
PREPRINT { Please don't distribute.To appear in Vittorio Castelli and Lawrence Bergman eds.,"Image Databases, Search and Retrieval of Digital Imagery",2001, John Wiley and Sons.Database Support for Multimedia ApplicationsMichael Ortega-Binderberger, Kaushik ChakrabartiUniversity of Illinois at Urbana-ChampaignSharad MehrotraUniversity of California at IrvineAugust 3, 20011 IntroductionAdvances in high performance computing, communication, and storage technologies, as well asemerging large-scale multimedia applications, have made the design and development of multi-media information systems one of the most challenging and important directions of research anddevelopment within computer science. The payo�s of a multimedia infrastructure are tremendous-it enables many multi-billion dollar-a-year application areas. Examples are medical information sys-tems, electronic commerce, digital libraries, (like multimedia data repositories for training, educa-tion, broadcast and entertainment,) special purpose databases, (such as face/�ngerprint databasesfor security,) and geographical information systems storing satellite images, maps, etc.An integral component of the multimedia infrastructure is a multimedia database managementsystem. Such a system supports mechanisms to extract and represent the content of multimediaobjects, provides e�cient storage of the content in the database, supports content-based queriesover multimedia objects, and provides a seamless integration of the multimedia objects with thetraditional information stored in existing databases. A multimedia database system consists ofmultiple components, which provide the following functionalities:� Multimedia Object Representation: techniques/models to succinctly represent bothstructure and content of multimedia objects in databases.� Content Extraction: mechanisms to automatically/semi-automatically extract meaningfulfeatures that capture the content of multimedia objects, and that can be indexed to supportretrieval.� Multimedia Information Retrieval: techniques to match and retrieve multimedia objectsbased on the similarity of their representation (i.e., similarity-based retrieval).� Multimedia Database Management: extensions to data management technologies of in-dexing and query processing to e�ectively support e�cient content-based retrieval in databasemanagement systems.Many of the above issues have been extensively addressed in other chapters of this book. Ourfocus in this chapter is on how content-based retrieval of multimedia objects can be integrated intodatabase management systems as a primary access mechanism. In this context, we �rst explore the1

PREPRINT { Please don't distribute. 2support provided by existing object-oriented and object-relational systems for building multimediaapplications. We then identify limitations of existing systems in supporting content-based retrievaland summarize approaches proposed in the literature to address these limitations. We believethat this research will culminate in improved data management products that support multimediaobjects as \�rst-class" objects, capable of being e�ciently stored and retrieved based on theirinternal content.The rest of the chapter is organized as follows. In Section 2, we describe a simple modelfor content-based retrieval of multimedia objects, which is widely implemented and commonlysupported by commercial vendors. We use this model throughout the chapter to explain the issuesthat arise in integrating content-based retrieval into database management systems (DBMSs). InSection 3 we explore how the evolution of relational databases into object-oriented and object-relational systems, which support complex data types and user-de�ned functions, facilitates buildingmultimedia applications [104]. We apply the analysis framework of Section 3 to the Oracle, theInformix, and the IBM DB2 database systems in Section 4. The chapter then identi�es limitations ofexisting state-of-the-art data management systems from the perspective of supporting multimediaapplications. Finally, Section 5 outlines a set of research issues and approaches that we believeare crucial for the development of database technology providing seamless support for complexmultimedia information.2 A Model for Content-Based RetrievalTraditionally, content-based retrieval from multimedia databases was supported by describing mul-timedia objects with textual annotations [90, 101, 37, 58]. Textual information retrieval tech-niques [92, 61, 65, 35] were then used to search for multimedia information indirectly using theannotations. Such a text-based approach su�ers from numerous limitations, including the impossi-bility of scaling it to large data sets (due to the high degree of manual e�ort required to producethe annotations), the di�culty of expressing visual content (e.g., texture/patterns or shape in animage) using textual annotations, and the subjectivity of manually generated annotations.To overcome several of these limitations, a visual feature-based approach has emerged as apromising alternative, as is evidenced by several prototype [86, 52, 100] and commercial systems [38,33, 30, 6, 55]. In a visual feature-based approach, a multimedia object is represented using visualproperties; for example, a digital photograph may be represented using color, texture, shape, andtextual features. Typically, a user formulates a query by providing examples, and the systemreturns the \most similar" objects in the database. The retrieval consists of ranking the similaritybetween the feature-space representations of the query and of the images in the database. Thequery process can therefore be described by de�ning the models for objects, queries, and retrieval.2.1 Object ModelA multimedia object is represented as a collection of extracted features. Each feature may havemultiple representations, capturing it from di�erent perspectives. For instance, the color his-togram [105] descriptor represents the color distribution in an image using value counts, while thecolor moments [51] descriptor represents the color distribution in an image using statistical pa-rameters (e.g., mean, variance, and skewness). Associated with each representation is a similarityfunction that determines the similarity between two descriptor values. Di�erent representationscapture the same feature from di�erent perspectives. The simultaneous use of di�erent represen-tations often improves retrieval e�ectiveness [52], but it also increases the dimensionality of the

PREPRINT { Please don't distribute. 3Query������� HHHHHHj���	 @@@R ���	 @@@RO1 O2W1 W2W11 W12 W21 W22R11 R12 R21 R22 Oi = ith ObjectWi = importance of the ithObject relative tothe other query ObjectsWi;j = importance of Feature jof Object i relative toFeature j of other ObjectsRi;j = Representation ofFeature j of Object iFigure 1: Query Modelsearch space (which reduces retrieval e�ciency), and has the potential for introducing redundancy(which can negatively a�ect e�ectiveness.)Each feature space (e.g., a color histogram space) can be viewed as a multidimensional space,in which a feature vector representing an object corresponds to a point. A metric on the featurespace can be used to de�ne the dissimilarity between the corresponding feature vectors. Distancevalues are then converted to similarity values. Two popular conversion formulae are s = 1�d1 ands = exp(�d22), where s and d respectively denote similarity and distance. With the �rst formula,if d is measured using the Euclidean distance function, s becomes the cosine similarity betweenthe vectors, while if d is measured using the Manhattan distance function, s becomes the histogramintersection similarity between them. While cosine similarity is widely used in keyword-baseddocument retrieval, histogram-intersection similarity is common for color histograms. A number ofimage features and feature matching functions are further described in Chapters 8 to 19.2.2 Query ModelThe query model speci�es how a query is constructed and structured. Much like multimediaobjects, a query is also represented as a collection of features. One di�erence is that a user maysimultaneosly use multiple example-objects, in which case the query can be represented in eitherof the following two ways [89]:� Feature-based representation: The query is represented as a collection of features. Eachfeature contains a collection of feature representations with multiple values. The valuescorrespond to the feature descriptors of the objects.� Object-based representation: A query is represented as a collection of objects and eachobject consists of a collection of feature descriptors.In either case, each component of a query is associated with a weight indicating its relativeimportance.Figure 1 shows a structure of a query tree in an object-based model. In the �gure, the querystructure consists of multiple objects Oi and each object is represented as a collection of multiplefeature values Rij .1The conversion formula assumes that the space is normalized to guarantee that the maximum distance betweenpoints is equal to 1.

PREPRINT { Please don't distribute. 42.3 Retrieval ModelThe retrieval model determines the similarity between a query tree and objects in the database.The leaf level of the tree corresponds to feature representations. A similarity function speci�cto a given representation is used to evaluate the similarity between a leaf node (Rij) and thecorresponding feature representation of the objects in the database. Assume, for example, thatthe leaf nodes of a query tree correspond to two di�erent color representations | color histogramand color moments. While histogram intersection [105] may be used to evaluate the similaritybetween the color histogram of an object and that of the query, the weighted Euclidean distancemetric may be used to compute the similarity between the color moments descriptor of an objectand that of the query. The matching (or retrieval) process at the feature representation levelproduces one ranked list of results for each leaf of the query tree. These ranked lists are combinedusing another function to generate a ranked list describing the match results at the parent node.Di�erent functions may be used to merge ranked lists at di�erent nodes of the query tree, resultingin di�erent retrieval models. A common technique used is the weighted summation model. Let anode Ni in the query tree have children Ni1 to Nin. The similarity of an object O in the databasewith node Ni (represented as similarityi) is computed as:similarityi = nXj=1 wij similarityij where (1)nXj=1 wij = 1and similarityij is the measure of similarity of the object with the jth child of node Ni.Many other retrieval models to generate overall similarity between an object and a query havebeen explored in the literature. For example, in [82], a Boolean model suitably extended with fuzzyand probabilistic interpretations is used to combine ranked lists. A Boolean operator | AND (^),OR (_), NOT (:) | is associated with each node of the query tree, and the similarity is interpretedas a fuzzy value or a probability and combined with suitable merge functions. Desirable propertiesof such merge functions are studied by Fagin and Wimmers in [32].2.4 ExtensionsIn the previous section, we have described a simple model for content-based retrieval that willserve as the base reference in the remainder of the chapter. Many extensions are possible and havebeen proposed in the literature. For example, we have implicitly assumed that the user providesappropriate weights for nodes at each level of the query tree (re
ecting the importance of a givenfeature/node to the user's information need [92]). In practice, however, it is di�cult for a user tospecify the precise weights. An approach followed in some research prototypes (i.e., MARS [52],MindReader [57]) is to learn these weights automatically using the process of relevance feedback[89, 88, 91]. Relevance feedback is used to modify the query representation by altering the weightsand structure of the query tree to better re
ect the user's subjective information need.Another limitation of our reference model is that it focuses on representation and content-basedretrieval of images | it has limited ability to represent structural, spatial or temporal propertiesof general multimedia objects (i.e., multiple synchronized audio and video streams) and to modelretrieval based on these properties. Even in the context of image retrieval, the model describedneeds to be appropriately extended to support a more structured retrieval based on local/region-

PREPRINT { Please don't distribute. 5based properties. Retrieval based on local region-speci�c properties and the spatial relationshipsbetween the regions has been studied in many prototypes including [71, 17, 83, 99, 67].3 Overview of Current Database TechnologyIn this section, we explore how multimedia applications requiring content-based retrieval can bebuilt using existing commercial data management systems. Traditionally, relational database tech-nology has been geared towards business applications where data is largely in tabular form withsimple atomic attributes. Relational systems usually support only a handful of data types | anumeric type with its usual variations in precision,2 a text type with some variations in the as-sumptions about the storage space available,3 some temporal data types such as date and timewith some variations4. Providing support for multimedia objects in relational database systemsposes many challenges. First, in contrast to the limited storage requirements of traditional datatypes, multimedia data such as images, video, and audio are quite voluminous | a single recordmay span several pages. One alternative is to store the multimedia data in �les outside of theDBMS control with only pointers or references to the multimedia object stored in the DBMS. Thisapproach has numerous limitations since it makes the task of optimizing access to data di�cult,and furthermore prevents DBMS access control over multimedia types. An alternative solution isto store the multimedia data in databases as binary large objects (BLOBs), which are supportedby almost all commercial systems. BLOB is a data type used for data that does not �t into one ofthe standard categories, because of its large size or its widely variable length, or because the onlyneeded operation is storage, rather than interpretation, analysis or manipulation.While modern databases provide e�ective mechanisms to store very large multimedia objectsin a BLOB, BLOBs are uninterpreted sequences of bytes, which cannot represent the rich internalstructure of multimedia data. Such a structure can be represented in a DBMS using the support foruser-de�ned abstract data types (ADTs) o�ered by modern object-oriented and object-relationaldatabases. Such systems also provide support for user-de�ned functions (UDFs) or methods, whichcan be used to implement similarity retrieval for multimedia types. Similarity models, implementedas UDFs, can be called from within SQL allowing content-based retrieval to be seamlessly integratedinto the database query language. In the remainder of this section, we discuss the support for ADTs,UDF, and BLOBs in modern databases that provides the core technology for building multimediadatabase applications.3.1 User-De�ned Abstract Data TypesThe basic relational model requires tables to be in the �rst normal form [27] where every attributeis atomic. This poses serious limitations in supporting applications that deal with objects/datatypes with rich internal structure. The only recourse is to translate between the complex structureof the applications and the relational model every time an object is read or written. This resultsin extensive overhead making the relational approach unsuitable for advanced applications thatrequire support for complex data types.2Typically, numeric data can be of integral type, fractional data such as
oating point in various precisions, andspecialized money types such as packed decimal that retained high precision for detailed money transactions.3Notably, the char data type speci�es a maximum length of a character string and this space is always reserved.Varchar data in contrast occupies only the needed space for the stored character string and also has a maximumlength.4Variations of temporal data types include time, date, datetime sometimes with a precision speci�cation such asyear down to hours, timestamp used to mark a speci�c time for an event, and interval to indicate the length of time.

PREPRINT { Please don't distribute. 6These limitations of relational systems have resulted in much research and commercial develop-ment to extend the database functionality with rich user-de�ned data types in order to accommo-date the needs of advanced applications. Research in extending the relational database technologyhas proceeded along two parallel directions.The �rst approach, referred to as the object-oriented database (OODBMS) approach, attemptsto enrich object-oriented languages, such as C++ and Smalltalk, with the desirable features ofdatabases, such as concurrency control, recovery, and security, while retaining support for the richdata types and semantics of object-oriented languages. Examples of systems that have followed thisapproach include research prototypes such as [16] and a number of commercial products [7, 66].The object-relational database (ORDBMS) systems, on the other hand, approach the problemof adding additional data types by extending the existing relational model with the full-blown typehierarchy of object-oriented languages. The key observation was that the concept of domain ofan attribute need not be restricted to simple data types. Given its foundation in the relationalmodel, the ORDBMS approach can be considered a less radical evolution than the OODBMSapproach. The ORDBMS approach produced such research prototypes as Postgres [103], andStarburst [46] and commercial products such as Illustra [104]. The ORDBMS technology hasnow been embraced by all major vendors including Informix [53], IBM DB2 [22], Oracle [74],Sybase [107], and UniSQL [60] among others. The ORDBMS model has been incorporated in theSQL-3 standards.While OODBMSs provide the full power of an object-oriented language, they have lost groundto ORDBMSs. Interested readers are referred to [104] for good insight from both a technical andcommercial perspective into reasons for this development. In the remainder of this chapter, we willconcentrate on the ORDBMS approach.The object-relational model retains relational model concepts of tables and columns in tables.Besides the basic types, it provides for additional user-de�ned abstract data types (ADTs), as wellas collections of basic and user-de�ned types. The functions that operate on these ADTs, knownas User-De�ned Functions (UDFs), are written by the user and are equivalent to methods in theobject-oriented context. In the object-relational model, the �elds of a table may correspond to basicDBMS data types, to other ADTs, or can even just contain storage space whose interpretation isentirely left to the user-de�ned methods for the type [53]. The following example illustrates how auser may create an ADT and include it in a table de�nition:create type ImageInfoType (date varchar(12) ,location latitude real ,location longitude real)create table SurveyPhotos (photo id integer primary key not null,photographer varchar(50) not null,photo location ImageInfoType not null,photo blob not null)The type ImageInfoType de�nes a structure to store the location at which a photograph was takentogether with the date stored as a string. This can be useful for nature survey applications wherea biologist may wish to attach a geographic location and a date to a photograph. This abstractdata type is then used to create a table with an id for the photograph, the photographer's name,the photograph itself (stored as a BLOB), and the location and date when it was taken.ORDBMSs extend the basic SQL language to allow user-de�ned functions (once they are com-piled and registered with the DBMS) to be called directly from within SQL queries, thereby pro-viding a natural mechanism to develop domain-speci�c extensions to databases. The followingexample shows a sample query that calls a user-de�ned function on the type declared above:

PREPRINT { Please don't distribute. 7select photographer, convert to grayscale(photo)from SurveyPhotoswhere within distance(photo location,'1', '30.45, -127.0')This query returns the photographer and a gray-scale version of the image stored in the table. Thewithin distance UDF is a predicate that returns true if the place where the image was shot is within1 mile of the given location. This UDF ignores the date the picture was taken, demonstrating howpredicates are free to implement any semantically signi�cant properties of an application. Notethat the UDF convert to grayscale to convert the image to gray-scale is not a predicate since it isapplied to an attribute in the select clause and returns a gray-scale image.ADTs also provide for type inheritance and, as a consequence, polymorphism. This introducessome problems in the storage of ADTs, as existing storage mangers assume that all rows in a tableshare the same structure. Several strategies have been developed to cope with this problem [39],including dynamic interpretation, and using distinct physical tables for each possible type of alarger, logical table. Section 5.1 contains more details on this topic.3.2 Binary Large ObjectsAs mentioned previously, binary large objects (BLOBs) are used for data that does not �t into anyof the conventional data types supported by a DBMS. BLOBs are used as a data type for objectsthat are either large, have wildly varying size, cannot be represented by a traditional data type,or whose data might be corrupted by character table translation.5 Two main characteristics setBLOBs apart from other data types: they are stored separately from the record [23] and their datatype is just a string of bytes.BLOBs are stored separately due to their size: if placed in-line with the record, they couldspan multiple pages and hence introduce loss of clustering in the table storage. Furthermore,applications may frequently only choose to access other attributes and not BLOBs | or accessBLOBs selectively based on other attributes. Indeed, BLOBs have a di�erent access pattern thanother attributes. As observed in [59], it is unreasonable to assume that applications will readand/or update all the bytes belonging to a BLOB at once. It is more reasonable to assume thatonly portions or substrings (byte or bit) will be read or updated during individual operations. Tocope with such an access pattern, many DBMSs distinguish between two types of BLOBs:� regular BLOBs, in which the application receives the whole data in a host variable all at once,and� smart BLOBs, in which the application receives a handle, and uses it to read from the BLOBusing the well-known �le system interfaces open, close, read, write, and seek. This allows�ne-grained access to small parts of the BLOB.Besides the above two mechanisms to deliver BLOBs from the database to applications (that is,either via whole chunks or via a �le interface), a third option of a streaming interface is also possible.Such an interface is important for guaranteeing timely delivery of continuous media objects, such5Most DBMSs support data types that could be used to store objects of miscellaneous types. For example, asmall image icon can be represented using a varchar type. The icon would be stored in-line with the record insteadof separately (as would be the case if the image icon is stored as a BLOB). Even though there may be performancebene�ts from storing the icon in-line (say it is very frequently accessed), it may still not be desirable to store itas a varchar since the icon may get corrupted in transmission and interpretation across di�erent hardware (due tothe di�erences in character set representation across di�erent machines). Such data types, sensitive to charactertranslation, should be stored as BLOBs.

PREPRINT { Please don't distribute. 8as audio or video. Currently, to the best of our knowledge, no DBMS o�ers a streaming interface toBLOBs. Continuous media objects are stored outside the DBMSs in specialized storage servers [13]and accessed from applications directly and not through a database interface. This may, however,change with the increasing importance of continuous media data in enterprise computing.BLOBs present an additional challenge during query processing. Unless a BLOB is part ofa query predicate, it is best to avoid the inclusion of the corresponding column during queryprocessing, since it saves an extra �le access during processing, and, more importantly, since BLOBs,due to their size, tend to thrash the database bu�ers used for query processing. For this reason,BLOB handles are often used and, when the user requests the BLOB content, separate databasebu�ers are used to complete this transfer.For access control purposes, BLOBs are treated as a single atomic �eld in a record. LargeBLOBs could, in principle, be shared by multiple users, but the most �ne grained locking unitin current databases is a tuple (or row) lock, which simultaneously locks all the �elds inside thetuple, including the BLOBs. Some of the SQL extensions needed to support parallel operationsfrom applications into database systems are discussed in [41].3.3 Support for Extensible IndexingWhile user-de�ned ADTs and UDFs provide adequate modeling power to implement advancedapplications with complex data types, the existing access methods that support the traditionalrelational model (i.e., B-tree and hashing) may not provide e�cient retrieval of these data types.Consider, for example, a data type corresponding to the geographical location of an object. Aspatial data structure such as an R-tree [45] or a grid �le [72] might provide a much more e�cientretrieval of objects based on spatial location than a collection of B-trees each indexing a separatespatial dimensions. Access methods that exploit the semantics of the data type may reduce the costof retrieval. As discussed in Chapters 14 and 15, this is certainly true for multimedia types suchas images where features (i.e., color, texture, and shape) used to model image content correspondto high-dimensional feature spaces. Retrieval of multimedia objects based on similarity in thesefeature spaces cannot be adequately supported using B-trees or, for that matter, common multi-dimensional data structures such as R-tree and region quad-tree that are currently supported bycertain commercial DBMSs. Specialized access methods (see Chapter 14) need to be incorporatedinto the DBMS to support e�cient content-based retrieval of multimedia objects.Commercial ORDBMS vendors support extensible access methods [11, 102] since it is notfeasible to provide native support for all possible type-speci�c indexing mechanisms. These type-speci�c access methods can then be used by the query processor to access data (that is, implementtype speci�c UDFs) e�ciently. While these systems support extensibility at the level of accessmethods, the interface exported for this purpose is at a fairly low level and requires that accessmethod implementors write their own code to pack records into pages, maintain links between pages,handle physical consistency as well as concurrency control for the access method etc. This makesaccess method integration a daunting task. Other (cleaner) approaches to adding new type-speci�caccess methods are currently a topic of active research [47] and will be discussed in Section 5.2.3.3.4 Integrating External Data SourcesMany data sources are external to database systems, therefore it is important to extend queryingcapabilities to such data. This can be accomplished by providing a relational interface to externaldata and making it look like tables, or by storing external data in the database while maintainingan external interface for traditional applications to access the data. These two approaches are

PREPRINT { Please don't distribute. 9discussed next in more detail.External data can be made to appear as an internal database table by registering user-de�nedfunctions that access resources external to the database server, even including remote services suchas search engines, remote servers, etc. For example, Informix has extended its Universal Server too�er the capability of \Virtual Tables" (VTI), in which the user de�nes a set of functions designedto access an external entity and make it appear to be a normal relational table suitable for searchingand updating. Similarly, DB2 uses table functions and special SQL TABLE operators to simulatethe existence of an internal table. The primary aim of the table functions is to access externalsearch engines to assist DB2 in computing the answers for a query. A detailed discussion of theirsupport is found in [28].Another approach to integrate external data is based on the realization that much unstructureddata (up to 90%) resides outside of DBMSs. This led several vendors to develop a way to extendtheir database o�erings to incorporate such external data into the database while maintaining itscurrent functional characteristics intact. IBM developed an extension to their DB2 database namedDatalinks, in which a DBMS table can contain a column, which is an \external �le." This �le isaccessible by the table it logically resides in, and through the traditional �le system interface. Usershave the illusion of interacting with a �le system with traditional �le system commands while thedata is stored under DBMS control. In this way, traditional applications can still access theirdata �les without restrictions, and enjoy the recovery and protection bene�ts of the DBMS. Thisfunctionality implies protection against data corruption.Similarly, the Oracle Internet File System [79, 78] addresses the same problem by modifyingthe �le system to store �les in database tables as BLOBs. The Oracle Internet File System is ofinterest here because it allows normal users, including web servers, to access images through �lesystem interfaces, while retaining all DBMS advantages.These advantages translate into small changes to existing delivery infrastructure such as webservers and text processing programs, while retaining advanced functionality including searching,storage management and scalability.3.5 Commercial Extensions to DBMSsWe have discussed the evolution of the traditional relational model to modern extensible databasetechnology that supports user-de�ned abstract data types and functions, and the ability to callsuch functions from SQL. These extensions provide a powerful mechanism for third-party vendors todevelop domain-speci�c extensions to the basic data management system. Such extensions are calledDatablades in Informix, Data Cartridges in Oracle, and Extenders in DB2. Many Datablades arecommercially available for the Informix Universal Server | some of which are shipped as standardpackages while others can be purchased separately. Example Datablades include the Geodeticdatablade that supports all the important data types and functions for geospatial applications,and includes an R-tree implementation for indexing spatio-temporal data types. Other Databladesavailable are the Timeseries Datablade for time-varying numeric data such as stocks, the WebDatablade that provides a tight coupling between the database server and a web server, and a VideoFoundation Datablade to handle video �les, among others. Similar Cartridges and Extenders arealso available for Oracle and DB2 respectively.Besides commercially available Datablades/Cartridges/Extenders, users can develop their owndomain-speci�c extensions. For this purpose, each DBMS supports an API that a programmermust conform to in developing the extensions. Details of the API o�ered by Informix can be foundin [54]. The API supported by Oracle (referred to as the Oracle Data Cartridge Interface (ODCI))is discussed in [77].

PREPRINT { Please don't distribute. 10While each of the di�erent systems (that is, Informix, Oracle, and DB2) support the notionof extensibility, they di�er somewhat in the degree of control and protection o�ered. Informixsupports extensibility at a low level with very �ne-grained access to the database server. Thereare a considerable number of hooks into the server to customize many aspects of query processing.For example, for predicates involving user-de�ned functions over user-de�ned types6 the predicatefunctions have access to the conditions in the where clause itself. This level of access allows forvery
exible functionality and speed, at a certain cost in safety | Informix relies on the developersof Datablades to follow their protocol closely and not do any damage. Another feature o�ered bythe Informix Datablade API is allowing UDFs to acquire and maintain memory across multipleinvocations. Memory is released by the server based on the duration speci�ed by the data type(i.e., transaction duration, query duration, etc.). Such a feature simpli�es the task of implementingcertain user-de�ned functions (i.e., user-level aggregation and grouping operators).While Informix o�ers a potentially more powerful model for extensibility, IBM DB2 is the onlysystem that isolates the server from faults in UDFs by allowing the execution of UDFs in their ownseparate address space [22] in addition to the server address space. With this �ne-grained faultcontainment, errors in UDFs will not bring the database server o�-line.4 Image Retrieval Extensions to Commercial DBMSsIn this section, we discuss the image retrieval extensions available in commercial systems. Wespeci�cally explore the image retrieval technologies supported by Informix Universal Server, Oracle,and IBM DB2 products. These products o�er a wide variety of desirable features designed toprovide integrated image retrieval in databases. We illustrate some of the functionalities o�ered bydiscussing how applications requiring image retrieval can be built in these systems. While othervendors support a subset of the desired technologies, none integrate them to the same degree |resulting in a large e�ort on the part of customers wishing to create multimedia applications.To demonstrate how image retrieval applications can be built using database extensions forcommercial DBMSs, we will use a very simple example of a digital catalog of color pictures. In thisapplication, a collection of pictures, is stored into a table. For each picture, the photographer anddate are stored into a table. The basic table schema is:� photo id: an integer number to identify the item in the catalog� photographer: a character string with the photographer's name� date: the date the picture was taken, for simplicity we will use a character string instead ofa date datatype� photo: the photo image and its necessary features for retrievalThe implementation of the photo attribute changes depending on the product and is described inthe following subsections. In addition to these attributes, any additional attributes, tables andsteps necessary to store such a catalog in the database and execute content-based retrieval querieswill be illustrated in the subsections below corresponding to the three systems discussed.4.1 Informix Image Retrieval DatabladeThe Informix system includes a complete media asset management suite (called Informix Me-dia360(TM) [56]) to manage digital content in a central repository. The product is designed to6These are special user-de�ned functions declared as operators.

PREPRINT { Please don't distribute. 11handle any media type, including images, maps, blueprints, audio, and video, and is extensible tosupport additional media types. It manages the entire life cycle of media objects, from production,to delivery, to archiving, including access control and rights management. The product is integratedwith image, video, and audio catalogers and image, video key-frame, and audio content-based searchfunctionality. This suite includes asset management software and a number of content-speci�c Dat-ablades to tackle datatype-speci�c needs. The Excalibur Visual Retrievalware Datablade [55] isone such type-speci�c Datablade that manages the storage, transcoding and content-based searchof images. The image Datablade is also used for video key-frame search. Image retrieval based oncolor, texture, shape, brightness layout, color structure and image aspect ratio is supported. Colorrefers to the global color content of the image (i.e., regardless of its location). Texture seeks todistinguish such properties as smoothness or graininess of a surface. Shape seeks to express theshape of objects in an image: for example a balloon is a circular shape. Brightness layout capturesthe relative energy in an image based on its location in the image, and similarly, color structureseeks to localize the color properties to regions of the image.For each image in the database, a similarity score is computed to determine the degree towhich that image satis�es the query. All feature-to-feature matches are weighted with user-suppliedweights and combined into a �nal score. Only those images with a score above a given similaritythreshold are returned to the user and the remaining images are deemed not relevant to the query.The Datablade supports datatypes to store images and their image feature vectors. Feature vectorscombine all the feature representations supported into a single attribute for the whole image.Therefore, no sub-image or region searching is possible.In order to build an image retrieval application using the image datablade in Informix, thefollowing tasks must be performed:1. Install Informix with the Universal Data Option and the Excalibur Visual RetrievalwareDatablade product, then con�gure the necessary table and index storage space in the server.2. Create a Database to store all tables and auxiliary data needed for our example. We will callthis the Gallery database.CREATE DATABASE Gallery;3. Create a table with the desired �elds, of which two are for the image retrieval. Following ourexample, this statement creates such a table:CREATE TABLE photo collection (photo id integer primary key not null,photographer varchar(50) not null,date varchar(12) not null,photo IfdImgDesc not null,fv IfdFeatVect)The photo �eld stores the image descriptor and the fv �eld stores the feature vector for theimage, which will be used for content-based search.4. Insert data into the table with all the values except for the fv �eld, which will be �lledelsewhere:INSERT INTO photo collection (photo id, photographer, date, photo) VALUES(3, 'Ansel Adams', '03/06/1995',IfdImgDescFromFile('/tmp/03.jpg'))

PREPRINT { Please don't distribute. 12Notice that the feature vector attribute was not speci�ed and thus retains a value of NULL.More photo collection entries can be added using this method.5. At a later time, the features are extracted to populate the fv attribute in the table:UPDATE photo collectionSET fv = GetFeatureVector(photo)WHERE fv IS NULLThis command sets the feature vector attribute for tuples where the features have not yetbeen extracted, i.e., where the fv attribute is NULL. The features are extracted from eachphoto with the GetFeatureVector user-de�ned function that is part of the Datablade. Manu-ally extracting the feature information and updating it in the table is desirable if many imagesare loaded quickly and feature extraction can be performed at a later time. An alternative tomanual feature extraction is to automatically extract the features when each tuple is insertedor updated. To accomplish this, a database trigger can be created that will automaticallyexecute the above statement whenever there is an update to the tuple.Once the Images are loaded and the features extracted, the Resembles function is used to retrievethose images similar to a given image. The Resembles function accepts a number of parameters:� The database image and query feature vectors to be compared.� A real number between 0 and 1 that is a cut o� threshold in the similarity score. Only imagesthat match with a score higher than the threshold are returned. We refer to such a cuto� asthe alpha cut value.� A weighting value for each of the features used. The weights do not have to add up to anyparticular value, but taken together, they cannot exceed 100. Weights are relative, so theweights (1,1,1,1,2,1) and (5,5,5,5,10,5) are equivalent.� An output variable that contains the returned match score value.� Query the photo collection table with an example-image.The user provides an image feature vector as a query template. This feature vector can eitherbe stored in the table, or correspond to an external image. Using a feature vector for animage already in the table requires a self join to identify the query feature vector. A featurevector for an external image requires calling the GetFeatureVector user-de�ned function.The �rst example uses an image already in the table (the one with image id 3) as the queryimage:SELECT g.photo id, scoreFROM photo collection g, photo collection sWHEREs.photo id = 3ANDResembles(g.fv, s.fv, 0.0, 1, 1, 1, 0, 0, 0, score #REAL)ORDER BY scoreThe Resembles function takes two extracted feature vectors (here g.fv and s.fv), computes asimilarity score, and compares it to the indicated threshold. In this example, the threshold is0.0, which means all images will be returned to the user. Following the threshold, six valuesin the argument list identify the weights for each of the features. Here, only the �rst three

PREPRINT { Please don't distribute. 13features (color, shape and texture) are used, while the remaining three are unused (theirweights are set to 0). The last parameter is an output variable named score of type REAL,which contains the similarity score for the image match between the query feature vector s.fvand the images stored in the table. The score is then used to sort the result vectors to providea ranked output.The next example uses an external image as the query image with all features used formatching, and a non-zero threshold speci�ed:SELECT photo id, scoreFROM photo collectionWHERE Resembles(fv,GetFeatureVector(IfdImgDescFromFile('/tmp/03.jpg')),0.80, 10, 30, 40, 10,5, 5, score #REAL)ORDER BY scoreNote how the features are extracted in-situ by the GetFeatureVector function and passed tothe Resembles function to compute the score between each image and the query image. Inthis query, only those images with a match score greater than 0.8 will be returned.4.2 DB2 UDB Image ExtenderIBM o�ers a full content management suite that, like the Media Asset Management Suite of In-formix, provides a range of content administration, delivery, privilege management, protection, andother services. The IBM Content Manager product has evolved over a number of years, incorpo-rating technology from several sources including OnDemand, DB2 Digital Library, ImagePlus, andVideoCharger. The early focus of these products was to provide integrated storage for and access todata of diverse types (i.e., scanned handwritten notes, images, etc.). These products, however, onlyprovided search based on meta-data. For example, searching was supported on manually enteredattributes associated with each digitized image, but not on the image itself. This, however, changedwith the conversion of the IBM QBIC7 prototype image retrieval system into a DB2 Extender. DB2now o�ers integrated image search from within the database via the DB2 UDB Image Extender,which supports several color and texture feature representations.In order to build the image retrieval application using the Image Extender, the following tasksneed to be performed:1. Install DB2 and the Image Extender, and con�gure the necessary storage space for the server.This installs a number of extender supplied user-de�ned distinct types and functions.2. Create a Database to store all tables and auxiliary data needed for our example. We will callthis the Gallery database.CREATE DATABASE Gallery;7QBIC [38], standing for Query By Image Content, was the �rst commercial content-based Image Retrieval systemand was initially developed as an IBM research prototype. Its system framework and techniques had profounde�ects on later Image Retrieval systems. QBIC supports queries based on example images, user-constructed sketchesand drawings and selected color and texture patterns. The color features used in QBIC are the average (R,G,B),(Y,i,q),(L,a,b) and MTM (Mathematical Transform to Munsell) coordinates, and a k element Color Histogram. Itstexture feature is an improved version of the Tamura texture representation [108], i.e., combinations of coarseness,contrast and directionality. Its shape feature consists of shape area, circularity, eccentricity, major axis orientationand a set of algebraic moments invariants.

PREPRINT { Please don't distribute. 143. Enable the Gallery database for Image searches. From the command line (not the SQLinterpreter) use the Extender manager and execute:db2ext ENABLE DATABASE Gallery FOR DB2IMAGEThis example uses the DB2 UDB version for UNIX and Microsoft Windows operating systems.4. Create a table with the desired �elds:CREATE TABLE photo collection (photo id integer PRIMARY KEY NOT NULL,photographer varchar(50) NOT NULL,date varchar(12) NOT NULL,photo DB2IMAGE)5. Enable the table photo collection for content-based image retrieval. This step again uses theexternal Extender manager, and is composed of several substeps.� Set up the main table, create auxiliary tables and indexes.db2ext ENABLE TABLE photo collection FOR DB2IMAGE USING TSP1,,LTSP1This creates some auxiliary support tables used by the Extender to support image re-trieval for the photo collection table. These tables are stored in the database table-spacenamed \TSP1" while the supporting large objects (BLOBs) are stored in the \LTSP1"table-space. The necessary indexes on auxiliary tables are also created in this step.� Enable the photo column for content-based image retrieval. This step again uses theexternal Extender manager.db2ext ENABLE COLUMN photo collection photo FOR DB2IMAGEThis makes the photo column active for use with the Image Extender and creates triggersthat will update the auxiliary administrative tables in response to any change (insertion,deletion, update) to the data in table photo collection.� Create a catalog for querying the column by image content. This is done with theextender manager.db2ext CREATE QBIC CATALOG photo collection photo ONThis creates all the support tables necessary to execute a content-based image query.The keyword ON indicates that the cataloging process (i.e., the feature extraction) willbe performed automatically, otherwise, periodic manual re-cataloging is necessary.� Open a catalog for adding features, for which feature extraction is to take place; onlythose features present in the catalog will be available for querying. Using the Extendermanager, we issue the following command.db2ext OPEN QBIC CATALOG photo collection photo� Add those features for which feature extraction should take place to the catalog. Herewe will add all four supported features.db2ext ADD QBIC FEATURE QbColorFeatureClassdb2ext ADD QBIC FEATURE QbColorHistogramFeatureClassdb2ext ADD QBIC FEATURE QbDrawFeatureClassdb2ext ADD QBIC FEATURE QbTextureFeatureClassThese correspond to Average Color, Histogram Color, Positional Color, and Texture.

PREPRINT { Please don't distribute. 15Not all features need to be present, including unnecessary features will only decreaseperformance.� Close the catalog.db2ext CLOSE QBIC CATALOG6. Insert into the photo collection table. The examples presented here use embedded SQL toaccess a DB2 database server.EXEC SQL BEGIN DECLARE SECTION;long int Stor;long the id;EXEC SQL END DECLARE SECTION;the id = 1; /* the image id */int Stor = MMDB STORAGE TYPE INTERNAL;EXEC SQL INSERT INTO photo collection VALUES(:the id, /* id */'Ansel Adams', /* name */'6/9/2000', /* date */DB2IMAGE(/* Image Extender UDF*/CURRENT SERVER, /* database server name */'/images/pic.jpg' /* image source file*/'ASIS', /* keep image format*/:int Stor, /* store in DB as BLOB*/'BW Picture') /* comment*/);This insert populates the image data in the auxiliary tables and stores an image handle intothe photo collection table. The DB2IMAGE user-de�ned function uses the current server,reads the image located in /images/pic.jpg, and stores it in the server as speci�ed by theint Stor variable. The image is stored without a format change, and the discovery of theimage format is left to the Image Extender, this is speci�ed by the ASIS option. Features areextracted and stored for the image. The comment BW picture is attached to the image inthe auxiliary tables. The DB2IMAGE user-de�ned function o�ers several di�erent parameterlists (that is, it is an overloaded function), to support di�erent sources to import images.7. Query the photo collection table with an example-image.SELECT T.photo id, T.photographer, S.SCOREFROM photo collection T,TABLE (QbScoreTBFromStr('QbColorFeatureClass color=<255,0,0> 2.0 andQbColorHistogramFeatureClass file=<server,"/img/pic1.gif"> 3.0 andQbDrawFeatureClass file=<server,"/img/pic1.gif"> 1.0 andQbTextureFeatureClass file=<server,"/img/pic1.gif"> 0.5',photo collection,photo,100)) AS SWHERE CAST(S.IMAGE ID as varchar(250)) = CAST(T.photo as varchar(250))This query uses the image stored in /img/pic1.gif as a query image and uses all four fea-tures. The QbScoreTBFromStr user-de�ned function takes a query string, an enabled table(photo collection), a column (photo) name, and a maximum number of images to return.

PREPRINT { Please don't distribute. 16This user-de�ned function returns a table with two columns. The �rst column is named IM-AGE ID and contains the image handle used by the Image Extender in the original table (.e.,table photo collection). The second column is named SCORE and is a numeric value, whichdenotes the query to image similarity score interpreted as a distance. A score of 0 denotes aperfect match and higher values indicate progressively worse matches.The query string is structured as an and separated chain of feature name, feature value,feature weight triplets. The feature name indicates which feature to match. The featurevalue is a speci�cation of the value for the desired feature and can be speci�ed in severalways: (1) literally specifying the values, which is cumbersome as it requires that the userknow the internal representation of each feature, (2) an image handle returned by the imageExtender itself so an already stored image can be used as the query, and (3) an external �le,for which the features are extracted and used. The above example uses the �rst approach forthe average color feature, specifying an average color of red. The remaining three featuresuse the third approach and use an external image, from which features are extracted for thequery. The feature weight indicates the weight for this feature and is relative to the otherfeatures | if a weight is omitted, then a default value of 1.0 is assumed.The table returned by the QbScoreTBFromStr user-de�ned function is joined on the imagehandle with the photo collection table to retrieve the photo id and photographer attributesand keep the score of the image match with the query.4.3 Oracle Visual Image Retrieval CartridgeLike Informix and IBM, Oracle supports a comprehensive media management framework namedOracle Intermedia that incorporates a number of technologies. Oracle Intermedia is designed withthe objective of managing diverse media by providing many services from long term archival, tocontent-based search of text and images, to video storage and delivery. The Oracle Intermediamedia management suite [75] contains a number of products designed to manage rich multimediacontent particularly in the context of the web. Speci�cally, it includes components to handle audio,image and video data types. A sample application for this product would be an online music storethat wishes to o�er music samples, photos of the CD cover and performers, and a sample videoof the performers. Intermedia is a tool box that includes a number of object-relational datatypes,indices, etc. that provide storage and retrieval facilities to web servers and other delivery channelsincluding streaming video and audio servers. The actual media data can be stored in the server forfull control, or externally, without full transactional support in a �le system, web server, streamingserver or other user-de�ned source. Functions implemented by this suite include among others,dynamic image transcoding to provide both thumbnails and full resolution images to the clientupon request. As part of the Intermedia suite, the Oracle Visual Image Retrieval (VIR) productsupplied by Virage [6, 44, 76]8 provides image search capabilities.VIR supports matching on global color, local color, texture, and structure. Global color capturesthe images global color content, while local color takes into account the location of the color inthe image. Texture distinguishes di�erent patterns and nuances in images such as smoothnessor graininess. Structure seeks to capture the overall layout of a scene such as the horizon in aphoto, or the tall vertical boxes of skyscrapers. The product supports arbitrary combinations ofthe supported feature representations as a query. Users can adjust the weights associated with thefeatures in the query according to the aspects they wish to emphasize. A score that incorporatesthe matching of all features is computed for each image via a weighted summation of the individual8Virage also provided a version of its image retrieval system to Informix and is supported as a Datablade.

PREPRINT { Please don't distribute. 17feature matches. The score is akin to the distance between two images where lower (positive) valuesindicate higher similarity, while larger values indicate lower similarity. Only those images with ascore below a given threshold are returned, and the remaining images are deemed not relevantto the query. Oracle Visual Image Retrieval uses a proprietary index to speed up the matchingreferred to as an index of type ORDVIRIDX.We now specify the steps needed to build an image retrieval application. The example codepresented below uses Oracles PL/SQL language extensions. PL/SQL is a procedural extension toSQL. To support image retrieval the following steps are required:1. Have Oracle8i Enterprise Edition and the Visual Image Retrieval product installed and suit-ably con�gured storage table-spaces.2. Create a Database to store all tables and auxiliary data needed for our example. We will callthis the Gallery database.CREATE DATABASE Gallery;3. Create a table with the desired attributes and the image datatype.CREATE TABLE photo collection (photo id number PRIMARY KEY NOT NULL,photographer VARCHAR(50) NOT NULL,date VARCHAR(50) NOT NULL,photo ORDSYS.ORDVir);4. Insert images into the newly created table. In Oracle this will be done through their PL/SQLlanguage as there are multiple steps to insert an image.DECLAREimage ORDSYS.ORDVIR;the id NUMBER;BEGINthe id :=1; -- use a serial numberINSERT INTO photo collection VALUES (the id, 'Ansel Adams', '03/06/1995',ORDSYS.ORDVIR(ORDSYS.ORDImage(ORDSYS.ordsource(empty BLOB(), 'FILE', 'ORDVIRDIR', 'the image.jpg', sysdate, 0),NULL, NULL, NULL, NULL, NULL, NULL, NULL), NULL));SELECT photo INTO imageFROM photo collectionWHERE photo id = the idFOR UPDATE;image.SetProperties;image.import(NULL);image.Analyze;UPDATE photo collectionSET photo = imageWHERE id = the id;ENDThe insert command only stores an image descriptor, not the image itself. To get the image,�rst its properties have to be determined using the SetProperties command. Then theimage itself is loaded in with the import(NULL) command and its features extracted with theAnalyze command. Lastly the table is updated with the image and its extracted features.

PREPRINT { Please don't distribute. 185. Create an index on the features to speed up the similarity queries.CREATE INDEX imgindexON catalog photos(photo.signature)INDEXTYPE IS ordsys.ordviridxPARAMETERS ('ORDVIR DATA TABLESPACE = tbs 1,ORDVIR INDEX TABLESPACE = tbs 2');Here tbs 1 and tbs 2 are suitable table-spaces that provide storage.6. Query the catalog photos table.The following example selects images that are similar to an image already in the table withid equal to 3.SELECT T.photo id, T.photo, ORDSYS.VIRScore(50) SCOREFROM catalog photos T, catalog photos SWHERES.photo id = 3ANDORDSYS.VIRSimilar(T.photo.signature, S.photo.signature,'globalcolor="0.2" localcolor="0.3" texture="0.1" structure="0.4" ',20.0, 50)=1;This statement returns three columns, the �rst one is the id of the returned image, the secondcolumn is the image itself, and the third column is the score of the similarity between thequery image and the result image (the parameter to the VIRScore function is discussed be-low). The query does a self join to fetch the value S.photo.signature for the image with an id of3, which is the signature of the query image. The image similarity computation is performedby the VIRSimilar function in the query condition. This function has �ve arguments:� T.photo.signature, the compared images features.� S.photo.signature, the query image features.� A string value that describes the features and weights to be used in matching. Thisexample has the string:'globalcolor="0.2" localcolor="0.3" texture="0.1" structure="0.4" 'The value 0.0 for a weight indicates the feature is unimportant and the value 1.0 indicatesthe highest importance for that feature. Only those features listed are used for matching.If, for example, global color is not needed, then it may be removed from the list. Inthis example, all features are used and their weights are 0.2 for global color, 0.3 for localcolor, 0.1 for texture and 0.4 for structure.� The fourth parameter is a threshold for deciding which images are similar enough tothe query signature to be returned for the query. The Image Retrieval Cartridge uses adistance interpretation of similarity. A score of 0 indicates the signatures are identical,while scores higher than 0 indicate progressively worse matches. In this example, thethreshold value is 20.0, i.e., those images with a score larger than 20.0 will not be returnedin response to the query.� The last value is optional and is used to recover the computed similarity score. The alertreader may have noticed that the VIRSimilar function is in a where clause, a Booleancondition, and therefore must return true or false, as opposed to the computed similarityscore. The function returns true if the computed score is below the threshold, and falseotherwise. If the query wishes to list for each retrieved image its similarity score to the

PREPRINT { Please don't distribute. 19query, as is the case here, a di�erent mechanism is needed to retrieve the score elsewherein the query. This parameter value is thus used to uniquely identify the similarity score(computed by the VIRSimilar function) within the query in order to make it availableelsewhere in the query through the use of the VIRScore function. VIRScore retrievesthe similarity score by providing the same number as in the VIRSimilar function. Thiskey-based identi�cation mechanism enables multiple calls to scoring functions within thesame query.The �nal step in the query is to sort the result in increasing order of SCORE such that themost similar image will be the �rst one returned.This example uses an image already in the table as the query image, but an external imagemay also be used. To do this, extra steps are needed similar to the insert command wherean external image is read in and its features extracted and used in the VIRSimilar function.This scenario does not require a self join as the query feature vector is directly accessible.Additional functionality is provided by a third-party software package from Visual Technology.This component supports special-purpose operators for searching for human faces among imagesstored in the database . Besides image search, the Visual Image Retrieval package o�ers a number ofadditional operational options such as image format conversion and on-demand image transcodingof query results.4.4 DiscussionWe have discussed the extensions supported for incorporating images and multimedia into databasesby three of the major DBMS vendors. All the vendors discussed o�er media asset management suitesto archive and manage digital media. Their o�erings di�er in the details of their composition, scopeand source (i.e., third party vs. home grown) and their maturity. The image retrieval capabilities ofall vendors are roughly comparable. Despite minor administrative di�erences in table and columnsetup, once the tables and permissions are set properly, the insertion and querying process iscomparable. Each of the image retrieval products discussed above essentially supports the basecontent-based image retrieval model discussed in Section 2. There is, however, one di�erence.Recall that in Section 2, the model permits several query-example images, but so far in thissection, we only considered single-example-image queries. Multiple example-image query support isbeyond the current query model implemented by these vendors, but is not impossible to implement.Indeed, the model can be incorporated in a query, albeit in an exposed fashion. Exposed, becausenow the user writing the query is exposed to the retrieval model and is responsible for formulatinga query properly. To see how such a query can be speci�ed, we will use Informix as an example:SELECT photo id, (score1 * 0.6 + score1 * 0.4) as scoreFROM photo collectionWHERE Resembles(fv,GetFeatureVector(IfdImgDescFromFile('/img/query1.jpg')),0.60, 10, 30, 40, 10, 5, 5, score1 #REAL)AND Resembles(fv,GetFeatureVector(IfdImgDescFromFile('/img/query2.jpg')),0.60, 20, 20, 20, 5, 5, 5, score2 #REAL)ORDER BY scoreThis query uses two external images, query1.jpg and query2.jpg and computes the score betweeneach individual image in the table and the query1.jpg and query2.jpg image feature vectors fv result-ing in one score for each of the two example-images. Then it combines both scores with a weighted

PREPRINT { Please don't distribute. 20Queryquery1.jpg query2.jpgv11 v12 v13 v14 v15 v16 v21 v22 v23 v24 v25 v26������+ ����	 �����
 BBBBBN@@@@RQQQQQQs ������+ ����	 �����
 BBBBBN@@@@RQQQQQQs1030 40 5510 2020 20 555��������) PPPPPPPPq0.6 0.4
Figure 2: Query examplesummation with 60% of weight for query1.jpg and 40% of the weight to query2.jpg. Notice thatboth Resembles function calls specify a threshold of 0.60 and that they use di�erent weights fordi�erent features. Figure 2 shows the query tree that corresponds to this example. In this �gure,the leaf nodes correspond to actual values vij for the query image i and the feature j.It is not clear if the feature-based model described in Section 2 can be supported by existingsystems. Furthermore, we note that none of the products currently available is powerful enough tosupport region-based image retrieval, relevance feedback mechanisms, or \merge" functions otherthan weighted summation at di�erent levels of the query tree. Extending image retrieval with thesefunctionalities is a signi�cant research challenge, which the research community has yet to address.Finally, we note that the above description of the image extensions to commercial DBMSsis certainly not complete. Besides content-based image retrieval, products include many functionsthat are designed to handle operational considerations, such as image format conversions and imageprocessing. Interested readers are referred to the product manuals.5 Current ResearchThe advent of object-relational technology has greatly facilitated the building of content-basedimage retrieval applications on top of commercial database systems. Using ADTs, UDFs andBLOBs supported by commercial systems, applications can extract the visual features of images,store the features in relational tables (along with the raw images themselves), and use these featuresto compute query matches. While this represents signi�cant progress, several proposals to improvethe above approach have appeared in the research literature. One of them is an e�cient techniqueto implement abstract data types on top of relational storage managers. Another issue is thatof allowing users to easily integrate multidimensional indexing structures into the DBMS, and usethem as access methods. This will allow applications to build indexes on the image features and usethem to e�ciently answer content-based queries. To realize the full potential of the feature indexes,the processing of content-based queries (i.e., top-k and threshold-based queries) must be pushedinside the database engine. Commercial systems, such as those described in Section 4, retrieve allthe matching objects from the database with their computed scores and then perform most of theprocessing (i.e., sorting and pruning) as an independent step. This misses out on opportunitiesfor optimization and e�cient evaluation of content-based queries. Pushing the processing into theengine would open up such optimization opportunities, leading to tremendous performance gains.Another proposal is that of e�cient support for similarity joins to facilitate �nding similar pairs ofimages.

PREPRINT { Please don't distribute. 215.1 Implementing ADTs using Relational Storage ManagersWhile abstract data types (ADTs) have appeared in mainstream commercial databases [74, 22,53, 107], they present several challenges in terms of storage management. Abstract data typessupport varied functionalities, such as inheritance, polymorphism, substitutability, encapsulation,structures, and collections among others. We discuss the storage management problems that arisewhen an ADT is de�ned as an aggregation of base data types and/or already de�ned ADTs (likethe way structs are de�ned in C). In our discussion, we do not consider \opaque" types wherethe system treats the type as an (uninterpreted) chunk of memory, which is interpreted by theuser-de�ned functions [53]. We also do not consider the functions de�ned for the ADT here butwill cover them in more detail in Section 5.3.1.Consider an ADT for a few geometric shapes in two dimensions:9Type 2dShape ()Type Point inherits from 2dShape (x,y :integer)Type Circle inherits from 2dShape (x,y, radius :integer)Type Rectangle inherits from 2dShape (x1,y1, x2,y2 :integer)Type Triangle inherits from 2dShape (x1,y1, x2,y2, x3,y3 :integer)Suppose we want to associate one or more regions with each image in our Gallery database fromSection 4. The idea is to create image maps for the users to click on. Assuming that each regionis one of the above 2d shapes,10 we now create a table to store the regions.create table photo regions(region id integer, photo id integer, region 2dShape)This table would allow a region to be a point, a circle, a rectangle or a triangle by virtue of typesubstitutability. Now, we add the following data to our table:11insert into photo regions values (1, 1, Point (100,100))insert into photo regions values (2, 1, Circle (10,10, 5))insert into photo regions values (3, 1, Rectangle(50,60, 80,90))insert into photo regions values (4, 1, Triangle (0,0, 5,5, 5,0))Here, we insert a point located at the coordinates (100,100), a circle of radius 5 centered at thepoint (10,10), a rectangle with opposing corner points (50,60) and (80,90) and a triangle with thethree corners (0,0), (5,5) and (5,0). Each tuple above stores one integer for the region id, oneinteger for the photo id plus an internal �xed sized tuple header whose size depends on the DBMSused. The rest of the information in all four tuples di�ers from each other: the �rst tuple needsto store two more integers (in addition to header, region id and photo id), the second needs threemore, the third needs four more and the fourth needs to store six more integers. The questionis how to organize the above tuples on disk in order to handle the diversity among them withoutsacri�cing query e�ciency. The following options are available:1. One table for each possible data typeWithin this scheme, although there is only one logical table photo regions, the system creates5 physical tables, one for each of 2dShape, Point, Circle, Rectangle, and Triangle.12 Each9Here we have used generic SQL pseudo-code. For speci�c vendor implementations and syntax, the appropriatemanual should be consulted.10More
exible shapes, such as polygons are necessary for such an application. Here we restrict ourselves to theabove shapes as our goal is to show the problems faced in storage management of ADTs, and not to provide acomplete image mapping solution.11We assume that the appropriate object constructors have been de�ned (i.e., \Point(x,y)" has been de�ned as aconstructor for the Point type).12There should be no table for 2dShape itself assuming it is a pure abstract data type whose only purpose is to

PREPRINT { Please don't distribute. 22table has a uniform and �xed schema and it is up to the query processor to look in all thephysical tables for a query on the logical table. The advantages of this approach are thatregular relational storage managers can be used, the tuples have �xed length and are thereforemore amenable to optimizations, and, since the schema for each physical table is known inadvance, no dynamic interpretation of object types is needed. The disadvantages are thatthe query processor must decide which tables to search for a query and, on some occasions,it might be necessary to search all the physical tables. More importantly, there could be anexplosion in the number of physical tables if the inheritance hierarchy is deep. The Postgresand Illustra systems used an approach similar to this one [103, 104].2. Co-locate tuples of di�erent types in one tableIn this approach, a single physical table is used to store all the �ve di�erent types of tuples.Like approach 1, almost no dynamic decoding of the object type is required, as the layoutand column information of each tuple type is fully pre-computed. Another advantage is thatall the tuples are stored in the same table avoiding the need for multiple-table lookups. Thedisadvantage is that there could be an explosion of the number of tuple types in the table.This approach is used in the MARS �le system.3. Flatten ADT and map to regular relationIn this approach, all the tuples are stored in a single table, which is managed by a regularrelational storage manager (i.e., the storage manager need not support multiple tuple typesper relation). All the types are expanded into their components and stored in individualcolumns of the table. The columns that are not used are �lled with NULL values. In thisapproach, the photo regions table would have 17 columns (region id, photo id, 2 columns forPoint, 3 for Circle, 4 for Rectangle and 6 for Triangle)13 and most of them will contain NULLvalues as only those columns that correspond to the actual object stored will be non NULL(i.e., only 4 columns for a Point object would be non NULL and the remaining 13 wouldbe NULL). The advantage of this approach is that it can be readily implemented in regularrelational storage managers. The disadvantages are that space is wasted and additional workis needed in the query processor to dynamically interpret the correct columns for a tuple. Notethat, as in the previous approaches, there could be an explosion in storage requirements, sincehere the number of columns needed may increase rapidly.4. Serialize object in-line and dynamically interpret content to determine typeIn this approach, the table schema is exactly as desired with three attributes, one each forregion id, photo id and 2dShape. The last attribute is now stored as a variable length column,either in-line in the tuple, or out of line in a BLOB if its size is too large. This approachhas several advantages. It is the most
exible since it can most easily handle changes in thetype hierarchy (the other three approaches must make signi�cant changes in the schema ofthe table(s) when the type hierarchy changes.) It also avoids the combinatorial explosion andspace overhead problems of the previous approaches. The only disadvantage is the overheadof dynamically interpreting the contents of each tuple to determine its type. IBM DB2 followsa similar approach to store ADTs [39]. Sybase also follows a similar approach for Java objects[106].serve as the common superclass, i.e., there can be no instantiations of this type. However, here we have included2dShape as a normal ADT.13In practice, one more column is needed to keep track of which object is stored in the table.

PREPRINT { Please don't distribute. 23
Table T

Tuple t Collection attribute A

Base

Table

Side

Table

h h

h

h

val1

val2

val3

val1

val2

val3

Overflow

Co-location Side table

(a) (b)

t t

Co-located

Table

Figure 3: Two ways of implementing collections inside attributes. (a) The co-location approach(b) The side table approach.A study on the implementation of ADTs comparing several variations of approaches 3 and 4 canbe found in [39]. Storage management of rich data types has also been addressed by object-orienteddatabases [7, 66].Another important problem in ORDBMSs that is relevant to image retrieval is the managementof collection-type attributes. An example of such an attribute is the polygonal contour shapedescriptor (represented by the corner points, the number of which can vary from shape to shape).Such attributes are usually handled by co-location or by using side tables. In the co-locationapproach, the items in the collection attribute of a tuple are stored along with the rest of the tuplewith an optional pointer to an over
ow area. Figure 3(a) shows how the items fval1; val2; val3g inthe collection attribute A of a tuple t would be stored. The advantage of this approach is e�ciency,as most of the time, all the items in the collection will be co-located with the tuple (i.e., no over
owpointer required). The disadvantages are that updates to a tuple may cause the use of the over
owareas, thus increasing fragmentation and degrading performance. Also, the storage manager mustbe able to support coexistence of tuples from di�erent schemas in the same �le. In the side tableapproach, there is a base table and there is a separate side table for each column with a collectionattribute. Each tuple t in the base table stores a system generated handle h for each collectionattribute A. The handle h is a key into a side table where a tuple hh; itemi is stored for each itemitem in the collection attribute A of tuple t. Figure 3(b) shows how the same table t with itemsfval1; val2; val3g in the collection attribute A is stored using this approach. An advantage of thisapproach is that it does not require any special support from storage managers, as all tuples ina relation are the same. Fragmentation in the side table can also be avoided by having the �leclustered on the handle. A clear disadvantage is that potentially expensive joins or table lookupsare needed.

PREPRINT { Please don't distribute. 245.2 Multidimensional Access MethodsAs discussed in Section 2, image retrieval systems represent the content of the images using visualfeatures like color, texture and shape. Processing content-based queries on large image collectionscan be speeded up signi�cantly by building indices on the individual features (known as the featureindices or simply F-indices) and using them to answer content-based queries. Since the featurespaces are high-dimensional in nature (i.e., 32-dimensional color histogram space), novel indexingtechniques must be developed and incorporated into the DBMS (cf. Chapters 14 and 15). Thepurpose of a feature index is to e�ciently retrieve the best matches with respect to that featureby executing a range search or a k-nearest neighbor (k-NN) search on the multidimensional indexstructure. How these individual feature matches returned by the feature indices can be used toobtain the overall best matches will be discussed in Section 5.3.1. In this section, we discuss researchissues that arise in designing index structures that can execute range and k-NN searches e�cientlyover image feature-spaces, in supporting new types of queries for image retrieval applications, andin integrating into the DBMS multidimensional index structures.5.2.1 Designing Index Structures for Image Feature SpacesThe main problem that arises in indexing image feature spaces is high dimensionality. For example,the color histograms used in the MARS system are usually 32- or 64-dimensional [20]. Manymultidimensional index structures do not scale to such high dimensionalities [10]. Designing scalableindex structures has been an active area of research and is discussed in detail in Chapters 14 and15.5.2.2 Supporting Multimedia Queries on top of Multidimensional Index StructuresTraditionally, multidimensional index structures support only point, range and k-NN queries (witha single query point) and only the Euclidean distance function. In multimedia retrieval, the retrievalmodel de�nes what a match between two images means with respect to each individual feature. Themeasure of match (rather, mismatch) is de�ned in terms of a distance function. The retrieval modeluses arbitrary distance functions (typically an Lp metric) and arbitrary weights along the dimensionsof the feature space to capture the visual perception of the user. This implies that the indexstructure must support arbitrary distance functions and arbitrary weights along the dimensionsthat are speci�ed by the user at query time. Such techniques have been developed in [62, 93, 21].Another requirement of the index structure is to support multi-example queries, since the usermight submit multiple images as part of the query (see section 2). Such queries are particularlyimportant for retrieval models that represent the query using multiple query points [88, 110]. Amultipoint query QF for a feature F is formally de�ned as QF = hnF ; PF ;WF ; DF i where nF is thenumber of points in the query, PF = fPF (1); :::; PF (nF)g is the set of nF points in the feature space,WF = fwF (1); :::; wF (nF)g are the corresponding weights andDF is a distance function, which, giventwo points in the feature space, returns the distance between them (usually a weighted Lp metric).The distance between the multipoint query QF and an object point OF with respect to feature Fis de�ned as the aggregate of the distances between OF and the individual points PF (i) 2 PF inQF . The weighted sum DF (QF ; OF) = nFXi=1 wF (i)DF (PF (i); OF) (2)

PREPRINT { Please don't distribute. 25may be used as an aggregation function. The individual point-to-point distance DF (PF (i); OF) isgiven by a weighted Lp metricDF (PF (i); OF) = 24 dFXj=1 �F (j) (jPF (i)[j]�OF [j]j)p351=p; (3)where dF is the dimensionality of the feature space and �F (j) denotes the (intra-feature) weightassociated with the jth dimension. This is the aggregation function used in the MARS system.The problem is to �nd the k nearest neighbors of QF using the F-index.One way to implement a multipoint query is the multiple expansion approach proposed byPorkaew et al. [89] and Wu et al. [110]. The approach explores the nearest neighbors of eachindividual point PF (i) using the traditional single-point k-NN algorithm and combines them. Analternate way, proposed in [88, 21], is to develop a new k-NN algorithm that can handle multipointqueries. The latter technique involves (1) rede�ning the MINDIST function, which is used tocompute the distance of an index node from the query and (2) using the distance function describedabove to compute the distance of a indexed object from the multipoint query. Experiments showthat the latter technique can process a multipoint query much more e�ciently compared to themultiple expansion approach [21].5.2.3 Integration of Multidimensional Index Structures as Access Methods in a DBMSWhile there exists several research challenges in designing scalable index structures and developingalgorithms for e�cient content-based search using them, one of the most important practical chal-lenges is that of integration of such indexing mechanisms as access methods (AMs) in a databasemanagement system. Building a database server with native support for all possible kinds ofcomplex multimedia features and the feature-speci�c indexing mechanisms along with support forfeature-speci�c queries/operations is not feasible. The solution is to build an extensible databaseserver that allows the application developer to de�ne data types and related operations as well asindexing mechanisms on the stored data, which the database query optimizer can exploit to accessthe data e�ciently. As discussed in Section 3.3, commercial ORDBMSs have started providingextensibility options for users to incorporate their own index structures. As pointed out earlier,the interfaces exposed by current commercial systems are too low-level, and place the burden ofwriting structural maintenance code (i.e., concurrency control) on the access method implementor.The Generalized Search Tree (GiST) [47] provides a more elegant solution to the above problem.Generalized Search Tree (GiST): A GiST is a balanced tree of variable fanout between kMandM , 2M � k � 12 , with the exception of the root node, which may have fanout between 2 and M.The constant k is termed the minimum �ll factor of the tree. Leaf nodes in a GiST contain (p; ptr)pairs, where p is a predicate that is used as a search key and ptr is the identi�er of some tuple inthe database. Non-leaf nodes contain (p; ptr) pairs, where p is a predicate used as a search key(referred to as bounding predicate (BP) [19]) and ptr points to another tree node. The predicatescan be arbitrary as long as they satisfy the following condition: the predicate p in a leaf node entry(p; ptr) must hold for the tuple identi�ed by ptr while the bounding predicate p in a non-leaf nodeentry (p; ptr) must hold for any tuple reachable from ptr. A GiST for a key set comprised of 2-drectangles is shown in Figure 4.Generalizing the notion of a search key to an arbitrary predicate makes GiST extensible, both inthe datatypes it can index and the queries it can support. GiST is like a \template" { the applica-tion developer can implement a new AM using GiST by simply registering a few (domain-speci�c)

PREPRINT { Please don't distribute. 26
x=3

y=6

y=4

x=10x=6

y=9

y=11

x=5x=3

y=5

x=11 x=14

O1
O2

O3
O4

O5

O6

O7

O8

O9

O10

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

 x<14

P5: P6:
y<5 and x>11 and

P2:P1:
x<10 and

y>4
x>3 and

y<6

 x>6
P4:

N1

N2 N3

N4 N5 N6

P3:
x>3 and x<5
 and

y>9 and y<11 x<8

N7

x=8Figure 4: A GiST for a key set comprised of rectangles in 2 dimensional space. Note that thebounding predicates are arbitrary (i.e. not necessarily bounding rectangles as in R-trees).extension methods with the DBMS. Examples of the extension methods are Consistent(E; q),which, given an entry E = (p; ptr) and a query predicate q, returns false if p^ q can be guaranteedunsatis�able, and true otherwise, and Penalty(E1; E2), which, given two entries E1 = (p1; ptr1),E2 = (p2; ptr2), returns a domain-speci�c penalty for inserting E2 into the subtree rooted atE1. GiST uses the extension methods provided by the AM developer to implement the stan-dard index operations: search, insertion and deletion. For example, the search operation usesConsistent(E; q) to determine which nodes to traverse to answer the query while the insert op-eration uses Penalty(E1; E2) to determine the leaf node in which to place the inserted item in.The AM developer thus controls the organization of keys within the tree and the behavior of thesearch operation, thereby specializing GiST to the desired AM. The original GiST paper deals onlywith range queries [47]. Several extensions to support more general queries (i.e., ranked/nearestneighbor queries) on top of GiST are proposed in [3].Concurrency Control in GiST: Although GiST considerably reduces the e�ort of integratingnew AMs in DBMSs, it does not automatically provide concurrency control. It is essential todevelop e�cient techniques to manage concurrent access to data via the GiST, before it can besupported by \commercial strength" DBMSs. Concurrent access to data via an index structureintroduces two independent concurrency control problems:� Preserving consistency of the data structure in the presence of concurrent insertions, deletionsand updates.� Protecting search regions from phantoms.Techniques for concurrency control (CC) in multidimensional data structures and, in particular,GiST have been proposed recently [63, 19, 18]. Developing CC techniques for GiST is particularlybene�cial since the CC code can be implemented once by the database developer - the end-userdoes not need to implement individual algorithms for each AM.Preserving Consistency of GiST: We �rst discuss the consistency problem and its solution.Consider a GiST (con�gured as, say, and R-tree) with a root node R and two children nodes A and

PREPRINT { Please don't distribute. 27B. Consider two operations executing concurrently on the R-tree: an insertion of a new key k1 intoB and a deletion of a key k2 from B. Suppose the deletion operation examines R and discoversthat k2, if present, must be in B. Before it can examine B, the insertion operation causes B tosplit into B and B0, as a result of which k2 moves to B0 (and subsequently updates R). The deleteoperation now examines B and incorrectly concludes that k2 does not exist. To avoid the aboveproblem, Kornaker et al. propose a linked-based technique that was originally used in B-trees [63].By adding a right link between a node and its split-o� right sibling and a node sequence number toevery node, the operations (i.e., the deletion operation in the above example) can detect whetherthe node has split since the parent was examined and, if so, can compensate for the missed splitsby following the right links.Phantom Protection in GiST:We nowmove on to the problem of phantom protection. Considera transaction T1 reading a set of data items from a GiST that satisfy some search predicate Q.Transaction T2 then inserts a data item that satis�es Q and commits. If T1 now repeats its scanwith the same search predicate Q, it gets a set of data items (known as \phantoms") di�erent fromthe �rst read. Phantoms must be prevented to guarantee serializable execution. Note that object-level locking [42] does not prevent phantoms since even if all objects currently in the databasethat satisfy the search predicate are locked, concurrent insertions14 into the search range cannotbe prevented. There are two general strategies to solve the phantom problem, namely predicatelocking and its engineering approximation, granular locking. In predicate locking, transactionsacquire locks on predicates rather than individual objects. Although predicate locking is a completesolution to the phantom problem, it is usually too costly [42]. In contrast, in granular locking, thepredicate space is divided into a set of lockable resource granules. Transactions acquire locks ongranules instead of on predicates. The locking protocol guarantees that if two transactions requestcon
icting-mode locks on predicates p and p0 such that p^p0 is satis�able, then the two transactionswill request con
icting locks on at least one granule in common. Granular locks can be set andreleased as e�ciently as object locks. An example of the granular locking approach is the multi-granularity locking protocol (MGL) [68]. Application of MGL to the key space associated with aB-tree is referred to as key range locking (KRL) [68, 70].In [63], Kornaker et al. develop a solution for phantom protection in GiSTs based on predicatelocking. In the proposed protocol, a searcher attaches its search predicate Q to all the index nodeswhose bounding predicates (BPs) are consistent with Q. Subsequently, the searcher acquires sharedmode locks on all objects \consistent" with Q. An inserter checks the object to be inserted againstall the search predicates attached to the node in which the insertion takes place. If it con
icts withany of them, the inserter attaches its predicate to the node (to prevent starvation) and waits for thecon
icting transactions to commit. If the insertion causes a BP of a node N to grow, the predicateattachments of the parent of N are checked with the new BP of N , and are replicated at N ifnecessary. The process is carried out top-down over the entire path where node BP adjustmentstake place. Similar predicate checking and replication is done between sibling nodes during splitpropagation. The details of the protocol can be found in [63].In [19], Chakrabarti and Mehrotra propose an alternative approach based on granular locking.Note that the granular locking technique for B-trees, viz., key range locking (KRL), cannot beapplied for phantom protection in multidimensional data structures since it relies on a total orderof key values, which does not exist for multidimensional data. Imposing an arti�cial total order(say a Z-order [80]) over multidimensional data to adapt KRL is not a viable technique either. The�rst step is to de�ne lockable resource granules over the multidimensional key space. One way to14These insertions may be a result of insertion of new objects, updates to existing objects or rolling-back deletionsmade by other concurrent transactions.

PREPRINT { Please don't distribute. 28de�ne the granules is to statically partition the key space (e.g., as a grid) and treat each partition(i.e., each grid cell) as a granule. The problem with such a partitioning is that it does not adaptto the key distribution: some granules may contain many more keys than others, causing themto become \hot spots". In [19], the authors use the predicate space partitioning generated by theGiST to de�ne the granules. There is a lockable granule TG(N) associated with each index nodeN of a GiST whose coverage is de�ned by the granule predicate GP (N) associated with the node.GP (N) is de�ned as follows. Let P denote the parent node of N (P is NULL if N is the rootnode), and BP (N) denote the bounding predicate of N . The granule predicate GP (N) of nodeN is equal to BP (N) if N is the root and BP (N) ^ GP (P) otherwise. For example, the granulepredicate associated with the non-leaf node N2 in Figure 4 is P1 = (x < 10) ^ (y > 4) while thatassociated with leaf node N5 is P1 ^ P4 = (6 < x < 10) ^ (y > 4). The granules associated withleaf nodes are called leaf granules while those associated with non-leaf nodes are called non-leafgranules. Note that the above partitioning scheme does not su�er from the \hot spot" problem ofstatic partitioning since the granules dynamically adapt to the key distribution as keys are insertedinto and deleted from the GiST.Once the granules are de�ned, the authors develop lock protocols for the various operationson the GiST. As mentioned before, for correctness, if two operations con
ict, they must requestcon
icting locks on at least one granule in common. The protocol exploits, in addition to sharedmode (S) and exclusive mode (X) locks, intention mode locks which represent the intention toset locks at �ner granularity. The compatibility matrix for the various lock modes used by theprotocol can be found in [19]. The lock protocol of the search operation is simple. A searcheracquires commit-duration S-mode locks on all granules (both leaf and non-leaf) \consistent" withits search predicate. Note that in this technique, unlike the approach of [63], the searcher does notacquire object-level locks. The lock protocol of the insertion operation is slightly more involved.Let O be the object being inserted and g be the granule corresponding to the leaf node in whichO is being inserted. The protocol has the following two cases. If the insertion does not cause gto grow, the inserter acquires (1) a commit-duration IX-mode lock on g where the IX-mode isan intention mode (intention to set shared or exclusive mode locks at �ner granularity) and (2)a commit-duration X-mode lock on O. Otherwise, the insertion acquires (1) a commit-durationIX-mode lock on g (2) a commit-duration X-mode lock on O and (3) a short-duration IX-modelock on TG(LU-node) where the LU -node (Lowest Unchanged Node) denotes the lowest node inthe insertion path whose GP does not change due to the insertion. The above protocol guaranteesthat a transaction cannot insert an object into the search region of another concurrently-runningtransaction, i.e., it will request a con
icting lock on at least one common granule and hence willblock till the search transaction is over. The correctness proofs and the lock protocols of the otheroperations can be found [19].5.3 Supporting Top-k Queries in DatabasesIn content-based image retrieval, almost all images match the query image to some degree oranother. The user is typically not interested in all matching images (i.e., all images with degreeof match > 0) as that might retrieve the entire database. Rather she is interested in only the topfew matching images. There are two ways of retrieving the top few images: Top-k queries returnthe k best matches, irrespective of their scores. For example, in Section 4.2, we requested the top100 images matching =image=pic1:gif . Range queries or alpha-cut queries return all the imageswhose matching score exceeds a user-speci�ed threshold, irrespective of their number. For example,in Section 4.1, we requested all images whose degree of match to the image =tmp=03:jpg exceeds

PREPRINT { Please don't distribute. 29the alpha-cut of 0.8.15 Database query optimizers and query processors do not support querieswith user-speci�ed limits on result cardinality; the limiting of the result cardinalities in the aboveexamples (in Section 4) is achieved at the application level (by Excalibur Visual Retrievalwarein Informix, QBIC in DB2 and Virage in Oracle). The database engine returns all the tuplesthat satisfy the non-image selection predicates, if any, and all tuples otherwise; the applicationthen evaluates the image match for each returned tuple and retains only those that satisfy user-speci�ed limit. This causes large amounts of wasted work by the database engine (as it accesses andretrieves tuples, most of which are eventually discarded) leading to long response times. Signi�cantperformance improvements can be obtained by pushing the top-k and range query processing insidethe database engine. In this section, we discuss query optimization and query processing issuesthat arise in that context.5.3.1 Query OptimizationRelational query languages, particularly SQL, are declarative in nature: they specify what theanswers should be and not how they are to be computed. When a DBMS receives an SQL query, it�rst validates the query and then determines a strategy for evaluating it. Such a strategy is calledthe query evaluation plan or simply plan and is represented using an operator tree [40]. For a givenquery, there are usually several di�erent plans that will produce the same result; they only di�erin the amount of resources needed to compute the result. The resources include time and memoryspace in both disk and main memory. The query optimizer �rst generates a variety of plans bychoosing di�erent orders among the operators in the operator tree and choosing di�erent algorithmsto implement these operators, and then chooses the best plan based on the available resources [40].The two common strategies to compute optimized plans are (1) rule-based optimization [46] and(2) cost-based optimization [94]. In the rule-based approach, a number of heuristics are encodedin the form of production rules that can be used to transform the query tree into an equivalenttree that is more e�cient to execute. For example, a rule might specify that selections are to bepushed below joins, since this reduces the sizes of the input relations and hence the cost of thejoin operation. In the cost-based approach, the optimizer �rst generates several plans that wouldcorrectly compute the answers to a query and computes a cost estimate for each plan. The systemmaintains some running statistics for each relation (i.e., number of tuples, number of disk pagesoccupied by the relation, etc.) as well as for each index (i.e., number of distinct keys, number ofpages etc.), which are used to obtain the cost estimates. Subsequently, the optimizer chooses theplan with the lowest estimated cost [94].Access Path Selection for Top-k Queries: Pushing top-k query processing inside the databaseengine opens up several query optimization issues. One of them is access path selection. The accesspath represents how the top-k query accesses the tuples of a relation in order to compute the result.To illustrate the access path selection problem, let us consider an example image database wherethe images are represented using two features, color and texture. Assuming that all the extractedfeature values are stored in the same tuple along with other image information (i.e., the photo id,photographer and date in the example in Section 4), one option is to sequentially scan throughthe entire table, computing the similarity score for each tuple by �rst computing the individualfeature scores and then combining them using the merge function, while retaining the k tuples withthe highest similarity scores. This option may be too slow, especially if the relation is very large.15For both types of queries, the user typically expects the answers to be ranked based on their degree of match(the best matches before the less good ones). For top-k queries, a \get more" feature is desirable so that the usercan ask for additional matches if she wants.

PREPRINT { Please don't distribute. 30Another option that avoids this problem is to index each feature using a multidimensional indexstructure. With the indexes in place, the optimizer has several choices of access paths:� Filter the images on the color feature (using k�NN search on the color index), access the fullrecords of the returned images, which contain the texture feature values, and compute theoverall score.� Filter the images on the texture feature, analyze the full records of the returned images, whichcontain the color feature values, and compute the overall score.� Use both the color and texture indexes, to �nd the best matches with respect to each featureindividually, and merge the individual results.16Note the number of execution alternatives increases exponentially with the number of features.The presence of other selection predicates (i.e., the \date >= '01/01/2000' " predicate in the aboveexample) also increases the size of the execution space. It is up to the query optimizer to determinethe access path to be used for a given query. Database systems use a cost-based technique for accesspath selection as proposed by Selinger et al. [94]. To apply this technique, several issues need to beconsidered. In image databases, the features are indexed using multidimensional index structures,which serve as access paths to the relation. New kinds of statistics need to be maintained for suchindex structures and new cost formulae need to be developed for accurate estimation of their accesscosts. In addition, the cost models for top-k queries are likely to be signi�cantly di�erent fromtraditional database queries that return all tuples satisfying the user-speci�ed predicates. The costmodel would also depend on the retrieval model used, i.e., on the similarity functions used for eachindividual feature as well as the ones used to combine the individual matches (cf. Section 2.3).Such cost models need to be designed.In [24], Chaudhari and Gravano propose a cost model to evaluate the costs of the variousexecution alternatives17 and develop an algorithm to determine the cheapest alternative. Thecost model relies on techniques for: estimating selectivity of queries in individual feature spaces;estimating the costs of k-NN searches using individual feature indices; and probing a relation for atuple, to evaluate one or more selection predicates. Most selectivity estimation techniques proposedso far for multidimensional feature spaces work well only for low dimensional spaces, but are notaccurate in the high-dimensional spaces commonly used to represent images features [87, 69, 1].More suitable techniques (based, for instance, on fractals) are beginning to appear in the literature[8, 36]. Work on cost models for range and k-NN searches on multidimensional index structuresincludes earlier proposals for low dimensional index structures (i.e., R-tree) in [34, 109] and morerecent work for higher dimensional spaces in [9, 84].Optimization of Expensive User-De�ned Functions: The system may need to evaluatemultiple selection predicates on each tuple accessed via the chosen access path. Relational queryoptimizers typically place no importance on the order in which the selection predicates are evaluatedon the tuples. The same is true for projections. Selections and projections are assumed to be zero-time operations. This assumption is not true in content-based image retrieval applications whereselection predicates may involve evaluating expensive user-de�ned functions. Let us consider thefollowing query on the photo collection table in Section 4.1:16Yet another option would be to create a combined index on color and texture features so that the above querycan be answered using a single index. We do not consider this option in this discussion.17The authors do not consider all the execution alternatives but only a small subset of them (called search-minimalexecutions) [24]. Also, the authors only consider Boolean queries and do not handle more complex retrieval models(i.e., weighted sum model, probabilistic model).

PREPRINT { Please don't distribute. 31/* Retrieve all photographs taken since the year 2000 *//* that match the query image more than 8%. */SELECT photo id, scoreFROM photo collectionWHERE Resembles(fv,GetFeatureVector(IfdImgDescFromFile('/tmp/03.jpg')),0.80, 10, 30, 40, 10,5, 5, score #REAL)AND date >= '01/01/2000'ORDER BY scoreThe query has two selection predicates: the Resembles predicate and the predicate involving thedate. The �rst one is a complex predicate that may take hundreds or even thousands of instructionsto compute, while the second one is a simple predicate that can be computed in a few instructions.If the chosen access path is a sequential scan over the table, the query will run faster if the secondselection is applied before the �rst, since doing so minimizes the number of calls to Resembles. Thequery optimizer must, therefore, take into account the computational cost of evaluating the UDFin order to determine the best query plan. Cost-based optimizers only use the selectivity of thepredicates to order them in the query plan but do not consider their computational complexities.In [49, 48], Hellerstein et al. use both the selectivity and the cost of selection predicates to optimizequeries with expensive UDFs. In [26], Chaudhari and Shim proposes dynamic-programming-basedalgorithms to optimize queries with expensive predicates.The techniques discussed above deal with UDF optimization when the functions appear inthe where clause of an SQL query. Expensive UDFs can also appear in the projection clause asoperations on ADTs. Let us consider the following example taken from [95]. A table stores imagesin a column and o�ers functions to crop an image and apply �lters to it (e.g., a sharpening �lter).Consider the following query (using the syntax syntax of [95]):select image.sharpen().crop(0.0, 0.0, 0.1, 0.1) from image tableThe user requests that all images be �ltered using sharpen, and then cropped in order to extract theportion of the image inside the rectangular region with diagonal end-points (0.0, 0.0) and (0.1, 0.1).Sharpening an image �rst and then cropping is wasteful as the entire image would be sharpenedand 99% of it would be discarded later (assuming the width and height of the images are 1.0).Inverting the execution order to image.crop(0.1,0.1).sharpen() reduces the total CPU cost. It maynot be always possible for the user to enter the operations in the best order (i.e., crop function be-fore the sharpen function), specially in the presence of relational views de�ned over the underlyingtables [95]. In such cases, the optimizer should reorder these functions to optimize the CPU costof the query. The Predator project [96] proposes to use Enhanced-ADTs or E-ADTs to addressthe above problem. The E-ADTs provide information regarding the execution cost of various op-erations, their properties (i.e., commutativity between sharpen and crop operations in the aboveexample), etc., which the optimizer can use to reorder the operations and reduce the execution costof the query. In some cases, it might be possible to remove function calls. For example, if X is animage, rotate() is a function that rotates an image and count di�erent colors() is a function thatcounts the number of di�erent colors in an image, the operation X.rotate().count di�erent colors()can be replaced by X.count di�erent colors(), thus saving the cost of rotation. [95] documentsperformance improvements of up to several orders of magnitude using these techniques.

PREPRINT { Please don't distribute. 325.3.2 Query ProcessingIn the previous section, we discussed how pushing the top-k query support into the database enginecan lead to choice of better query evaluation plans. In this section, we discuss algorithms that thequery processor can use to execute top-k queries for some of the query evaluation plans discussedin the previous section.Evaluating Top-k Queries Let us again consider an image database with two features, colorand texture, each of which is indexed using a multidimensional index structure. Let Fcolor andFtexture denote the similarity functions for the color and texture features individually. Examples ofindividual feature similarity functions (or equivalent distance functions) are the various Lp metrics.Let Fagg denote the function that combines (or aggregates) the individual similarities (with respectto color and texture features) of an image to the query image to obtain its overall similarity tothe query image. Examples of aggregation functions are weighted summation, probabilistic andfuzzy conjunctive and disjunctive models etc. [82]. The functions Fcolor; Ftexture and Fagg and theirassociated weights together constitute the retrieval model (cf. Section 2.3). In order to support top-k queries inside the database engine, the engine must allow users to plug in their desired retrievalmodels for the queries and tune the weights and the functions in the model at query time. Thequery optimization and evaluation must be based on the retrieval model speci�ed for the query.We next discuss some query evaluation algorithms that have been proposed for the various retrievalmodels.One of the evaluation plans for this example database, discussed in Section 5.3.1, is to use theindividual feature indexes to �nd the best matches with respect to each feature individually andthen merge the individual results. Fagin [31] proposed an algorithm to evaluate a top-k querye�ciently according to the above plan. The input to this algorithm is a set of ranked lists Xigenerated by the individual feature indices (by the k-NN algorithm). The algorithm accesses eachXi in sorted order based on its score and maintains a set L = \iXi that contains the intersectionof the objects retrieved from the input ranked lists. Once L contains k objects, the full tuples of allthe items in [iXi are probed (by accessing the relation), their overall scores are computed and thetuples with the k best overall scores are returned. The above algorithm works as long as Fagg ismonotonic i.e. Fagg(x1; : : : ; xm) � Fagg(x01; : : : ; x0m) for xi � x0i for every i. Most of the interestingaggregation functions like the weighted sum model and the fuzzy and probabilistic conjunctiveand disjunctive models satisfy the monotonicity property. Fagin also proposes optimizations to hisalgorithm for speci�c types of scoring functions [31].While Fagin proposes a general algorithm for all monotonic aggregation functions, Ortega etal. [82, 81] propose evaluation algorithms that are tailored to speci�c aggregation functions (i.e.,separate algorithms for weighted sum, fuzzy conjunctive and disjunctive models and probabilisticconjunctive and disjunctive models). This approach allows incorporating function-speci�c opti-mizations in the evaluation algorithms, and is used by the MARS [52] system. One of the mainadvantages of these algorithms is that they do not need to probe the relation for the full tuples.This can lead to signi�cant performance improvements since, according to the cost model proposedin [31], the total database access cost due to probing can be much higher than the total cost dueto sorted access (i.e. accesses using the individual feature indices). Another advantage comes fromthe demand-driven data
ow followed in [82]. While Fagin's approach retrieves objects from theindividual streams and bu�ers them until it reaches the termination condition (jLj � k) and thenreturns all the k objects to the user, the algorithms in [82] retrieve only the necessary number ofobjects from each stream in order to return the next best match. This demand-driven approachreduces the wait time of intermediate answers in temporary �les or bu�ers between the operators in

PREPRINT { Please don't distribute. 33a query tree. On the other hand, in [31], the items returned by the individual feature indexes mustwait in a temporary �le or bu�er until the completion of the probing and sorting process. Notethat both approaches are incremental in nature and can support the \get more" feature e�ciently.Several other optimizations of the above algorithms have been proposed recently [73, 43].An alternative approach to evaluating top-k queries has been proposed by Chaudhuri andGravano [24, 25]. It uses the results in [31] to convert top-k queries to alpha-cut queries andprocesses them as �lter conditions. Under certain conditions (uniquely graded repository), thisapproach is expected to access no more objects than the strategy in [31]. Much like the formerapproach, this approach also requires temporary storage and sorting of intermediate answers beforereturning the results. Unlike the former approaches, this approach cannot support the \get more"feature without re-executing the query from scratch. Another way to convert top-k queries tothreshold queries is presented in [29]. This work mainly deals with traditional datatypes. It usesselectivity information from the DBMS to probabilistically estimate the value of the threshold thatwould retrieve the desired number of items and then uses this threshold to execute a normal rangequery. Carey and Kossman propose techniques to limit the answers in an ORDER BY query to auser-speci�ed number by placing stop operators in the query tree [14, 15].Similarity Joins Certain queries in image retrieval applications may require join operations. Anexample is �nding all pairs of images that are most similar to each other. Such joins are calledsimilarity joins. A join between two relations returns every pair of tuples from the two relationsthat satisfy a certain selection predicate.18 In a traditional relation join, the selection predicate isprecise (i.e., equality between two numbers): hence, a pair of tuples either does or does not satisfythe predicate. This is not true for general similarity joins where the selection predicate is imprecise(i.e., similarity between two images): each pair of tuples satis�es the predicate to a certain degreebut some pairs satisfy the predicate more than other pairs. Thus, just using similarity as the joinpredicate would return almost all pairs of images including pairs with very low similarity scores.Since the user is typically interested in the top few best matching pairs, we must restrict theresult to only those pairs with good matching scores. This notion of restricted similarity joinshave been studied in the context of geographic proximity distance [5, 50, 4] and in the similaritycontext [12, 97, 2, 98, 85, 64]. The problem of a restricted similarity join between two datasetsA andB containing d-dimensional points is de�ned as follows [64, 97]. Given points X = (x1; x2; :::; xd) 2A and Y = (y1; y2; :::; yd) 2 B and a threshold distance �, the result of the join contains all pairs(X; Y) whose distance D�d(X; Y) is less than �. The distance function D�d(X; Y) is is typically anLp metric (Chapter 14), but other distance measures are also possible.A number of non-indexed and indexed methods have been proposed for similarity joins. Amongthe non-indexed ones, the nested loop join is the simplest but has the highest execution cost. If jAjand jBj are the cardinality of the datasets A and B then the nested loop join has a time complexityof jAj � jBj, which degenerates to a quadratic cost if the datasets are similarity sized. Among theindexed methods, one of the earliest proposed ones is the R-Tree based method is presented in [12].This R-Tree method traverses synchronously the structure of two R-Trees matching correspondingbranches in the two trees. It expands each bounding rectangle by �=2 on each side along eachdimension, and recursively searches each pair of overlapping bounding rectangles. Most other index-based techniques for similarity joins employ variations of this technique [97]. The generalizationof the multidimensional similarity join technique described above (which can be applied to obtainsimilar pairs with respect to individual features) to obtain overall similar pairs of images remainsa research challenge.18Note that the two input relation to a join can be the same relation (known as a self join).

PREPRINT { Please don't distribute. 346 ConclusionsIn this chapter, we explored how the evolution of traditional relational databases into powerfulextensible object-relational systems has facilitated the development of applications that requirestorage of multimedia objects and retrieval based on their content. In order to support content-based retrieval, the representation of the multimedia object (object model) must capture its visualproperties. A user formulates a content-based query by providing examples of objects similar to theones he/she wishes to retrieve. Such a query is internally mapped to a feature-based representa-tion (query model). Retrieval is performed by computing similarity between the multimedia objectand the query based on the feature values, and the results are ranked by the computed similarityvalues. The key technologies provided by modern databases that facilitate the implementation ofapplications requiring content-based retrieval are the support for user-de�ned data types, includinguser-de�ned functions, and ways to call these functions from within SQL. Content-based retrievalmodels can be incorporated within databases using these extensibility options: the internal struc-ture and content of multimedia objects can be represented in DBMSs as abstract data types, andsimilarity models can be implemented as user-de�ned functions. Most major DBMSs now sup-port multimedia extensions (either developed in house or by third-party developers) that consistof prede�ned multimedia data types, and commonly used functions on those types including func-tions that support similarity retrieval. Examples of such extensions include the Image Databladesupported by the Informix Universal Server, and the QBIC extender of DB2.While existing commercial object-relational databases have come a long way in providing sup-port for multimedia applications, we believe that there are still many technical challenges that needto be addressed in incorporating multimedia objects into DBMSs. Among the primary challengesis that of extensible query processing and query optimization. Multimedia similarity queries di�ersigni�cantly from traditional database queries | they deal with high dimensional data sets, forwhich existing indexing mechanisms are not su�cient. Furthermore, a user is typically interestedin retrieving the top-k matching answers (possibly progressively) to the query. Many novel indexmethods that provide e�cient retrieval over high-dimensional multimedia feature spaces have beenproposed in the literature. Furthermore, e�cient query processing algorithms for evaluating top-kqueries have been developed. These indexing mechanisms and query processing algorithms need tobe incorporated into database systems. To this end, database systems have begun to support ex-tensibility options for users to add type-speci�c access methods. However, current mechanisms arelimited in scope and quite cumbersome to use. For example, to incorporate a new access method,a user has to address the daunting task of concurrency control and recovery for the access method.Query optimizers are still not su�ciently extensible to support optimizing access path selectionbased on user-de�ned functions and access methods. Research on these issues is ongoing and webelieve that solutions will be incorporated into future DBMSs, resulting in systems that e�cientlysupport content-based queries on multimedia types.7 AcknowledgementsThis work was supported by NSF CAREER award IIS-9734300, and in part by the Army ResearchLaboratory under Cooperative Agreement No. DAAL01-96-2-0003.

PREPRINT { Please don't distribute. 35References[1] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. Selectivity estimation inspatial databases. In Proc. 1999 ACM SIGMOD Int. Conf. on Management of Data, pages13{24, 1999.[2] K. Alsabti, S. Ranka, and V. Singh. An e�cient parallel algorithm for high dimensionalsimilarity join. In Proc. Int. Parallel and Distributed Processing Symp., Orlando, Florida,March 1998.[3] P. Aoki. Generalizing \search" in generalized search trees. In Proc. 14th Int. Conf. on DataEngineering, pages 380{389, 1998.[4] Walid G. Aref and Hanan Samet. Optimization for spatial query processing. In Guy M.Lohman, Am��lcar Sernadas, and Rafael Camps, editors, Proc. 17th Int. Conf. on Very LargeData Bases VLDB '92, pages 81{90, Barcelona, Catalonia, Spain, 1991. Morgan Kaufmann.[5] Walid G. Aref and Hanan Samet. Cascaded spatial join algorithms with spatially sortedoutput. In Proc. 4th ACM Workshop on Advances in Geographic Information Systems, pages17{24, 1997.[6] Je�rey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley Horowitz, RichHumphrey, Ramesh Jain, and Chiao fe Shu. The virage image search engine: An openframework for image management. In Proc. SPIE, volume 2670, Storage and Retrieval forStill Image Video Databases, pages 76{87, 1996.[7] Francois Bancilhon, Claude Delobel, and Paris Kanellakis. Building an Object-OrientedDatabase System: The Story of O2. The Morgan Kaufmann Series in Data ManagementSystems, May 1992.[8] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries using the `correlation'fractal dimension. In Proc. 21st Int. Conf. on Very Large Data Bases VLDB '95, pages 299{310, 1995.[9] S. Berchtold, C. Bohm, D. Keim, and H. P. Kriegel. A cost model for nearest neighbor searchin high dimensional data spaces. In Proc. 16th ACM Symp. Principles of Database Systems,PODS '97, pages 78{86, Tucson, AZ, May 1997.[10] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is \nearest neighbor" mean-ingful? In Proc. Int. Conf. Database Theory (ICDT '99), pages 217{235, Jerusalem, Israel,1999.[11] R. Bliuhute, S. Saltenis, G. Slivinskas, and C. Jensen. Developing a datablade for a newindex. In Proc. 15th Int. Conf. on Data Engineering, pages 314{323, 1999.[12] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. E�cient processing of spatialjoins using R-Trees. In Peter Buneman and Sushil Jajodia, editors, Proc. 1993 ACM SIGMODInt. Conf. on Management of Data, pages 237{246, Washington, DC, USA, May 26-28 1993.ACM Press.[13] John L. Bruno, Jose Carlos Brustoloni, Eran Gabber, Banu Ozden, and Abraham Silber-schatz. Disk scheduling with quality of service guarantees. In IEEE Int. Conf. MultimediaComputing and Systems, pages 400{405, June 1999.

PREPRINT { Please don't distribute. 36[14] Michael J. Carey and Donald Kossmann. On Saying "Enough Already!" in SQL. In Proc.1997 ACM SIGMOD Int. Conf. on Management of Data, pages 219{230, 1997.[15] Michael J. Carey and Donald Kossmann. Reducing the Braking Distance of an SQL QueryEngine. In Proc. 24th Int. Conf. on Very Large Data Bases VLDB '98, pages 158{169, 1998.[16] Michal J. Carey, David J. DeWitt, Daniel Frank, M. Muralikrishna, Goetz Graefe, Joel E.Richardson, and Eugene J. Shekita. The Architecture of the EXODUS extensible DBMS. InProc. of the 1986 Int. Workshop on Object-Oriented database systems, pages 52{65, 1986.[17] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik.Blobworld: A system for region-based image indexing and retrieval. In Proc. of the 3rd Int.Conf. on Visual Information Systems, pages 509{516, June 1999.[18] Kaushik Chakrabarti and Sharad Mehrotra. Dynamic granular locking approach to phantomprotection in R-trees. In Proc. 14th Int. Conf. on Data Engineering, pages 446{454, February1998.[19] Kaushik Chakrabarti and Sharad Mehrotra. E�cient concurrency control in multidimensionalaccess methods. In Proc. 1999 ACM SIGMOD Int. Conf. on Management of Data, pages25{36, May 1999.[20] Kaushik Chakrabarti and Sharad Mehrotra. The Hybrid Tree: An Index Structure for HighDimensional Feature Spaces. In Proc. 15th Int. Conf. on Data Engineering, pages 440{447,March 1999.[21] Kaushik Chakrabarti, Kriengkrai Porkaew, Michael Ortega, and Sharad Mehrotra. EvaluatingRe�ned Queries in Top-k Retrieval Systems. Available as Technical Report TR-MARS-00-04,University of California at Irvine, online at http://www-db.ics.uci.edu/pages/publications/,July 2000.[22] Donald D. Chamberlin. A Complete Guide to DB2 Universal Database. Morgan Kaufmann,July 1998.[23] Donald D. Chamberlin, Morton M. Astrahan, Kapali P. Eswaran, Patricia P. Gri�ths, Ray-mond A. Lorie, James W. Mehl, Phyllis Reisner, and Bradford W. Wade. SEQUEL 2:AUni�ed Approach to Data De�nition, Manipulation and Control. IBM J. Research and De-velopment, 20(6):560{575, 1976.[24] Surajit Chaudhuri and Luis Gravano. Optimizing queries over multimedia repositories. InProc. 1996 ACM SIGMOD Int. Conf. on Management of Data, pages 91{102, 1996.[25] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection queries. In Proc. 25th Int.Conf. on Very Large Data Bases VLDB '99, pages 397{410, Edinburgh, Scotland, 1999.[26] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-de�ned predicates.In Proc. 22nd Int. Conf. on Very Large Data Bases VLDB '96, pages 87{98, 1996.[27] E. F. Codd. A relational model of data for large shared data banks. Communications of theACM, 13(6):377{387, 1970.[28] Stefan Dessloch and Nelson Mattos. Integrating SQL databases with content{speci�c searchengines. In Proc. 23rd Int. Conf. on Very Large Data Bases VLDB '97, pages 528{537,Athens, Greece, 1997. IBM Database Technology Institute, Santa Teresa Lab.

PREPRINT { Please don't distribute. 37[29] Donko Donjerkovic and Raghu Ramakrishnan. Probabilistic optimization of top-n queries.In Proc. 25th Int. Conf. on Very Large Data Bases VLDB '99, pages 411{422, Edinburgh,Scotland, 1999.[30] W. Niblack et. al. The QBIC project: Querying images by content using color, texture andshape. In IBM Research Report, February 1993.[31] Ronald Fagin. Combining fuzzy information from multiple systems. In Proc. 15th ACMSymp. Principles of Database Systems, PODS '96, pages 216{226, 1996.[32] Ronald Fagin and Edward L. Wimmers. Incorporating user preferences in multimedia queries.In Proc. Int. Conf. Database Theory (ICDT '97), pages 247{261, 1997.[33] C. Faloutsos, M. Flocker, W. Niblack, D. Petkovic, W. Equitz, and R. Barber. E�cientand e�ective querying by image content. Technical Report RJ 9453 (83074), IBM ResearchReport, Aug. 1993.[34] Christos Faloutsos and Ibrahim Kamel. Beyond Uniformity and Independence: Analysis ofR-trees Using the Concept of Fractal Dimension. In Proc. 13th ACM Symp. Principles ofDatabase Systems, PODS '94, pages 4{13, 1994.[35] Christos Faloutsos and Douglas Oard. A survey of information retrieval and �ltering methods.Technical Report CS-TR-3514, Dept. of Computer Science, Univ. of Maryland, 1995.[36] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina Jr. Spatial joinselectivity using power laws. In Proc. 2000 ACM SIGMOD Int. Conf. on Management ofData, pages 177{188, 2000.[37] S. Flank, P. Martin, A. Balogh, and J. Rothey. Photo�le: A Digital Library for ImageRetrieval. In Proc. 2nd Int. Conf. on Multimedia Computing and Systems, pages 292{295,1995.[38] M. Flickner, Harpreet Sawhney, Wayne Niblack, and Jonathan Ashley. Query by Image andVideo Content: The QBIC System. IEEE Computer, 28(9):23{32, September 1995.[39] You-Chin (Gene) Fuh, Stefan Dessloch, Weidong Chen, Nelson Mattos, Brian Tran, BruceLindsay, Linda DeMichiel, Serge Rielau, and Danko Mannhaupt. Implementation of SQL3Sturctured Type with Inheritance and Value Substitutability. In Proc. 25th Int. Conf. onVery Large Data Bases VLDB '99, pages 565{574, Edinburgh, Scotland, 1999.[40] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. Database System Implemen-tation. Prentice Hall, 1999.[41] Vibby Gottemukkala, Anant Jhingran, and Sriram Padmanabhan. Interfacing parallel ap-plications and parallel databases. In Alex Gray and Per-�Ake Larson, editors, Proc. 13thInt. Conf. on Data Engineering, pages 355{364, Birmingham U.K, April 7-11 1997. IEEEComputer Society.[42] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-mann, San Mateo, CA, 1993.[43] U. Guntzer, W. Balke, and W. Kiebling. Optimizing Multi-Feature Queries for ImageDatabases. In Proc. 26th Int. Conf. on Very Large Data Bases VLDB 2000, pages 419{428,2000.

PREPRINT { Please don't distribute. 38[44] Amarnath Gupta and Ramesh Jain. Visual Information Retrieval. Communications of theACM, 40(5):70{79, 1997.[45] A. Guttman. R-tree: a dynamic index structure for spatial searching. In Proc. 1994 ACMSIGMOD Int. Conf. on Management of Data, pages 47{57, 1984.[46] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query processing instarburst. In Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data, pages 377{388,1989.[47] J. Hellerstein, J. Naughton, and A. Pfe�er. Generalized search trees in database systems. InProc. 21st Int. Conf. on Very Large Data Bases VLDB '95, pages 562{573, September 1995.[48] Joseph M. Hellerstein. Practical predicate placement. In Proc. 1994 ACM SIGMOD Int.Conf. on Management of Data, pages 325{335, 1994.[49] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing querieswith expensive predicates. In Proc. 1993 ACM SIGMOD Int. Conf. on Management of Data,pages 267{276, 1993.[50] G. Hjaltason and Hanan Samet. Incremental distance join algorithms for spatial databases.In Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data, pages 237{248, Seattle,WA, USA, June 1998.[51] M.~K. Hu. Visual Pattern Recognition by Moment Invariants, Computer Methods in ImageAnalysis. IEEE Computer Society.[52] Thomas S. Huang, Sharad Mehrotra, and Kannan Ramchandran. Multimedia analysis andretrieval system (MARS) project. In Proc of 33rd Annual Clinic on Library Application ofData Processing - Digital Image Access and Retrieval, 1996.[53] Informix. Getting Started with Informix Universal Server, Version 9.1. Informix, March 1997.[54] Informix. Informix Universal Server { Datablade Programmer's Manual Version 9.1. In-formix, March 1997.[55] Informix. Excalibur Image DataBlade Module User's Guide, Version 1.2. Informix, 1999.[56] Informix. Media360, Any kind of content. Everywhere you need it. Informix, 2000.[57] Yoshiharu Ishikawa, Ravishankar Subramanya, and Christos Faloutsos. Mindreader: Query-ing databases through multiple examples. In Proc. 24th Int. Conf. on Very Large Data BasesVLDB '98, pages 218{227, 1998.[58] H. Jiang, D. Montesi, and A. Elmagarmid. Videotext database system. In IEEE Proc. Int.Conf. on Multimedia Computing and Systems, pages 344{351, June 1997.[59] Setrag Khosha�an and A.B. Baker. Multimedia and Imaging Databases. Morgan KaufmannPublishers, San Francisco, CA, 1996.[60] Won Kim. Unisql/x uni�ed relational and object-oriented database system. In Proc. 1994ACM SIGMOD Int. Conf. on Management of Data, page 481, 1994.[61] Robert R. Korfhage. Information Storage and Retrieval. Wiley Computer Publishing, 1997.

PREPRINT { Please don't distribute. 39[62] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot Siegel, and Zenon Protopapas.Fast nearest neighbor search in medical image databases. In Proc. 22nd Int. Conf. on VeryLarge Data Bases VLDB '96, pages 215{226, 1996.[63] M. Kornacker, C. Mohan, and J. Hellerstein. Concurrency and recovery in generalized searchtrees. In Proc. 1997 ACM SIGMOD Int. Conf. on Management of Data, pages 62{72, 1997.[64] Nick Koudas and K. C. Sevcik. High dimensional similarity joins: Algorithms and perfor-mance evaluation. In Proc. 14th Int. Conf. on Data Engineering, pages 466{475, 1998.[65] Gerald Kowalski. Information Retrieval Systems: theory and implementation. Kluwer Aca-demic Publishers, 1997.[66] Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. The objectstore databasesystem. Communications of the ACM, 34(63):50{63, October 1991.[67] Chung-Sheng Li, Yuan-Chi Chang, John R. Smith, Lawrence D. Bergman, and VittorioCastelli. Framework for e�cient processing of content-based fuzzy cartesian queries. In Proc.SPIE, volume 3972, Storage and Retrieval for Media Databases 2000, pages 64{75, 2000.[68] David B. Lomet. Key range locking strategies for improved concurrency. In Proc. 19th Int.Conf. on Very Large Data Bases VLDB '93, pages 655{664, August 1993.[69] Yossi Matias, Je�rey Scott Vitter, and Min Wang. Wavelet-based histograms for selectivityestimation. In Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data, pages 448{459,1998.[70] C. Mohan. ARIES/KVL: A key value locking method for concurrency control of multiactiontransactions operating on B-tree indexes . In Proc. 16th Int. Conf. on Very Large Data BasesVLDB '92, pages 392{405, August 1990.[71] Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. Walrus: A similarity retrieval algorithmfor image databases. In Proc. 1999 ACM SIGMOD Int. Conf. on Management of Data, pages395{406, 1999.[72] J. Neivergelt et al. The grid �le: An adaptable, symmetric multikey �le structure. ACMTrans. Database Systems (TODS), 9(1):38{71, March 1984.[73] Surya Nepal and M.V. Ramakrishna. Query processing issues in image (multimedia)databases. In Proc. 15th Int. Conf. on Data Engineering, pages 22{29, 1999.[74] ORACLE. Oracle 8i Concepts, Release 8.1.6. Oracle, December 1999.[75] ORACLE. Oracle 8i interMedia Audio, Image and Video, User's Guide and Reference.Oracle, February 1999.[76] ORACLE. Oracle 8i Visual Information Retrieval, Users Guide and Reference. Oracle, 1999.[77] ORACLE. Oracle Data Cartridge, Developers's Guide, Release 8.1.5. Oracle, February 1999.[78] ORACLE. Oracle Internet File System, Developers's Guide, Release 1.0. Oracle, May 2000.[79] ORACLE. Oracle Internet File System, User's Guide, Release 1.0. Oracle, April 2000.

PREPRINT { Please don't distribute. 40[80] J. Orenstein and T. Merett. A class of data structures for associative searching. In Proc. 3rdACM SIGACT-SIGMOD Symp. Principles of Database Systems, pages 181{190, 1984.[81] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Sharad Mehrotra, and Thomas S. Huang.Supporting Similarity Queries in MARS. In Proc. of ACM Multimedia 1997, pages 403{413,1997.[82] Michael Ortega, Yong Rui, Kaushik Chakrabarti, Kriengkrai Porkaew, Sharad Mehrotra, andThomas S. Huang. Supporting Ranked Boolean Similarity Queries in MARS. IEEE Trans.Knowledge and Data Engineering, 10(6):905{925, December 1998.[83] Michael Ortega-Binderberger, Sharad Mehrotra, Kaushik Chakrabarti, and KriengkraiPorkaew. WebMARS: A Multimedia Search Engine for Full Document Retrieval andCross Media Browsing. In 6th International Workshop on Multimedia Information Systems(MIS'00), pages 72{81, October 2000.[84] Bernd-Uwe Pagel, Flip Korn, and Christos Faloutsos. De
ating the dimensionality curse usingmultiple fractal dimensions. In Proc. 16th Int. Conf. on Data Engineering, pages 589{598,2000.[85] Apostolos N. Papadopoulos and Yannis Manolopoulos. Similarity query processing using diskarrays. In Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data, pages 225{236,1998.[86] A. Pentland, R.W. Picard, and S.Sclaro�. Photobook: Content-based manipulation of imagedatabases. International Journal of Computer Vision, 18(3):233{254, 1996.[87] V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute value independenceassumption. In Proc. 23rd Int. Conf. on Very Large Data Bases VLDB '97, pages 486{495,1997.[88] Kriengkrai Porkaew, Kaushik Chakrabarti, and Sharad Mehrotra. Query re�nement forcontent-based multimedia retrieval in MARS. Proc. of the 7th. ACM Int. Conf. on Mul-timedia, pages 235{238, 1999.[89] Kriengkrai Porkaew, Sharad Mehrotra, Michael Ortega, and Kaushik Chakrabarti. Similaritysearch using multiple examples in MARS. In Proc. Int. Conf. on Visual Information Systems,pages 68{75, 1999.[90] F. Rabitti and P. Stanchev. GRIM DBMS: A GRaphical IMage Database ManagementSystem. In Visual Database Systems, IFIP TC2/WG2.6 Working Conference on VisualDatabase Systems, pages 415{430, 1989.[91] Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra. Relevance feedback: Apower tool for interactive content-based image retrieval. IEEE Trans. Circuits and Systemsfor Video Technology, 8(5):644{655, September 1998.[92] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval.McGraw-Hill Book Company, 1983.[93] Thomas Seidl and Hans-Peter Kriegel. Optimal multistep k-nearest neighbor search. In Proc.1998 ACM SIGMOD Int. Conf. on Management of Data, pages 154{165, 1998.

PREPRINT { Please don't distribute. 41[94] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, andThomas G. Price. Access path selection in a relational database management system. InPhilip A. Bernstein, editor, Proc. 1979 ACM SIGMOD Int. Conf. on Management of Data,pages 23{34, Boston, MA, USA, May 30 - June 1 1979. ACM.[95] Praveen Seshadri. E-ADTs and Relational Query Optimization. Technical report, CornellUniversity Technical Report, June 1998.[96] Praveen Seshadri. Enhanced abstract data types in object-relational databases. VLDB Jour-nal, 7(3):130{140, August 1998.[97] John C. Shafer and Rakesh Agrawal. Parallel algorithms for high-dimensional proximity joinsfor data mining applications. In Proc. 23rd Int. Conf. on Very Large Data Bases VLDB '97,pages 176{185, 1997.[98] Kyuseok Shim, Ramakrishnan Srikant, and Rakesh Agrawal. High-dimensional similarityjoins. In Proc. 13th Int. Conf. on Data Engineering, pages 301{311, 1997.[99] John R. Smith and S.-F. Chang. Integrated spatial and feature image query. MultimediaSystems Journal, 7(2):129{140, 1997.[100] John R. Smith and S.-F. Chang. Visually Searching the Web for Content. IEEE Multimedia,4(3):12{20, Summer 1997.[101] T. G. Aguierre Smith. Parsing movies in context. In Summer Usenix Conference, Nashville,Tennessee, pages 157{167, 1991.[102] J. Srinivasan, R. Murthy, S. Sundara, N. Agarwal, and S. DeFazio. Extensible indexing: Aframework for integrating domain-speci�c indexing schemes into oracle8i. In Proc. 16th Int.Conf. on Data Engineering, pages 91{100, 2000.[103] M. Stonebraker and G. Kemnitz. The postgres next-generation database management system.Communications of the ACM, 34(10):78{92, 1991.[104] Michael Stonebreaker and Dorothy Moore. Object-Relational DBMSs, The Next Great Wave.Morgan Kaufman, 1996.[105] Michael J. Swain. Interactive indexing into image databases. In 1908, Storage and Retrievalfor Image and Video Databases, volume 1908, pages 95{103, 1993.[106] Sybase. Java in Adaptive Server Enteprise, Version 12. Sybase, October 1999.[107] Sybase. Sybase Adaptive Server Enterprise, Version 12.0. Sybase, 1999.[108] Hideyuki Tamura et al. Texture features corresponding to visual perception. IEEE Trans.Systems, Man and Cybernetics, SMC-8(6):460{473, June 1978.[109] Yannis Theodoridis and Timos Sellis. A Model for the Prediction of R-tree Performance. InProc. 15th ACM Symp. Principles of Database Systems, PODS '96, pages 161{171, 1996.[110] L. Wu, C. Faloutsos, K. Sycara, and T. Payne. Falcon: Feedback adaptive loop for content-based retrieval. In Proc. 26th Int. Conf. on Very Large Data Bases VLDB 2000, pages297{306, 2000.

