
the derivatives with respect to model parameters involving the difference of two expectations, as
in (15). Since the difference in two bounds is no longer a bound, we lose this elegant aspect of
the variational approach. Nevertheless, improved inference can still lead to improved learning,
as demonstrated for the case of hand-written digits in [2].
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4 Neural Networks

So far we have considered maximum likelihood techniques which estimate specific values for
the model parameters w. In a Bayesian treatment, prior distributions are defined over the
parameters, and the parameters are marginalized out. From the graphical models perspective
this corresponds to viewing the parameters as additional nodes, and hence they can be treated on
the same footing as other stochastic variables. Since the marginalization over model parameters
is often analytically intractable it can again prove useful to consider variational methods.

In the context of regression, a neural network is used to define a conditional Gaussian dis-
tribution of the form p(t|x,w, β) = N (f(x,w), β−1) where x is the input vector, and β is the
inverse ‘noise’ variance [3]. The neural network function f(x,w) maps the input vector to the
mean of the distribution and is governed by a vector w of weights and biases. In a Bayesian
treatment we define a prior over w given, for instance, by a Gaussian p(w|α) = N (0, α−1)
where α is the inverse variance. Hyper-priors are also defined over the hyper-parameters α and
β. Given a data set of labelled observations D = {xn, tn}

N
n=1 the posterior distribution over

parameters is given by

p(w|D) ∝ p(w|α)
N
∏

n=1

p(tn|xn,w, β). (16)

Predictive distributions are then obtained by marginalizing over w, so that for instance the
predictive mean, for a new value of x, is given by

〈t|x〉 =

∫

f(x,w)p(w|D) dw. (17)

For non-linear network models the integration over w is analytically intractable. One approach
[?] is to use a Gaussian approximation to the posterior around a mode, in which the covariance
is determined by the local curvature of the posterior at the mode. However, a more general
treatment can be obtained using variational methods.

The first variational treatment of neural networks was given by Hinton and van Camp [?] who
considered a variational distribution Q(w) given by a Gaussian distribution which was assumed
to factorize over the components of w. This was extended to Gaussian Q distributions having
a general covariance matrix by Barber and Bishop [4]. A comparison of the approximations
obtained using these three schemes is shown in Figure 4. This variational approach can readily

Posterior Laplace fit Minimum KL fitMinimum KLD fit

Figure 4: Laplace and variational Gaussian fits to the posterior for a two-parameter synthetic regression
problem. The Laplace method underestimates the local posterior mass by basing the covariance matrix
on the mode alone, and has KL value 41. The variational Gaussian fit with a diagonal covariance matrix
(KLD) gives a residual KL value of 4.6, while the variational Gaussian with full covariance matrix achieves
a KL value of 3.9.

be extended to a mixture of Gaussians using the framework discussed earlier in the context of
graphical models.
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5 Discussion

In this paper we have reviewed the general framework of variational methods, and outlined some
applications to graphical models and neural networks. Currently the choice of an appropriate
family of Q distributions for a specific application is largely a matter of judgement, and no
systematic procedures have so far been developed. Furthermore, although variational meth-
ods often provide the reassurance of a rigorous bound on quantities of interest (in contrast to
many other approximation schemes) the accuracy of this bound can be difficult to quantify. In
spite of these limitations, however, variational methods have already found several successful
applications and are likely to be widely used in the future.
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