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1 Introduction

Advances in high performance computing, communication, and storage technologies, as well as
emerging large-scale multimedia applications, have made the design and development of multi-
media information systems one of the most challenging and important directions of research and
development within computer science. The payoffs of a multimedia infrastructure are tremendous-
it enables many multi-billion dollar-a-year application areas. Examples are medical information sys-
tems, electronic commerce, digital libraries, (like multimedia data repositories for training, educa-
tion, broadcast and entertainment,) special purpose databases, (such as face/fingerprint databases
for security,) and geographical information systems storing satellite images, maps, etc.

An integral component of the multimedia infrastructure is a multimedia database management
system. Such a system supports mechanisms to extract and represent the content of multimedia
objects, provides efficient storage of the content in the database, supports content-based queries
over multimedia objects, and provides a seamless integration of the multimedia objects with the
traditional information stored in existing databases. A multimedia database system consists of
multiple components, which provide the following functionalities:

e Multimedia Object Representation: techniques/models to succinctly represent both
structure and content of multimedia objects in databases.

e Content Extraction: mechanisms to automatically/semi-automatically extract meaningful
features that capture the content of multimedia objects, and that can be indexed to support
retrieval.

e Multimedia Information Retrieval: techniques to match and retrieve multimedia objects
based on the similarity of their representation (i.e., similarity-based retrieval).

e Multimedia Database Management: extensions to data management technologies of in-
dexing and query processing to effectively support efficient content-based retrieval in database
management systems.

Many of the above issues have been extensively addressed in other chapters of this book. Our
focus in this chapter is on how content-based retrieval of multimedia objects can be integrated into
database management systems as a primary access mechanism. In this context, we first explore the
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support provided by existing object-oriented and object-relational systems for building multimedia
applications. We then identify limitations of existing systems in supporting content-based retrieval
and summarize approaches proposed in the literature to address these limitations. We believe
that this research will culminate in improved data management products that support multimedia
objects as “first-class” objects, capable of being efficiently stored and retrieved based on their
internal content.

The rest of the chapter is organized as follows. In Section 2, we describe a simple model
for content-based retrieval of multimedia objects, which is widely implemented and commonly
supported by commercial vendors. We use this model throughout the chapter to explain the issues
that arise in integrating content-based retrieval into database management systems (DBMSs). In
Section 3 we explore how the evolution of relational databases into object-oriented and object-
relational systems, which support complex data types and user-defined functions, facilitates building
multimedia applications [104]. We apply the analysis framework of Section 3 to the Oracle, the
Informix, and the IBM DB2 database systems in Section 4. The chapter then identifies limitations of
existing state-of-the-art data management systems from the perspective of supporting multimedia
applications. Finally, Section 5 outlines a set of research issues and approaches that we believe
are crucial for the development of database technology providing seamless support for complex
multimedia information.

2 A Model for Content-Based Retrieval

Traditionally, content-based retrieval from multimedia databases was supported by describing mul-
timedia objects with textual annotations [90, 101, 37, 58]. Textual information retrieval tech-
niques [92, 61, 65, 35] were then used to search for multimedia information indirectly using the
annotations. Such a text-based approach suffers from numerous limitations, including the impossi-
bility of scaling it to large data sets (due to the high degree of manual effort required to produce
the annotations), the difficulty of expressing visual content (e.g., texture/patterns or shape in an
image) using textual annotations, and the subjectivity of manually generated annotations.

To overcome several of these limitations, a wvisual feature-based approach has emerged as a
promising alternative, as is evidenced by several prototype [86, 52, 100] and commercial systems [38,
33, 30, 6, 55]. In a visual feature-based approach, a multimedia object is represented using visual
properties; for example, a digital photograph may be represented using color, texture, shape, and
textual features. Typically, a user formulates a query by providing examples, and the system
returns the “most similar” objects in the database. The retrieval consists of ranking the similarity
between the feature-space representations of the query and of the images in the database. The
query process can therefore be described by defining the models for objects, queries, and retrieval.

2.1 Object Model

A multimedia object is represented as a collection of extracted features. Each feature may have
multiple representations, capturing it from different perspectives. For instance, the color his-
togram [105] descriptor represents the color distribution in an image using value counts, while the
color moments [51] descriptor represents the color distribution in an image using statistical pa-
rameters (e.g., mean, variance, and skewness). Associated with each representation is a similarity
function that determines the similarity between two descriptor values. Different representations
capture the same feature from different perspectives. The simultaneous use of different represen-
tations often improves retrieval effectiveness [52], but it also increases the dimensionality of the
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Figure 1: Query Model

search space (which reduces retrieval efficiency), and has the potential for introducing redundancy
(which can negatively affect effectiveness.)

Each feature space (e.g., a color histogram space) can be viewed as a multidimensional space,
in which a feature vector representing an object corresponds to a point. A metric on the feature
space can be used to define the dissimilarity between the corresponding feature vectors. Distance
values are then converted to similarity values. Two popular conversion formulae are s = 1 — d! and
s = exp(—%), where s and d respectively denote similarity and distance. With the first formula,
if d is measured using the Fuclidean distance function, s becomes the cosine similarity between
the vectors, while if d is measured using the Manhattan distance function, s becomes the histogram
intersection similarity between them. While cosine similarity is widely used in keyword-based
document retrieval, histogram-intersection similarity is common for color histograms. A number of
image features and feature matching functions are further described in Chapters 8 to 19.

2.2 Query Model

The query model specifies how a query is constructed and structured. Much like multimedia
objects, a query is also represented as a collection of features. One difference is that a user may
simultaneosly use multiple example-objects, in which case the query can be represented in either
of the following two ways [89]:

e Feature-based representation: The query is represented as a collection of features. Each
feature contains a collection of feature representations with multiple values. The values
correspond to the feature descriptors of the objects.

e Object-based representation: A query is represented as a collection of objects and each
object consists of a collection of feature descriptors.

In either case, each component of a query is associated with a weight indicating its relative
importance.

Figure 1 shows a structure of a query tree in an object-based model. In the figure, the query
structure consists of multiple objects O; and each object is represented as a collection of multiple
feature values R;;.

'The conversion formula assumes that the space is normalized to guarantee that the maximum distance between
points is equal to 1.
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2.3 Retrieval Model

The retrieval model determines the similarity between a query tree and objects in the database.
The leaf level of the tree corresponds to feature representations. A similarity function specific
to a given representation is used to evaluate the similarity between a leaf node (R;;) and the
corresponding feature representation of the objects in the database. Assume, for example, that
the leaf nodes of a query tree correspond to two different color representations — color histogram
and color moments. While histogram intersection [105] may be used to evaluate the similarity
between the color histogram of an object and that of the query, the weighted Euclidean distance
metric may be used to compute the similarity between the color moments descriptor of an object
and that of the query. The matching (or retrieval) process at the feature representation level
produces one ranked list of results for each leaf of the query tree. These ranked lists are combined
using another function to generate a ranked list describing the match results at the parent node.
Different functions may be used to merge ranked lists at different nodes of the query tree, resulting
in different retrieval models. A common technique used is the weighted summation model. Let a
node N; in the query tree have children N;; to N;,. The similarity of an object O in the database
with node N; (represented as similarity;) is computed as:

n
stmilarity; = Zwij similarity;; where (1)
i=1

e
E w;; = 1
j=1

and similarity;; is the measure of similarity of the object with the jth child of node N;.

Many other retrieval models to generate overall similarity between an object and a query have
been explored in the literature. For example, in [82], a Boolean model suitably extended with fuzzy
and probabilistic interpretations is used to combine ranked lists. A Boolean operator — AND (A),
OR (V), NOT (=) — is associated with each node of the query tree, and the similarity is interpreted
as a fuzzy value or a probability and combined with suitable merge functions. Desirable properties
of such merge functions are studied by Fagin and Wimmers in [32].

2.4 Extensions

In the previous section, we have described a simple model for content-based retrieval that will
serve as the base reference in the remainder of the chapter. Many extensions are possible and have
been proposed in the literature. For example, we have implicitly assumed that the user provides
appropriate weights for nodes at each level of the query tree (reflecting the importance of a given
feature/node to the user’s information need [92]). In practice, however, it is difficult for a user to
specify the precise weights. An approach followed in some research prototypes (i.e., MARS [52],
MindReader [57]) is to learn these weights automatically using the process of relevance feedback
[89, 88, 91]. Relevance feedback is used to modify the query representation by altering the weights
and structure of the query tree to better reflect the user’s subjective information need.

Another limitation of our reference model is that it focuses on representation and content-based
retrieval of images — it has limited ability to represent structural, spatial or temporal properties
of general multimedia objects (i.e., multiple synchronized audio and video streams) and to model
retrieval based on these properties. Even in the context of image retrieval, the model described
needs to be appropriately extended to support a more structured retrieval based on local/region-
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based properties. Retrieval based on local region-specific properties and the spatial relationships
between the regions has been studied in many prototypes including [71, 17, 83, 99, 67].

3 Overview of Current Database Technology

In this section, we explore how multimedia applications requiring content-based retrieval can be
built using existing commercial data management systems. Traditionally, relational database tech-
nology has been geared towards business applications where data is largely in tabular form with
simple atomic attributes. Relational systems usually support only a handful of data types — a
numeric type with its usual variations in precision,? a text type with some variations in the as-
sumptions about the storage space available,® some temporal data types such as date and time
1. Providing support for multimedia objects in relational database systems
poses many challenges. First, in contrast to the limited storage requirements of traditional data
types, multimedia data such as images, video, and audio are quite voluminous — a single record
may span several pages. One alternative is to store the multimedia data in files outside of the
DBMS control with only pointers or references to the multimedia object stored in the DBMS. This
approach has numerous limitations since it makes the task of optimizing access to data difficult,
and furthermore prevents DBMS access control over multimedia types. An alternative solution is
to store the multimedia data in databases as binary large objects (BLOBs), which are supported
by almost all commercial systems. BLOB is a data type used for data that does not fit into one of
the standard categories, because of its large size or its widely variable length, or because the only
needed operation is storage, rather than interpretation, analysis or manipulation.

While modern databases provide effective mechanisms to store very large multimedia objects
in a BLOB, BLOBs are uninterpreted sequences of bytes, which cannot represent the rich internal
structure of multimedia data. Such a structure can be represented in a DBMS using the support for
user-defined abstract data types (ADTs) offered by modern object-oriented and object-relational
databases. Such systems also provide support for user-defined functions (UDFs) or methods, which
can be used to implement similarity retrieval for multimedia types. Similarity models, implemented
as UDF's, can be called from within SQL allowing content-based retrieval to be seamlessly integrated
into the database query language. In the remainder of this section, we discuss the support for ADTs,
UDF, and BLOBs in modern databases that provides the core technology for building multimedia
database applications.

with some variations

3.1 User-Defined Abstract Data Types

The basic relational model requires tables to be in the first normal form [27] where every attribute
is atomic. This poses serious limitations in supporting applications that deal with objects/data
types with rich internal structure. The only recourse is to translate between the complex structure
of the applications and the relational model every time an object is read or written. This results
in extensive overhead making the relational approach unsuitable for advanced applications that
require support for complex data types.

2Typically, numeric data can be of integral type, fractional data such as floating point in various precisions, and
specialized money types such as packed decimal that retained high precision for detailed money transactions.

FNotably, the char data type specifies a maximum length of a character string and this space is always reserved.
Varchar data in contrast occupies only the needed space for the stored character string and also has a maximum
length.

*Variations of temporal data types include time, date, datetime sometimes with a precision specification such as
year down to hours, timestamp used to mark a specific time for an event, and interval to indicate the length of time.
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These limitations of relational systems have resulted in much research and commercial develop-
ment to extend the database functionality with rich user-defined data types in order to accommo-
date the needs of advanced applications. Research in extending the relational database technology
has proceeded along two parallel directions.

The first approach, referred to as the object-oriented database (OODBMS) approach, attempts
to enrich object-oriented languages, such as C4++ and Smalltalk, with the desirable features of
databases, such as concurrency control, recovery, and security, while retaining support for the rich
data types and semantics of object-oriented languages. Examples of systems that have followed this
approach include research prototypes such as [16] and a number of commercial products [7, 66].

The object-relational database (ORDBMS) systems, on the other hand, approach the problem
of adding additional data types by extending the existing relational model with the full-blown type
hierarchy of object-oriented languages. The key observation was that the concept of domain of
an attribute need not be restricted to simple data types. Given its foundation in the relational
model, the ORDBMS approach can be considered a less radical evolution than the OODBMS
approach. The ORDBMS approach produced such research prototypes as Postgres [103], and
Starburst [46] and commercial products such as lllustra [104]. The ORDBMS technology has
now been embraced by all major vendors including Informix [53], IBM DB2 [22], Oracle [74],
Sybase [107], and UniSQL [60] among others. The ORDBMS model has been incorporated in the
SQL-3 standards.

While OODBMSs provide the full power of an object-oriented language, they have lost ground
to ORDBMSs. Interested readers are referred to [104] for good insight from both a technical and
commercial perspective into reasons for this development. In the remainder of this chapter, we will
concentrate on the ORDBMS approach.

The object-relational model retains relational model concepts of tables and columns in tables.
Besides the basic types, it provides for additional user-defined abstract data types (ADTs), as well
as collections of basic and user-defined types. The functions that operate on these ADTs, known
as User-Defined Functions (UDFs), are written by the user and are equivalent to methods in the
object-oriented context. In the object-relational model, the fields of a table may correspond to basic
DBMS data types, to other ADTs, or can even just contain storage space whose interpretation is
entirely left to the user-defined methods for the type [53]. The following example illustrates how a
user may create an ADT and include it in a table definition:

create type ImageInfoType ( date varchar(12) ,

locationlatitude real ,
location longitude real )

create table SurveyPhotos ( photo_id integer primary key not null,
photographer varchar (50) not null,
photoldocation ImageInfoType not null,
photo blob not null)

The type ImagelnfoType defines a structure to store the location at which a photograph was taken
together with the date stored as a string. This can be useful for nature survey applications where
a biologist may wish to attach a geographic location and a date to a photograph. This abstract
data type is then used to create a table with an id for the photograph, the photographer’s name,
the photograph itself (stored as a BLOB), and the location and date when it was taken.
ORDBMSs extend the basic SQL language to allow user-defined functions (once they are com-
piled and registered with the DBMS) to be called directly from within SQL queries, thereby pro-
viding a natural mechanism to develop domain-specific extensions to databases. The following
example shows a sample query that calls a user-defined function on the type declared above:
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select photographer, convert_to_grayscale(photo)
from SurveyPhotos
where within distance(photolocation,’1’, ’30.45, -127.0’)

This query returns the photographer and a gray-scale version of the image stored in the table. The
within_distance UDF is a predicate that returns true if the place where the image was shot is within
1 mile of the given location. This UDF ignores the date the picture was taken, demonstrating how
predicates are free to implement any semantically significant properties of an application. Note
that the UDF convert_to_grayscale to convert the image to gray-scale is not a predicate since it is
applied to an attribute in the select clause and returns a gray-scale image.

ADTs also provide for type inheritance and, as a consequence, polymorphism. This introduces
some problems in the storage of ADTs, as existing storage mangers assume that all rows in a table
share the same structure. Several strategies have been developed to cope with this problem [39],
including dynamic interpretation, and using distinct physical tables for each possible type of a
larger, logical table. Section 5.1 contains more details on this topic.

3.2 Binary Large Objects

As mentioned previously, binary large objects (BLOBs) are used for data that does not fit into any
of the conventional data types supported by a DBMS. BLOBs are used as a data type for objects
that are either large, have wildly varying size, cannot be represented by a traditional data type,
or whose data might be corrupted by character table translation.’
BLOBs apart from other data types: they are stored separately from the record [23] and their data

Two main characteristics set

type is just a string of bytes.

BLOBs are stored separately due to their size: if placed in-line with the record, they could
span multiple pages and hence introduce loss of clustering in the table storage. Furthermore,
applications may frequently only choose to access other attributes and not BLOBs — or access
BLOBs selectively based on other attributes. Indeed, BLOBs have a different access pattern than
other attributes. As observed in [59], it is unreasonable to assume that applications will read
and/or update all the bytes belonging to a BLOB at once. It is more reasonable to assume that
only portions or substrings (byte or bit) will be read or updated during individual operations. To
cope with such an access pattern, many DBMSs distinguish between two types of BLOBs:

o regular BLOBSs, in which the application receives the whole data in a host variable all at once,
and

e smart BLOBs, in which the application receives a handle, and uses it to read from the BLOB
using the well-known file system interfaces open, close, read, write, and seek. This allows
fine-grained access to small parts of the BLOB.

Besides the above two mechanisms to deliver BLOBs from the database to applications (that is,
either via whole chunks or via a file interface), a third option of a streaming interface is also possible.
Such an interface is important for guaranteeing timely delivery of continuous media objects, such

*Most DBMSs support data types that could be used to store objects of miscellaneous types. For example, a
small image icon can be represented using a varchar type. The icon would be stored in-line with the record instead
of separately (as would be the case if the image icon is stored as a BLOB). Even though there may be performance
benefits from storing the icon in-line (say it is very frequently accessed), it may still not be desirable to store it
as a varchar since the icon may get corrupted in transmission and interpretation across different hardware (due to
the differences in character set representation across different machines). Such data types, sensitive to character
translation, should be stored as BLOBs.
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as audio or video. Currently, to the best of our knowledge, no DBMS offers a streaming interface to
BLOBs. Continuous media objects are stored outside the DBMSs in specialized storage servers [13]
and accessed from applications directly and not through a database interface. This may, however,
change with the increasing importance of continuous media data in enterprise computing.

BLOBs present an additional challenge during query processing. Unless a BLOB is part of
a query predicate, it is best to avoid the inclusion of the corresponding column during query
processing, since it saves an extra file access during processing, and, more importantly, since BLOBs,
due to their size, tend to thrash the database buffers used for query processing. For this reason,
BLOB handles are often used and, when the user requests the BLOB content, separate database
buffers are used to complete this transfer.

For access control purposes, BLOBs are treated as a single atomic field in a record. Large
BLOBs could, in principle, be shared by multiple users, but the most fine grained locking unit
in current databases is a tuple (or row) lock, which simultaneously locks all the fields inside the
tuple, including the BLOBs. Some of the SQL extensions needed to support parallel operations
from applications into database systems are discussed in [41].

3.3 Support for Extensible Indexing

While user-defined ADTs and UDFs provide adequate modeling power to implement advanced
applications with complex data types, the existing access methods that support the traditional
relational model (i.e., B-tree and hashing) may not provide efficient retrieval of these data types.
Consider, for example, a data type corresponding to the geographical location of an object. A
spatial data structure such as an R-tree [45] or a grid file [72] might provide a much more efficient
retrieval of objects based on spatial location than a collection of B-trees each indexing a separate
spatial dimensions. Access methods that exploit the semantics of the data type may reduce the cost
of retrieval. As discussed in Chapters 14 and 15, this is certainly true for multimedia types such
as images where features (i.e., color, texture, and shape) used to model image content correspond
to high-dimensional feature spaces. Retrieval of multimedia objects based on similarity in these
feature spaces cannot be adequately supported using B-trees or, for that matter, common multi-
dimensional data structures such as R-tree and region quad-tree that are currently supported by
certain commercial DBMSs. Specialized access methods (see Chapter 14) need to be incorporated
into the DBMS to support eflicient content-based retrieval of multimedia objects.

Commercial ORDBMS vendors support extensible access methods [11, 102] since it is not
feasible to provide native support for all possible type-specific indexing mechanisms. These type-
specific access methods can then be used by the query processor to access data (that is, implement
type specific UDFs) efficiently. While these systems support extensibility at the level of access
methods, the interface exported for this purpose is at a fairly low level and requires that access
method implementors write their own code to pack records into pages, maintain links between pages,
handle physical consistency as well as concurrency control for the access method etc. This makes
access method integration a daunting task. Other (cleaner) approaches to adding new type-specific
access methods are currently a topic of active research [47] and will be discussed in Section 5.2.3.

3.4 Integrating External Data Sources

Many data sources are external to database systems, therefore it is important to extend querying
capabilities to such data. This can be accomplished by providing a relational interface to external
data and making it look like tables, or by storing external data in the database while maintaining
an external interface for traditional applications to access the data. These two approaches are
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discussed next in more detail.

External data can be made to appear as an internal database table by registering user-defined
functions that access resources external to the database server, even including remote services such
as search engines, remote servers, etc. For example, Informix has extended its Universal Server to
offer the capability of “Virtual Tables” (VTI), in which the user defines a set of functions designed
to access an external entity and make it appear to be a normal relational table suitable for searching
and updating. Similarly, DB2 uses table functions and special SQL TABLFE operators to simulate
the existence of an internal table. The primary aim of the table functions is to access external
search engines to assist DB2 in computing the answers for a query. A detailed discussion of their
support is found in [28].

Another approach to integrate external data is based on the realization that much unstructured
data (up to 90%) resides outside of DBMSs. This led several vendors to develop a way to extend
their database offerings to incorporate such external data into the database while maintaining its
current functional characteristics intact. IBM developed an extension to their DB2 database named
Datalinks, in which a DBMS table can contain a column, which is an “external file.” This file is
accessible by the table it logically resides in, and through the traditional file system interface. Users
have the illusion of interacting with a file system with traditional file system commands while the
data is stored under DBMS control. In this way, traditional applications can still access their
data files without restrictions, and enjoy the recovery and protection benefits of the DBMS. This
functionality implies protection against data corruption.

Similarly, the Oracle Internet File System [79, 78] addresses the same problem by modifying
the file system to store files in database tables as BLOBs. The Oracle Internet File System is of
interest here because it allows normal users, including web servers, to access images through file
system interfaces, while retaining all DBMS advantages.

These advantages translate into small changes to existing delivery infrastructure such as web
servers and text processing programs, while retaining advanced functionality including searching,
storage management and scalability.

3.5 Commercial Extensions to DBMSs

We have discussed the evolution of the traditional relational model to modern extensible database
technology that supports user-defined abstract data types and functions, and the ability to call
such functions from SQL. These extensions provide a powerful mechanism for third-party vendors to
develop domain-specific extensions to the basic data management system. Such extensions are called
Datablades in Informix, Data Cartridges in Oracle, and Fztenders in DB2. Many Datablades are
commercially available for the Informix Universal Server — some of which are shipped as standard
packages while others can be purchased separately. Example Datablades include the Geodetic
datablade that supports all the important data types and functions for geospatial applications,
and includes an R-tree implementation for indexing spatio-temporal data types. Other Datablades
available are the Timeseries Datablade for time-varying numeric data such as stocks, the Web
Datablade that provides a tight coupling between the database server and a web server, and a Video
Foundation Datablade to handle video files, among others. Similar Cartridges and Extenders are
also available for Oracle and DB2 respectively.

Besides commercially available Datablades/Cartridges/Extenders, users can develop their own
domain-specific extensions. For this purpose, each DBMS supports an API that a programmer
must conform to in developing the extensions. Details of the API offered by Informix can be found
in [54]. The API supported by Oracle (referred to as the Oracle Data Cartridge Interface (ODCI))
is discussed in [77].
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While each of the different systems (that is, Informix, Oracle, and DB2) support the notion
of extensibility, they differ somewhat in the degree of control and protection offered. Informix
supports extensibility at a low level with very fine-grained access to the database server. There
are a considerable number of hooks into the server to customize many aspects of query processing.
For example, for predicates involving user-defined functions over user-defined types® the predicate
functions have access to the conditions in the where clause itself. This level of access allows for
very flexible functionality and speed, at a certain cost in safety — Informix relies on the developers
of Datablades to follow their protocol closely and not do any damage. Another feature offered by
the Informix Datablade API is allowing UDFs to acquire and maintain memory across multiple
invocations. Memory is released by the server based on the duration specified by the data type
(i.e., transaction duration, query duration, etc.). Such a feature simplifies the task of implementing
certain user-defined functions (i.e., user-level aggregation and grouping operators).

While Informix offers a potentially more powerful model for extensibility, IBM DB2 is the only
system that isolates the server from faults in UDFs by allowing the execution of UDFs in their own
separate address space [22] in addition to the server address space. With this fine-grained fault
containment, errors in UDFs will not bring the database server off-line.

4 Image Retrieval Extensions to Commercial DBMSs

In this section, we discuss the image retrieval extensions available in commercial systems. We
specifically explore the image retrieval technologies supported by Informix Universal Server, Oracle,
and IBM DB2 products. These products offer a wide variety of desirable features designed to
provide integrated image retrieval in databases. We illustrate some of the functionalities offered by
discussing how applications requiring image retrieval can be built in these systems. While other
vendors support a subset of the desired technologies, none integrate them to the same degree —
resulting in a large effort on the part of customers wishing to create multimedia applications.

To demonstrate how image retrieval applications can be built using database extensions for
commercial DBMSs, we will use a very simple example of a digital catalog of color pictures. In this
application, a collection of pictures, is stored into a table. For each picture, the photographer and
date are stored into a table. The basic table schema is:

e photo_id: an integer number to identify the item in the catalog
e photographer: a character string with the photographer’s name

e date: the date the picture was taken, for simplicity we will use a character string instead of
a date datatype

e photo: the photo image and its necessary features for retrieval

The implementation of the photo attribute changes depending on the product and is described in
the following subsections. In addition to these attributes, any additional attributes, tables and
steps necessary to store such a catalog in the database and execute content-based retrieval queries
will be illustrated in the subsections below corresponding to the three systems discussed.

4.1 Informix Image Retrieval Datablade

The Informix system includes a complete media asset management suite (called Informix Me-
dia360(TM) [56]) to manage digital content in a central repository. The product is designed to

SThese are special user-defined functions declared as operators.
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handle any media type, including images, maps, blueprints, audio, and video, and is extensible to
support additional media types. It manages the entire life cycle of media objects, from production,
to delivery, to archiving, including access control and rights management. The product is integrated
with image, video, and audio catalogers and image, video key-frame, and audio content-based search
functionality. This suite includes asset management software and a number of content-specific Dat-
ablades to tackle datatype-specific needs. The Excalibur Visual Retrievalware Datablade [55] is
one such type-specific Datablade that manages the storage, transcoding and content-based search
of images. The image Datablade is also used for video key-frame search. Image retrieval based on
color, texture, shape, brightness layout, color structure and image aspect ratio is supported. Color
refers to the global color content of the image (i.e., regardless of its location). Texture seeks to
distinguish such properties as smoothness or graininess of a surface. Shape seeks to express the
shape of objects in an image: for example a balloon is a circular shape. Brightness layout captures
the relative energy in an image based on its location in the image, and similarly, color structure
seeks to localize the color properties to regions of the image.

For each image in the database, a similarity score is computed to determine the degree to
which that image satisfies the query. All feature-to-feature matches are weighted with user-supplied
weights and combined into a final score. Only those images with a score above a given similarity
threshold are returned to the user and the remaining images are deemed not relevant to the query.
The Datablade supports datatypes to store images and their image feature vectors. Feature vectors
combine all the feature representations supported into a single attribute for the whole image.
Therefore, no sub-image or region searching is possible.

In order to build an image retrieval application using the image datablade in Informix, the
following tasks must be performed:

1. Install Informix with the Universal Data Option and the Excalibur Visual Retrievalware
Datablade product, then configure the necessary table and index storage space in the server.

2. Create a Database to store all tables and auxiliary data needed for our example. We will call
this the Gallery database.

CREATE DATABASE Gallery;

3. Create a table with the desired fields, of which two are for the image retrieval. Following our
example, this statement creates such a table:

CREATE TABLE photo_collection (
photo_id integer primary key not null,
photographer varchar (50) not null,
date varchar(12) not null,
photo IfdImgDesc not null,
fv IfdFeatVect)

The photo field stores the image descriptor and the fv field stores the feature vector for the
image, which will be used for content-based search.

4. Insert data into the table with all the values except for the fv field, which will be filled
elsewhere:
INSERT INTO photo_collection (photo_id, photographer, date, photo) VALUES

(3, ’Ansel Adams’, ’03/06/19957,
IfdImgDescFromFile (’/tmp/03.jpg’))
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Notice that the feature vector attribute was not specified and thus retains a value of NULL.
More photo collection entries can be added using this method.

. At a later time, the features are extracted to populate the fv attribute in the table:

UPDATE photo_collection
SET fv = GetFeatureVector (photo)
WHERE fv IS NULL

This command sets the feature vector attribute for tuples where the features have not yet
been extracted, i.e., where the fv attribute is NULL. The features are extracted from each
photo with the GetFeature Vector user-defined function that is part of the Datablade. Manu-
ally extracting the feature information and updating it in the table is desirable if many images
are loaded quickly and feature extraction can be performed at a later time. An alternative to
manual feature extraction is to automatically extract the features when each tuple is inserted
or updated. To accomplish this, a database trigger can be created that will automatically
execute the above statement whenever there is an update to the tuple.

Once the Images are loaded and the features extracted, the Resembles function is used to retrieve
those images similar to a given image. The Resembles function accepts a number of parameters:

The database image and query feature vectors to be compared.

A real number between 0 and 1 that is a cut off threshold in the similarity score. Only images
that match with a score higher than the threshold are returned. We refer to such a cutoff as
the alpha cut value.

A weighting value for each of the features used. The weights do not have to add up to any
particular value, but taken together, they cannot exceed 100. Weights are relative, so the
weights (1,1,1,1,2,1) and (5,5,5,5,10,5) are equivalent.

An output variable that contains the returned match score value.

Query the photo_collection table with an example-image.

The user provides an image feature vector as a query template. This feature vector can either
be stored in the table, or correspond to an external image. Using a feature vector for an
image already in the table requires a self join to identify the query feature vector. A feature
vector for an external image requires calling the GetFeature Vector user-defined function.

The first example uses an image already in the table (the one with image id 3) as the query
image:

SELECT g.photo_id, score
FROM photo_collection g, photo_collection s
WHERE
s.photo_id = 3
AND
Resembles(g.fv, s.fv, 0.0, 1, 1, 1, 0, 0, 0, score #REAL)
ORDER BY score

The Resembles function takes two extracted feature vectors (here ¢.fv and s.fv), computes a
similarity score, and compares it to the indicated threshold. In this example, the threshold is
0.0, which means all images will be returned to the user. Following the threshold, six values
in the argument list identify the weights for each of the features. Here, only the first three
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features (color, shape and texture) are used, while the remaining three are unused (their
weights are set to 0). The last parameter is an output variable named score of type REAL,
which contains the similarity score for the image match between the query feature vector s.fv
and the images stored in the table. The score is then used to sort the result vectors to provide
a ranked output.

The next example uses an external image as the query image with all features used for
matching, and a non-zero threshold specified:

SELECT photo_id, score
FROM photo_collection
WHERE Resembles(fv,
GetFeatureVector (IfdImgDescFromFile (°/tmp/03. jpg’)) ,
0.80, 10, 30, 40, 10,
5, 5, score #REAL)
ORDER BY score

Note how the features are extracted in-situ by the GetFeature Vector function and passed to
the Resembles function to compute the score between each image and the query image. In
this query, only those images with a match score greater than 0.8 will be returned.

4.2 DB2 UDB Image Extender

IBM offers a full content management suite that, like the Media Asset Management Suite of In-
formix, provides a range of content administration, delivery, privilege management, protection, and
other services. The IBM Content Manager product has evolved over a number of years, incorpo-
rating technology from several sources including OnDemand, DB2 Digital Library, ImagePlus, and
VideoCharger. The early focus of these products was to provide integrated storage for and access to
data of diverse types (i.e., scanned handwritten notes, images, etc.). These products, however, only
provided search based on meta-data. For example, searching was supported on manually entered
attributes associated with each digitized image, but not on the image itself. This, however, changed
with the conversion of the IBM QBIC” prototype image retrieval system into a DB2 Extender. DB2
now offers integrated image search from within the database via the DB2 UDB Image Extender,
which supports several color and texture feature representations.

In order to build the image retrieval application using the Image Extender, the following tasks
need to be performed:

1. Install DB2 and the Image Extender, and configure the necessary storage space for the server.
This installs a number of extender supplied user-defined distinct types and functions.

2. Create a Database to store all tables and auxiliary data needed for our example. We will call
this the Gallery database.

CREATE DATABASE Gallery;

"QBIC [38], standing for Query By Image Content, was the first commercial content-based Image Retrieval system
and was initially developed as an IBM research prototype. Its system framework and techniques had profound
effects on later Image Retrieval systems. QBIC supports queries based on example images, user-constructed sketches
and drawings and selected color and texture patterns. The color features used in QBIC are the average (R,G,B),
(Y i,9),(L,a,b) and MTM (Mathematical Transform to Munsell) coordinates, and a k element Color Histogram. Its
texture feature is an improved version of the Tamura texture representation [108], i.e., combinations of coarseness,
contrast and directionality. Its shape feature consists of shape area, circularity, eccentricity, major axis orientation
and a set of algebraic moments invariants.
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3.

Enable the Gallery database for Image searches. From the command line (not the SQL
interpreter) use the Extender manager and execute:

db2ext ENABLE DATABASE Gallery FOR DB2IMAGE

This example uses the DB2 UDB version for UNIX and Microsoft Windows operating systems.

. Create a table with the desired fields:

CREATE TABLE photo_collection (
photo_id integer PRIMARY KEY NOT NULL,
photographer varchar (50) NOT NULL,
date varchar(12) NOT NULL,
photo DB2IMAGE)

. Enable the table photo_collection for content-based image retrieval. This step again uses the

external Extender manager, and is composed of several substeps.

e Set up the main table, create auxiliary tables and indexes.

db2ext ENABLE TABLE photo_collection FOR DB2IMAGE USING TSP1,,LTSP1

This creates some auxiliary support tables used by the Extender to support image re-
trieval for the photo_collection table. These tables are stored in the database table-space
named “TSP1” while the supporting large objects (BLOBs) are stored in the “LTSP1”
table-space. The necessary indexes on auxiliary tables are also created in this step.

e Enable the photo column for content-based image retrieval. This step again uses the
external Extender manager.

db2ext ENABLE COLUMN photo_collection photo FOR DB2IMAGE

This makes the photo column active for use with the Image Extender and creates triggers
that will update the auxiliary administrative tables in response to any change (insertion,
deletion, update) to the data in table photo_collection.

e Create a catalog for querying the column by image content. This is done with the

extender manager.

db2ext CREATE QBIC CATALOG photo_collection photo ON

This creates all the support tables necessary to execute a content-based image query.
The keyword ON indicates that the cataloging process (i.e., the feature extraction) will
be performed automatically, otherwise, periodic manual re-cataloging is necessary.

e Open a catalog for adding features, for which feature extraction is to take place; only
those features present in the catalog will be available for querying. Using the Extender
manager, we issue the following command.

db2ext OPEN QBIC CATALOG photo_collection photo

o Add those features for which feature extraction should take place to the catalog. Here
we will add all four supported features.
db2ext ADD QBIC FEATURE QbColorFeatureClass
db2ext ADD QBIC FEATURE QbColorHistogramFeatureClass

db2ext ADD QBIC FEATURE QbDrawFeatureClass
db2ext ADD QBIC FEATURE QbTextureFeatureClass

These correspond to Awverage Color, Histogram Color, Positional Color, and Texture.
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Not all features need to be present, including unnecessary features will only decrease
performance.

e Close the catalog.

db2ext CLOSE QBIC CATALOG

6. Insert into the photo_collection table. The examples presented here use embedded SQL to
access a DB2 database server.

EXEC SQL BEGIN DECLARE SECTION;
long int_Stor;
long the_id;

EXEC SQL END DECLARE SECTION;

the_id = 1; /* the image id */
int _Stor = MMDB_STORAGE_TYPE_INTERNAL;

EXEC SQL INSERT INTO photo_collection VALUES(

:the_id, /* id */

’Ansel Adams’, /* name */

’6/9/2000°, /* date */

DB2IMAGE( /* Image Extender UDF#*/
CURRENT SERVER, /% database server name */
’/images/pic.jpg’ /* image source filex/
’ASIS’, /* keep image format#*/
:int_Stor, /* store in DB as BLOBx*/
’BW Picture’) /* commentx*/

)

This insert populates the image data in the auxiliary tables and stores an image handle into
the photo_collection table. The DB2IMAGE user-defined function uses the current server,
reads the image located in /images/pic.jpg, and stores it in the server as specified by the
int_Stor variable. The image is stored without a format change, and the discovery of the
image format is left to the Image Extender, this is specified by the ASIS option. Features are
extracted and stored for the image. The comment BW picture is attached to the image in
the auxiliary tables. The DB2IMAGE user-defined function offers several different parameter
lists (that is, it is an overloaded function), to support different sources to import images.

7. Query the photo_collection table with an example-image.

SELECT T.photo_id, T.photographer, S.SCORE
FROM photo_collection T,
TABLE (QbScoreTBFromStr (
’QbColorFeatureClass color=<255,0,0> 2.0 and
QbColorHistogramFeatureClass file=<server,'"/img/picl.gif"> 3.0 and
QbDrawFeatureClass file=<server,"/img/picl.gif"> 1.0 and
QbTextureFeatureClass file=<server,'"/img/picl.gif"> 0.5’,
photo_collection,
photo,
100)
) AS S
WHERE CAST(S.IMAGE ID as varchar(250)) = CAST(T.photo as varchar(250))

This query uses the image stored in /img/picl.gif as a query image and uses all four fea-
tures. The QbScore TBFromStr user-defined function takes a query string, an enabled table
(photo_collection), a column (photo) name, and a maximum number of images to return.
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This user-defined function returns a table with two columns. The first column is named M-
AGE_ID and contains the image handle used by the Image Extender in the original table (.e.,
table photo_collection). The second column is named SCORF and is a numeric value, which
denotes the query to image similarity score interpreted as a distance. A score of 0 denotes a
perfect match and higher values indicate progressively worse matches.

The query string is structured as an and separated chain of feature name, feature value,
feature weight triplets. The feature name indicates which feature to match. The feature
value is a specification of the value for the desired feature and can be specified in several
ways: (1) literally specifying the values, which is cumbersome as it requires that the user
know the internal representation of each feature, (2) an image handle returned by the image
Extender itself so an already stored image can be used as the query, and (3) an external file,
for which the features are extracted and used. The above example uses the first approach for
the average color feature, specifying an average color of red. The remaining three features
use the third approach and use an external image, from which features are extracted for the
query. The feature weight indicates the weight for this feature and is relative to the other
features — if a weight is omitted, then a default value of 1.0 is assumed.

The table returned by the QbScore T'BFromStr user-defined function is joined on the image
handle with the photo_collection table to retrieve the photo_id and photographer attributes
and keep the score of the image match with the query.

4.3 Oracle Visual Image Retrieval Cartridge

Like Informix and IBM, Oracle supports a comprehensive media management framework named
Oracle Intermedia that incorporates a number of technologies. Oracle Intermedia is designed with
the objective of managing diverse media by providing many services from long term archival, to
content-based search of text and images, to video storage and delivery. The Oracle Intermedia
media management suite [75] contains a number of products designed to manage rich multimedia
content particularly in the context of the web. Specifically, it includes components to handle audio,
image and video data types. A sample application for this product would be an online music store
that wishes to offer music samples, photos of the CD cover and performers, and a sample video
of the performers. Intermedia is a tool box that includes a number of object-relational datatypes,
indices, etc. that provide storage and retrieval facilities to web servers and other delivery channels
including streaming video and audio servers. The actual media data can be stored in the server for
full control, or externally, without full transactional support in a file system, web server, streaming
server or other user-defined source. Functions implemented by this suite include among others,
dynamic image transcoding to provide both thumbnails and full resolution images to the client
upon request. As part of the Intermedia suite, the Oracle Visual Image Retrieval (VIR) product
supplied by Virage [6, 44, 76]% provides image search capabilities.

VIR supports matching on global color, local color, texture, and structure. Global color captures
the images global color content, while local color takes into account the location of the color in
the image. Texture distinguishes different patterns and nuances in images such as smoothness
or graininess. Structure seeks to capture the overall layout of a scene such as the horizon in a
photo, or the tall vertical boxes of skyscrapers. The product supports arbitrary combinations of
the supported feature representations as a query. Users can adjust the weights associated with the
features in the query according to the aspects they wish to emphasize. A score that incorporates
the matching of all features is computed for each image via a weighted summation of the individual

8Virage also provided a version of its image retrieval system to Informix and is supported as a Datablade.
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feature matches. The score is akin to the distance between two images where lower (positive) values
indicate higher similarity, while larger values indicate lower similarity. Only those images with a
score below a given threshold are returned, and the remaining images are deemed not relevant
to the query. Oracle Visual Image Retrieval uses a proprietary index to speed up the matching
referred to as an index of type ORDVIRIDX.

We now specify the steps needed to build an image retrieval application. The example code
presented below uses Oracles PL/SQL language extensions. PL/SQL is a procedural extension to
SQL. To support image retrieval the following steps are required:

1. Have Oracle8i Enterprise Edition and the Visual Image Retrieval product installed and suit-
ably configured storage table-spaces.

2. Create a Database to store all tables and auxiliary data needed for our example. We will call
this the Gallery database.

CREATE DATABASE Gallery;

3. Create a table with the desired attributes and the image datatype.

CREATE TABLE photo_collection (
photo_id number PRIMARY KEY NOT NULL,
photographer VARCHAR(50) NOT NULL,
date VARCHAR(50) NOT NULL,
photo ORDSYS.ORDVir);

4. Insert images into the newly created table. In Oracle this will be done through their PL/SQL
language as there are multiple steps to insert an image.

DECLARE
image ORDSYS.ORDVIR;
the_id NUMBER;
BEGIN
the_id :=1; -- use a serial number
INSERT INTO photo_collection VALUES (
the_id, ’Ansel Adams’, ’03/06/1995’,
ORDSYS.ORDVIR (ORDSYS.ORDImage (ORDSYS. ordsource
(empty BLOB(), *FILE’, ’ORDVIRDIR’, ’the_image.jpg’, sysdate, 0),
NULL, NULL, NULL, NULL, NULL, NULL, NULL), NULL) );
SELECT photo INTO image
FROM photo_collection
WHERE photo_id = the_id
FOR UPDATE;
image.SetProperties;
image . import (NULL) ;
image.Analyze;
UPDATE photo_collection
SET photo = image
WHERE id = the_id;
END

The insert command only stores an image descriptor, not the image itself. To get the image,
first its properties have to be determined using the SetProperties command. Then the
image itself is loaded in with the import (NULL) command and its features extracted with the
Analyze command. Lastly the table is updated with the image and its extracted features.
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5. Create an index on the features to speed up the similarity queries.

CREATE INDEX imgindex
ON catalog-photos (photo.signature)
INDEXTYPE IS ordsys.ordviridx
PARAMETERS (’ORDVIRDATA_TABLESPACE = tbs_1,
ORDVIR_INDEX_TABLESPACE = tbs_27);

Here ths_1 and tbs_2 are suitable table-spaces that provide storage.

6. Query the catalog_photos table.

The following example selects images that are similar to an image already in the table with
id equal to 3.

SELECT T.photo_id, T.photo, ORDSYS.VIRScore(50) SCORE

FROM catalogphotos T, catalog.photos S

WHERE
S.photo.id = 3

AND

ORDSYS.VIRSimilar (T.photo.signature, S.photo.signature,
’globalcolor="0.2" localcolor="0.3" texture="0.1" structure="0.4" ’,
20.0, 50)=1;

This statement returns three columns, the first one is the id of the returned image, the second
column is the image itself, and the third column is the score of the similarity between the
query image and the result image (the parameter to the VIRScore function is discussed be-
low). The query does a self join to fetch the value S.photo.signature for the image with an id of
3, which is the signature of the query image. The image similarity computation is performed
by the VIRSimilar function in the query condition. This function has five arguments:

e T.photo.signature, the compared images features.
e S.photo.signature, the query image features.

o A string value that describes the features and weights to be used in matching. This
example has the string:
’globalcolor="0.2" localcolor="0.3" texture="0.1" structure="0.4" ~’
The value 0.0 for a weight indicates the feature is unimportant and the value 1.0 indicates
the highest importance for that feature. Only those features listed are used for matching.
If, for example, global color is not needed, then it may be removed from the list. In
this example, all features are used and their weights are 0.2 for global color, 0.3 for local
color, 0.1 for texture and 0.4 for structure.

e The fourth parameter is a threshold for deciding which images are similar enough to
the query signature to be returned for the query. The Image Retrieval Cartridge uses a
distance interpretation of similarity. A score of 0 indicates the signatures are identical,
while scores higher than 0 indicate progressively worse matches. In this example, the
threshold value is 20.0, i.e., those images with a score larger than 20.0 will not be returned
in response to the query.

e The last value is optional and is used to recover the computed similarity score. The alert
reader may have noticed that the VIRSimilar function is in a where clause, a Boolean
condition, and therefore must return true or false, as opposed to the computed similarity
score. The function returns true if the computed score is below the threshold, and false
otherwise. If the query wishes to list for each retrieved image its similarity score to the
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query, as is the case here, a different mechanism is needed to retrieve the score elsewhere
in the query. This parameter value is thus used to uniquely identify the similarity score
(computed by the VIRSimilar function) within the query in order to make it available
elsewhere in the query through the use of the VIRScore function. VIRScore retrieves
the similarity score by providing the same number as in the VIRSimilar function. This
key-based identification mechanism enables multiple calls to scoring functions within the
same query.

The final step in the query is to sort the result in increasing order of SCORE such that the
most similar image will be the first one returned.

This example uses an image already in the table as the query image, but an external image
may also be used. To do this, extra steps are needed similar to the insert command where
an external image is read in and its features extracted and used in the VIRSimilar function.
This scenario does not require a self join as the query feature vector is directly accessible.

Additional functionality is provided by a third-party software package from Visual Technology.
This component supports special-purpose operators for searching for human faces among images
stored in the database . Besides image search, the Visual Image Retrieval package offers a number of
additional operational options such as image format conversion and on-demand image transcoding
of query results.

4.4 Discussion

We have discussed the extensions supported for incorporating images and multimedia into databases
by three of the major DBMS vendors. All the vendors discussed offer media asset management suites
to archive and manage digital media. Their offerings differ in the details of their composition, scope
and source (i.e., third party vs. home grown) and their maturity. The image retrieval capabilities of
all vendors are roughly comparable. Despite minor administrative differences in table and column
setup, once the tables and permissions are set properly, the insertion and querying process is
comparable. Each of the image retrieval products discussed above essentially supports the base
content-based image retrieval model discussed in Section 2. There is, however, one difference.
Recall that in Section 2, the model permits several query-example images, but so far in this
section, we only considered single-example-image queries. Multiple example-image query support is
beyond the current query model implemented by these vendors, but is not impossible to implement.
Indeed, the model can be incorporated in a query, albeit in an exposed fashion. Exposed, because
now the user writing the query is exposed to the retrieval model and is responsible for formulating
a query properly. To see how such a query can be specified, we will use Informix as an example:
SELECT photo_-id, (scorel * 0.6 + scorel * 0.4) as score
FROM photo_collection
WHERE Resembles(fv,
GetFeatureVector (IfdImgDescFromFile (’/img/queryl. jpg’)),
0.60, 10, 30, 40, 10, 5, 5, scorel #REAL)
AND Resembles(fv,
GetFeatureVector (IfdImgDescFromFile (’/img/query2. jpg’)),

0.60, 20, 20, 20, 5, 5, 5, score2 #REAL)
ORDER BY score

This query uses two external images, queryl.jpg and query2.jpg and computes the score between
each individual image in the table and the queryl.jpg and query2.jpg image feature vectors fv result-
ing in one score for each of the two example-images. Then it combines both scores with a weighted
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Figure 2: Query example

summation with 60% of weight for queryl.jpg and 40% of the weight to query2.jpg. Notice that
both Resembles function calls specify a threshold of 0.60 and that they use different weights for
different features. Figure 2 shows the query tree that corresponds to this example. In this figure,
the leaf nodes correspond to actual values v;; for the query image ¢ and the feature j.

It is not clear if the feature-based model described in Section 2 can be supported by existing
systems. Furthermore, we note that none of the products currently available is powerful enough to
support region-based image retrieval, relevance feedback mechanisms, or “merge” functions other
than weighted summation at different levels of the query tree. Extending image retrieval with these
functionalities is a significant research challenge, which the research community has yet to address.

Finally, we note that the above description of the image extensions to commercial DBMSs
is certainly not complete. Besides content-based image retrieval, products include many functions
that are designed to handle operational considerations, such as image format conversions and image
processing. Interested readers are referred to the product manuals.

5 Current Research

The advent of object-relational technology has greatly facilitated the building of content-based
image retrieval applications on top of commercial database systems. Using ADTs, UDFs and
BLOBs supported by commercial systems, applications can extract the visual features of images,
store the features in relational tables (along with the raw images themselves), and use these features
to compute query matches. While this represents significant progress, several proposals to improve
the above approach have appeared in the research literature. One of them is an efficient technique
to implement abstract data types on top of relational storage managers. Another issue is that
of allowing users to easily integrate multidimensional indexing structures into the DBMS, and use
them as access methods. This will allow applications to build indexes on the image features and use
them to efficiently answer content-based queries. To realize the full potential of the feature indexes,
the processing of content-based queries (i.e., top-k and threshold-based queries) must be pushed
inside the database engine. Commercial systems, such as those described in Section 4, retrieve all
the matching objects from the database with their computed scores and then perform most of the
processing (i.e., sorting and pruning) as an independent step. This misses out on opportunities
for optimization and efficient evaluation of content-based queries. Pushing the processing into the
engine would open up such optimization opportunities, leading to tremendous performance gains.
Another proposal is that of efficient support for similarity joins to facilitate finding similar pairs of
images.
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5.1 Implementing ADTs using Relational Storage Managers

While abstract data types (ADTs) have appeared in mainstream commercial databases [74, 22,
53, 107], they present several challenges in terms of storage management. Abstract data types
support varied functionalities, such as inheritance, polymorphism, substitutability, encapsulation,
structures, and collections among others. We discuss the storage management problems that arise
when an ADT is defined as an aggregation of base data types and/or already defined ADTs (like
the way structs are defined in C). In our discussion, we do not consider “opaque” types where
the system treats the type as an (uninterpreted) chunk of memory, which is interpreted by the
user-defined functions [53]. We also do not consider the functions defined for the ADT here but
will cover them in more detail in Section 5.3.1.

Consider an ADT for a few geometric shapes in two dimensions:®

Type 2dShape ( )

Type Point inherits from 2dShape ( x,y :integer)

Type Circle inherits from 2dShape ( x,y, radius :integer)

Type Rectangle inherits from 2dShape ( x1,yl, x2,y2 :integer)

Type Triangle inherits from 2dShape ( x1,yl, x2,y2, x3,y3 :integer)

Suppose we want to associate one or more regions with each image in our Gallery database from
Section 4. The idea is to create image maps for the users to click on. Assuming that each region
is one of the above 2d shapes,!® we now create a table to store the regions.

create table photo_regions(region_id integer, photo_id integer, region 2dShape)

This table would allow a region to be a point, a circle, a rectangle or a triangle by virtue of type
substitutability. Now, we add the following data to our table:!!

insert into photo._regions values (1, 1, Point (100,100))

insert into photo._regions values (2, 1, Circle (10,10, 5))

1
insert into photo._regions values (3, 1, Rectangle(50,60, 80,90))
1

insert into photo._regions values (4, 1, Triangle (0,0, 5,5, 5,0))

Here, we insert a point located at the coordinates (100,100), a circle of radius 5 centered at the
point (10,10), a rectangle with opposing corner points (50,60) and (80,90) and a triangle with the
three corners (0,0), (5,5) and (5,0). Each tuple above stores one integer for the region_id, one
integer for the photo_id plus an internal fixed sized tuple header whose size depends on the DBMS
used. The rest of the information in all four tuples differs from each other: the first tuple needs
to store two more integers (in addition to header, region_id and photo.id), the second needs three
more, the third needs four more and the fourth needs to store six more integers. The question
is how to organize the above tuples on disk in order to handle the diversity among them without
sacrificing query efficiency. The following options are available:

1. One table for each possible data type

Within this scheme, although there is only one logical table photo_regions, the system creates
5 physical tables, one for each of 2dShape, Point, Circle, Rectangle, and Triangle.'? Each

“Here we have used generic SQL pseudo-code. For specific vendor implementations and syntax, the appropriate
manual should be consulted.

%More flexible shapes, such as polygons are necessary for such an application. Here we restrict ourselves to the
above shapes as our goal is to show the problems faced in storage management of ADTs, and not to provide a
complete image mapping solution.

1We assume that the appropriate object constructors have been defined (i.e., “Point(x,y)” has been defined as a
constructor for the Point type).

2There should be no table for 2dShape itself assuming it is a pure abstract data type whose only purpose is to
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table has a uniform and fixed schema and it is up to the query processor to look in all the
physical tables for a query on the logical table. The advantages of this approach are that
regular relational storage managers can be used, the tuples have fixed length and are therefore
more amenable to optimizations, and, since the schema for each physical table is known in
advance, no dynamic interpretation of object types is needed. The disadvantages are that
the query processor must decide which tables to search for a query and, on some occasions,
it might be necessary to search all the physical tables. More importantly, there could be an
explosion in the number of physical tables if the inheritance hierarchy is deep. The Postgres
and IHlustra systems used an approach similar to this one [103, 104].

2. Co-locate tuples of different types in one table

In this approach, a single physical table is used to store all the five different types of tuples.
Like approach 1, almost no dynamic decoding of the object type is required, as the layout
and column information of each tuple type is fully pre-computed. Another advantage is that
all the tuples are stored in the same table avoiding the need for multiple-table lookups. The
disadvantage is that there could be an explosion of the number of tuple types in the table.
This approach is used in the MARS file system.

3. Flatten ADT and map to regular relation

In this approach, all the tuples are stored in a single table, which is managed by a regular
relational storage manager (i.e., the storage manager need not support multiple tuple types
per relation). All the types are expanded into their components and stored in individual
columns of the table. The columns that are not used are filled with NULL values. In this
approach, the photo_regions table would have 17 columns (region_id, photo_id, 2 columns for
Point, 3 for Circle, 4 for Rectangle and 6 for Triangle)'® and most of them will contain NULL
values as only those columns that correspond to the actual object stored will be non NULL
(i.e., only 4 columns for a Point object would be non NULL and the remaining 13 would
be NULL). The advantage of this approach is that it can be readily implemented in regular
relational storage managers. The disadvantages are that space is wasted and additional work
is needed in the query processor to dynamically interpret the correct columns for a tuple. Note
that, as in the previous approaches, there could be an explosion in storage requirements, since
here the number of columns needed may increase rapidly.

4. Serialize object in-line and dynamically interpret content to determine type

In this approach, the table schema is exactly as desired with three attributes, one each for
region_id, photo_id and 2dShape. The last attribute is now stored as a variable length column,
either in-line in the tuple, or out of line in a BLOB if its size is too large. This approach
has several advantages. It is the most flexible since it can most easily handle changes in the
type hierarchy (the other three approaches must make significant changes in the schema of
the table(s) when the type hierarchy changes.) It also avoids the combinatorial explosion and
space overhead problems of the previous approaches. The only disadvantage is the overhead
of dynamically interpreting the contents of each tuple to determine its type. IBM DB2 follows
a similar approach to store ADTs [39]. Sybase also follows a similar approach for Java objects

[106].

serve as the common superclass, i.e., there can be no instantiations of this type. However, here we have included
2dShape as a normal ADT.

13In practice, one more column is needed to keep track of which object is stored in the table.
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Figure 3: Two ways of implementing collections inside attributes. (a) The co-location approach
(b) The side table approach.

A study on the implementation of ADTs comparing several variations of approaches 3 and 4 can
be found in [39]. Storage management of rich data types has also been addressed by object-oriented
databases [7, 66].

Another important problem in ORDBMSs that is relevant to image retrieval is the management
of collection-type attributes. An example of such an attribute is the polygonal contour shape
descriptor (represented by the corner points, the number of which can vary from shape to shape).
Such attributes are usually handled by co-location or by using side tables. In the co-location
approach, the items in the collection attribute of a tuple are stored along with the rest of the tuple
with an optional pointer to an overflow area. Figure 3(a) shows how the items {vall, val2,val3} in
the collection attribute A of a tuple ¢ would be stored. The advantage of this approach is efficiency,
as most of the time, all the items in the collection will be co-located with the tuple (i.e., no overflow
pointer required). The disadvantages are that updates to a tuple may cause the use of the overflow
areas, thus increasing fragmentation and degrading performance. Also, the storage manager must
be able to support coexistence of tuples from different schemas in the same file. In the side table
approach, there is a base table and there is a separate side table for each column with a collection
attribute. Each tuple ¢ in the base table stores a system generated handle h for each collection
attribute A. The handle h is a key into a side table where a tuple (h,item) is stored for each item
item in the collection attribute A of tuple t. Figure 3(b) shows how the same table ¢ with items
{vall,val2,val3} in the collection attribute A is stored using this approach. An advantage of this
approach is that it does not require any special support from storage managers, as all tuples in
a relation are the same. Fragmentation in the side table can also be avoided by having the file
clustered on the handle. A clear disadvantage is that potentially expensive joins or table lookups
are needed.
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5.2 Multidimensional Access Methods

As discussed in Section 2, image retrieval systems represent the content of the images using visual
features like color, texture and shape. Processing content-based queries on large image collections
can be speeded up significantly by building indices on the individual features (known as the feature
indices or simply F-indices) and using them to answer content-based queries. Since the feature
spaces are high-dimensional in nature (i.e., 32-dimensional color histogram space), novel indexing
techniques must be developed and incorporated into the DBMS (cf. Chapters 14 and 15). The
purpose of a feature index is to efficiently retrieve the best matches with respect to that feature
by executing a range search or a k-nearest neighbor (k-NN) search on the multidimensional index
structure. How these individual feature matches returned by the feature indices can be used to
obtain the overall best matches will be discussed in Section 5.3.1. In this section, we discuss research
issues that arise in designing index structures that can execute range and k-NN searches efficiently
over image feature-spaces, in supporting new types of queries for image retrieval applications, and
in integrating into the DBMS multidimensional index structures.

5.2.1 Designing Index Structures for Image Feature Spaces

The main problem that arises in indexing image feature spaces is high dimensionality. For example,
the color histograms used in the MARS system are usually 32- or 64-dimensional [20]. Many
multidimensional index structures do not scale to such high dimensionalities [10]. Designing scalable
index structures has been an active area of research and is discussed in detail in Chapters 14 and
15.

5.2.2 Supporting Multimedia Queries on top of Multidimensional Index Structures

Traditionally, multidimensional index structures support only point, range and k-NN queries (with
a single query point) and only the Euclidean distance function. In multimedia retrieval, the retrieval
model defines what a match between two images means with respect to each individual feature. The
measure of match (rather, mismatch) is defined in terms of a distance function. The retrieval model
uses arbitrary distance functions (typically an L, metric) and arbitrary weights along the dimensions
of the feature space to capture the visual perception of the user. This implies that the index
structure must support arbitrary distance functions and arbitrary weights along the dimensions
that are specified by the user at query time. Such techniques have been developed in [62, 93, 21].
Another requirement of the index structure is to support multi-example queries, since the user
might submit multiple images as part of the query (see section 2). Such queries are particularly
important for retrieval models that represent the query using multiple query points [88, 110]. A
multipoint query Qp for a feature F' is formally defined as Qr = (ng, Pr, Wg, Dp) where ny is the
number of points in the query, Pr = {PF(l)7 e PF(”F)} is the set of ng points in the feature space,
Wr = {wF(l)7 e wF(”F)} are the corresponding weights and Dy is a distance function, which, given
two points in the feature space, returns the distance between them (usually a weighted L, metric).
The distance between the multipoint query Qr and an object point O with respect to feature F
is defined as the aggregate of the distances between O and the individual points Pr) ¢ Ppin
Qr. The weighted sum

np
Dr(Qr,0r) =Y wp®) Dp(PrY, OF) (2)

=1
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may be used as an aggregation function. The individual point-to-point distance DF(PF(i),OF) is
given by a weighted L, metric

1/p

Dp(Pr,0p) = |3 ur (1PEO[] - Or[))"| (3)

i=1

where dg is the dimensionality of the feature space and ,uF(j) denotes the (intra-feature) weight
associated with the jth dimension. This is the aggregation function used in the MARS system.
The problem is to find the k nearest neighbors of QQp using the F-index.

One way to implement a multipoint query is the multiple expansion approach proposed by
Porkaew et al. [89] and Wu et al. [110]. The approach explores the nearest neighbors of each
individual point Pp(¥) using the traditional single-point A-NN algorithm and combines them. An
alternate way, proposed in [88, 21], is to develop a new k-NN algorithm that can handle multipoint
queries. The latter technique involves (1) redefining the MINDIST function, which is used to
compute the distance of an index node from the query and (2) using the distance function described
above to compute the distance of a indexed object from the multipoint query. Experiments show
that the latter technique can process a multipoint query much more efficiently compared to the
multiple expansion approach [21].

5.2.3 Integration of Multidimensional Index Structures as Access Methods in a DBMS

While there exists several research challenges in designing scalable index structures and developing
algorithms for efficient content-based search using them, one of the most important practical chal-
lenges is that of integration of such indexing mechanisms as access methods (AMs) in a database
management system. Building a database server with native support for all possible kinds of
complex multimedia features and the feature-specific indexing mechanisms along with support for
feature-specific queries/operations is not feasible. The solution is to build an extensible database
server that allows the application developer to define data types and related operations as well as
indexing mechanisms on the stored data, which the database query optimizer can exploit to access
the data efficiently. As discussed in Section 3.3, commercial ORDBMSs have started providing
extensibility options for users to incorporate their own index structures. As pointed out earlier,
the interfaces exposed by current commercial systems are too low-level, and place the burden of
writing structural maintenance code (i.e., concurrency control) on the access method implementor.
The Generalized Search Tree (GiST) [47] provides a more elegant solution to the above problem.
Generalized Search Tree (GiST): A GiST is a balanced tree of variable fanout between kM
and M, % <k< %, with the exception of the root node, which may have fanout between 2 and M.
The constant k is termed the minimum fill factor of the tree. Leaf nodes in a GiST contain (p, ptr)
pairs, where p is a predicate that is used as a search key and ptr is the identifier of some tuple in
the database. Non-leaf nodes contain (p, ptr) pairs, where p is a predicate used as a search key
(referred to as bounding predicate (BP) [19]) and ptr points to another tree node. The predicates
can be arbitrary as long as they satisfy the following condition: the predicate p in a leaf node entry
(p, ptr) must hold for the tuple identified by ptr while the bounding predicate p in a non-leaf node
entry (p,ptr) must hold for any tuple reachable from ptr. A GiST for a key set comprised of 2-d
rectangles is shown in Figure 4.

Generalizing the notion of a search key to an arbitrary predicate makes GiST extensible, both in
the datatypes it can index and the queries it can support. GiST is like a “template” — the applica-
tion developer can implement a new AM using GiST by simply registering a few (domain-specific)
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Figure 4: A GiST for a key set comprised of rectangles in 2 dimensional space. Note that the
bounding predicates are arbitrary (i.e. not necessarily bounding rectangles as in R-trees).

extension methods with the DBMS. Examples of the extension methods are Consistent(F,q),
which, given an entry F = (p, ptr) and a query predicate ¢, returns false if p A ¢ can be guaranteed
unsatisfiable, and true otherwise, and Penalty(Fy, F;), which, given two entries Fy = (p1, ptri),
FEy = (p2,ptra), returns a domain-specific penalty for inserting Fy into the subtree rooted at
Fy. GiST uses the extension methods provided by the AM developer to implement the stan-
dard index operations: search, insertion and deletion. For example, the search operation uses
Consistent(F, q) to determine which nodes to traverse to answer the query while the insert op-
eration uses Penalty(Fy, F3) to determine the leaf node in which to place the inserted item in.
The AM developer thus controls the organization of keys within the tree and the behavior of the
search operation, thereby specializing GiST to the desired AM. The original GiST paper deals only
with range queries [47]. Several extensions to support more general queries (i.e., ranked/nearest
neighbor queries) on top of GiST are proposed in [3].

Concurrency Control in GiST: Although GiST considerably reduces the effort of integrating
new AMs in DBMSs, it does not automatically provide concurrency control. It is essential to
develop efficient techniques to manage concurrent access to data via the GiST, before it can be
supported by “commercial strength” DBMSs. Concurrent access to data via an index structure
introduces two independent concurrency control problems:

e Preserving consistency of the data structure in the presence of concurrent insertions, deletions
and updates.

e Protecting search regions from phantoms.

Techniques for concurrency control (CC) in multidimensional data structures and, in particular,
GiST have been proposed recently [63, 19, 18]. Developing CC techniques for GiST is particularly
beneficial since the CC code can be implemented once by the database developer - the end-user
does not need to implement individual algorithms for each AM.

Preserving Consistency of GiST: We first discuss the consistency problem and its solution.
Consider a GiST (configured as, say, and R-tree) with a root node R and two children nodes A and
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B. Consider two operations executing concurrently on the R-tree: an insertion of a new key k1 into
B and a deletion of a key k2 from B. Suppose the deletion operation examines R and discovers
that k2, if present, must be in B. Before it can examine B, the insertion operation causes B to
split into B and B’, as a result of which k2 moves to B’ (and subsequently updates R). The delete
operation now examines B and incorrectly concludes that £2 does not exist. To avoid the above
problem, Kornaker et al. propose a linked-based technique that was originally used in B-trees [63].
By adding a right link between a node and its split-off right sibling and a node sequence number to
every node, the operations (i.e., the deletion operation in the above example) can detect whether
the node has split since the parent was examined and, if so, can compensate for the missed splits
by following the right links.

Phantom Protection in GiST: We now move on to the problem of phantom protection. Consider
a transaction T1 reading a set of data items from a GiST that satisfy some search predicate ().
Transaction T2 then inserts a data item that satisfies () and commits. If T1 now repeats its scan
with the same search predicate @), it gets a set of data items (known as “phantoms”) different from
the first read. Phantoms must be prevented to guarantee serializable execution. Note that object-
level locking [42] does not prevent phantoms since even if all objects currently in the database
that satisfy the search predicate are locked, concurrent insertions'? into the search range cannot
be prevented. There are two general strategies to solve the phantom problem, namely predicate
locking and its engineering approximation, granular locking. In predicate locking, transactions
acquire locks on predicates rather than individual objects. Although predicate locking is a complete
solution to the phantom problem, it is usually too costly [42]. In contrast, in granular locking, the
predicate space is divided into a set of lockable resource granules. Transactions acquire locks on
granules instead of on predicates. The locking protocol guarantees that if two transactions request
conflicting-mode locks on predicates p and p’ such that pAp’ is satisfiable, then the two transactions
will request conflicting locks on at least one granule in common. Granular locks can be set and
released as efficiently as object locks. An example of the granular locking approach is the multi-
granularity locking protocol (MGL) [68]. Application of MGL to the key space associated with a
B-tree is referred to as key range locking (KRL) [68, 70].

In [63], Kornaker et al. develop a solution for phantom protection in GiSTs based on predicate
locking. In the proposed protocol, a searcher attaches its search predicate @) to all the index nodes
whose bounding predicates (BPs) are consistent with (). Subsequently, the searcher acquires shared
mode locks on all objects “consistent” with (). An inserter checks the object to be inserted against
all the search predicates attached to the node in which the insertion takes place. If it conflicts with
any of them, the inserter attaches its predicate to the node (to prevent starvation) and waits for the
conflicting transactions to commit. If the insertion causes a BP of a node N to grow, the predicate
attachments of the parent of N are checked with the new BP of N, and are replicated at N if
necessary. The process is carried out top-down over the entire path where node BP adjustments
take place. Similar predicate checking and replication is done between sibling nodes during split
propagation. The details of the protocol can be found in [63].

In [19], Chakrabarti and Mehrotra propose an alternative approach based on granular locking.
Note that the granular locking technique for B-trees, viz., key range locking (KRL), cannot be
applied for phantom protection in multidimensional data structures since it relies on a total order
of key values, which does not exist for multidimensional data. Imposing an artificial total order
(say a Z-order [80]) over multidimensional data to adapt KRL is not a viable technique either. The
first step is to define lockable resource granules over the multidimensional key space. One way to

" These insertions may be a result of insertion of new objects, updates to existing objects or rolling-back deletions
made by other concurrent transactions.
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define the granules is to statically partition the key space (e.g., as a grid) and treat each partition
(i.e., each grid cell) as a granule. The problem with such a partitioning is that it does not adapt
to the key distribution: some granules may contain many more keys than others, causing them
to become “hot spots”. In [19], the authors use the predicate space partitioning generated by the
GiST to define the granules. There is a lockable granule TG (N) associated with each index node
N of a GiST whose coverage is defined by the granule predicate GP(N) associated with the node.
GP(N) is defined as follows. Let P denote the parent node of N (P is NULL if N is the root
node), and BP(N) denote the bounding predicate of N. The granule predicate GP(N) of node
N is equal to BP(N) if N is the root and BP(N) A GP(P) otherwise. For example, the granule
predicate associated with the non-leaf node N2 in Figure 4 is P1 = (2 < 10) A (y > 4) while that
associated with leaf node N5is P1 A P4 = (6 <z < 10) A (y > 4). The granules associated with
leaf nodes are called leaf granules while those associated with non-leaf nodes are called non-leaf
granules. Note that the above partitioning scheme does not suffer from the “hot spot” problem of
static partitioning since the granules dynamically adapt to the key distribution as keys are inserted
into and deleted from the GiST.

Once the granules are defined, the authors develop lock protocols for the various operations
on the GiST. As mentioned before, for correctness, if two operations conflict, they must request
conflicting locks on at least one granule in common. The protocol exploits, in addition to shared
mode (S) and exclusive mode (X) locks, intention mode locks which represent the intention to
set locks at finer granularity. The compatibility matrix for the various lock modes used by the
protocol can be found in [19]. The lock protocol of the search operation is simple. A searcher
acquires commit-duration S-mode locks on all granules (both leaf and non-leaf) “consistent” with
its search predicate. Note that in this technique, unlike the approach of [63], the searcher does not
acquire object-level locks. The lock protocol of the insertion operation is slightly more involved.
Let O be the object being inserted and g be the granule corresponding to the leaf node in which
O is being inserted. The protocol has the following two cases. If the insertion does not cause g
to grow, the inserter acquires (1) a commit-duration IX-mode lock on ¢ where the I X-mode is
an intention mode (intention to set shared or exclusive mode locks at finer granularity) and (2)
a commit-duration X-mode lock on O. Otherwise, the insertion acquires (1) a commit-duration
IX-mode lock on ¢ (2) a commit-duration X-mode lock on O and (3) a short-duration 1X-mode
lock on TG(LU-node) where the LU-node (Lowest Unchanged Node) denotes the lowest node in
the insertion path whose GP does not change due to the insertion. The above protocol guarantees
that a transaction cannot insert an object into the search region of another concurrently-running
transaction, i.e., it will request a conflicting lock on at least one common granule and hence will
block till the search transaction is over. The correctness proofs and the lock protocols of the other
operations can be found [19].

5.3 Supporting Top-£ Queries in Databases

In content-based image retrieval, almost all images match the query image to some degree or
another. The user is typically not interested in all matching images (i.e., all images with degree
of match > 0) as that might retrieve the entire database. Rather she is interested in only the top
few matching images. There are two ways of retrieving the top few images: Top-k queries return
the k£ best matches, irrespective of their scores. For example, in Section 4.2, we requested the top
100 images matching /image/picl.gif. Range queries or alpha-cut queries return all the images
whose matching score exceeds a user-specified threshold, irrespective of their number. For example,
in Section 4.1, we requested all images whose degree of match to the image /tmp/03.jpg exceeds
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the alpha-cut of 0.8.1° Database query optimizers and query processors do not support queries
with user-specified limits on result cardinality; the limiting of the result cardinalities in the above
examples (in Section 4) is achieved at the application level (by Excalibur Visual Retrievalware
in Informix, QBIC in DB2 and Virage in Oracle). The database engine returns all the tuples
that satisfy the non-image selection predicates, if any, and all tuples otherwise; the application
then evaluates the image match for each returned tuple and retains only those that satisfy user-
specified limit. This causes large amounts of wasted work by the database engine (as it accesses and
retrieves tuples, most of which are eventually discarded) leading to long response times. Significant
performance improvements can be obtained by pushing the top-k and range query processing inside
the database engine. In this section, we discuss query optimization and query processing issues
that arise in that context.

5.3.1 Query Optimization

Relational query languages, particularly SQL, are declarative in nature: they specify what the
answers should be and not how they are to be computed. When a DBMS receives an SQL query, it
first validates the query and then determines a strategy for evaluating it. Such a strategy is called
the query evaluation plan or simply plan and is represented using an operator tree [40]. For a given
query, there are usually several different plans that will produce the same result; they only differ
in the amount of resources needed to compute the result. The resources include time and memory
space in both disk and main memory. The query optimizer first generates a variety of plans by
choosing different orders among the operators in the operator tree and choosing different algorithms
to implement these operators, and then chooses the best plan based on the available resources [40].
The two common strategies to compute optimized plans are (1) rule-based optimization [46] and
(2) cost-based optimization [94]. In the rule-based approach, a number of heuristics are encoded
in the form of production rules that can be used to transform the query tree into an equivalent
tree that is more efficient to execute. For example, a rule might specify that selections are to be
pushed below joins, since this reduces the sizes of the input relations and hence the cost of the
join operation. In the cost-based approach, the optimizer first generates several plans that would
correctly compute the answers to a query and computes a cost estimate for each plan. The system
maintains some running statistics for each relation (i.e., number of tuples, number of disk pages
occupied by the relation, etc.) as well as for each index (i.e., number of distinct keys, number of
pages etc.), which are used to obtain the cost estimates. Subsequently, the optimizer chooses the
plan with the lowest estimated cost [94].

Access Path Selection for Top-k Queries: Pushing top-k query processing inside the database
engine opens up several query optimization issues. One of them is access path selection. The access
path represents how the top-k query accesses the tuples of a relation in order to compute the result.
To illustrate the access path selection problem, let us consider an example image database where
the images are represented using two features, color and texture. Assuming that all the extracted
feature values are stored in the same tuple along with other image information (i.e., the photo.d,
photographer and date in the example in Section 4), one option is to sequentially scan through
the entire table, computing the similarity score for each tuple by first computing the individual
feature scores and then combining them using the merge function, while retaining the k tuples with
the highest similarity scores. This option may be too slow, especially if the relation is very large.

For both types of queries, the user typically expects the answers to be ranked based on their degree of match
(the best matches before the less good ones). For top-k queries, a “get more” feature is desirable so that the user
can ask for additional matches if she wants.
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Another option that avoids this problem is to index each feature using a multidimensional index
structure. With the indexes in place, the optimizer has several choices of access paths:

e Filter the images on the color feature (using k—NN search on the color index), access the full
records of the returned images, which contain the texture feature values, and compute the
overall score.

e Filter the images on the texture feature, analyze the full records of the returned images, which
contain the color feature values, and compute the overall score.

e Use both the color and texture indexes, to find the best matches with respect to each feature
individually, and merge the individual results.'®

Note the number of execution alternatives increases exponentially with the number of features.
The presence of other selection predicates (i.e., the “date >="01/01/2000"" predicate in the above
example) also increases the size of the execution space. It is up to the query optimizer to determine
the access path to be used for a given query. Database systems use a cost-based technique for access
path selection as proposed by Selinger et al. [94]. To apply this technique, several issues need to be
considered. In image databases, the features are indexed using multidimensional index structures,
which serve as access paths to the relation. New kinds of statistics need to be maintained for such
index structures and new cost formulae need to be developed for accurate estimation of their access
costs. In addition, the cost models for top-k queries are likely to be significantly different from
traditional database queries that return all tuples satisfying the user-specified predicates. The cost
model would also depend on the retrieval model used, i.e., on the similarity functions used for each
individual feature as well as the ones used to combine the individual matches (cf. Section 2.3).
Such cost models need to be designed.

In [24], Chaudhari and Gravano propose a cost model to evaluate the costs of the various
execution alternatives!” and develop an algorithm to determine the cheapest alternative. The
cost model relies on techniques for: estimating selectivity of queries in individual feature spaces;
estimating the costs of k-NN searches using individual feature indices; and probing a relation for a
tuple, to evaluate one or more selection predicates. Most selectivity estimation techniques proposed
so far for multidimensional feature spaces work well only for low dimensional spaces, but are not
accurate in the high-dimensional spaces commonly used to represent images features [87, 69, 1].
More suitable techniques (based, for instance, on fractals) are beginning to appear in the literature
[8, 36]. Work on cost models for range and k-NN searches on multidimensional index structures
includes earlier proposals for low dimensional index structures (i.e., R-tree) in [34, 109] and more
recent work for higher dimensional spaces in [9, 84].

Optimization of Expensive User-Defined Functions: The system may need to evaluate
multiple selection predicates on each tuple accessed via the chosen access path. Relational query
optimizers typically place no importance on the order in which the selection predicates are evaluated
on the tuples. The same is true for projections. Selections and projections are assumed to be zero-
time operations. This assumption is not true in content-based image retrieval applications where
selection predicates may involve evaluating expensive user-defined functions. Let us consider the
following query on the photo_collection table in Section 4.1:

16Yet another option would be to create a combined index on color and texture features so that the above query
can be answered using a single index. We do not consider this option in this discussion.

'"The authors do not consider all the execution alternatives but only a small subset of them (called search-minimal
executions) [24]. Also, the authors only consider Boolean queries and do not handle more complex retrieval models
(i.e., weighted sum model, probabilistic model).
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/* Retrieve all photographs taken since the year 2000 */
/* that match the query image more than 8%. */
SELECT photo_id, score
FROM photo_collection
WHERE Resembles (fv,
GetFeatureVector (IfdImgDescFromFile(’/tmp/03.jpg’)),
0.80, 10, 30, 40, 10,
5, 5, score #REAL)
AND
date >= ’01/01/2000°
ORDER BY score

The query has two selection predicates: the Resembles predicate and the predicate involving the
date. The first one is a complex predicate that may take hundreds or even thousands of instructions
to compute, while the second one is a simple predicate that can be computed in a few instructions.
If the chosen access path is a sequential scan over the table, the query will run faster if the second
selection is applied before the first, since doing so minimizes the number of calls to Resembles. The
query optimizer must, therefore, take into account the computational cost of evaluating the UDF
in order to determine the best query plan. Cost-based optimizers only use the selectivity of the
predicates to order them in the query plan but do not consider their computational complexities.
In [49, 48], Hellerstein et al. use both the selectivity and the cost of selection predicates to optimize
queries with expensive UDFs. In [26], Chaudhari and Shim proposes dynamic-programming-based
algorithms to optimize queries with expensive predicates.

The techniques discussed above deal with UDF optimization when the functions appear in
the where clause of an SQL query. Expensive UDFs can also appear in the projection clause as
operations on ADTs. Let us consider the following example taken from [95]. A table stores images
in a column and offers functions to crop an image and apply filters to it (e.g., a sharpening filter).
Consider the following query (using the syntax syntax of [95]):

select image.sharpen().crop(0.0, 0.0, 0.1, 0.1) from image_table

The user requests that all images be filtered using sharpen, and then cropped in order to extract the
portion of the image inside the rectangular region with diagonal end-points (0.0, 0.0) and (0.1, 0.1).
Sharpening an image first and then cropping is wasteful as the entire image would be sharpened
and 99% of it would be discarded later (assuming the width and height of the images are 1.0).
Inverting the execution order to image.crop(0.1,0.1).sharpen() reduces the total CPU cost. It may
not be always possible for the user to enter the operations in the best order (i.e., crop function be-
fore the sharpen function), specially in the presence of relational views defined over the underlying
tables [95]. In such cases, the optimizer should reorder these functions to optimize the CPU cost
of the query. The Predator project [96] proposes to use Enhanced-ADTs or E-ADTs to address
the above problem. The E-ADTs provide information regarding the execution cost of various op-
erations, their properties (i.e., commutativity between sharpen and crop operations in the above
example), etc., which the optimizer can use to reorder the operations and reduce the execution cost
of the query. In some cases, it might be possible to remove function calls. For example, if X is an
image, rotate() is a function that rotates an image and count_different_colors() is a function that
counts the number of different colors in an image, the operation X.rotate().count_different_colors()
can be replaced by X.count_different_colors(), thus saving the cost of rotation. [95] documents
performance improvements of up to several orders of magnitude using these techniques.
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5.3.2 Query Processing

In the previous section, we discussed how pushing the top-k query support into the database engine
can lead to choice of better query evaluation plans. In this section, we discuss algorithms that the
query processor can use to execute top-k queries for some of the query evaluation plans discussed
in the previous section.

Evaluating Top-k Queries Let us again consider an image database with two features, color
and texture, each of which is indexed using a multidimensional index structure. Let F.,,,. and
Fievrure denote the similarity functions for the color and texture features individually. Examples of
individual feature similarity functions (or equivalent distance functions) are the various L, metrics.
Let F,,, denote the function that combines (or aggregates) the individual similarities (with respect
to color and texture features) of an image to the query image to obtain its overall similarity to
the query image. Examples of aggregation functions are weighted summation, probabilistic and
fuzzy conjunctive and disjunctive models etc. [82]. The functions Fiopor, Fiepture and Fyg, and their
associated weights together constitute the retrieval model (cf. Section 2.3). In order to support top-
k queries inside the database engine, the engine must allow users to plug in their desired retrieval
models for the queries and tune the weights and the functions in the model at query time. The
query optimization and evaluation must be based on the retrieval model specified for the query.
We next discuss some query evaluation algorithms that have been proposed for the various retrieval
models.

One of the evaluation plans for this example database, discussed in Section 5.3.1, is to use the
individual feature indexes to find the best matches with respect to each feature individually and
then merge the individual results. Fagin [31] proposed an algorithm to evaluate a top-k query
efficiently according to the above plan. The input to this algorithm is a set of ranked lists X;
generated by the individual feature indices (by the £-NN algorithm). The algorithm accesses each
X, in sorted order based on its score and maintains a set L = N, X; that contains the intersection
of the objects retrieved from the input ranked lists. Once L contains k objects, the full tuples of all
the items in U; X; are probed (by accessing the relation), their overall scores are computed and the
tuples with the k best overall scores are returned. The above algorithm works as long as I, is
monotonic i.e. Fogg(x1,...,2m) < Fugy(2), ..., 2])) for 2; < 2! for every 7. Most of the interesting
aggregation functions like the weighted sum model and the fuzzy and probabilistic conjunctive
and disjunctive models satisfy the monotonicity property. Fagin also proposes optimizations to his
algorithm for specific types of scoring functions [31].

While Fagin proposes a general algorithm for all monotonic aggregation functions, Ortega et
al. [82, 81] propose evaluation algorithms that are tailored to specific aggregation functions (i.e.,
separate algorithms for weighted sum, fuzzy conjunctive and disjunctive models and probabilistic
conjunctive and disjunctive models). This approach allows incorporating function-specific opti-
mizations in the evaluation algorithms, and is used by the MARS [52] system. One of the main
advantages of these algorithms is that they do not need to probe the relation for the full tuples.
This can lead to significant performance improvements since, according to the cost model proposed
n [31], the total database access cost due to probing can be much higher than the total cost due
to sorted access (i.e. accesses using the individual feature indices). Another advantage comes from
the demand-driven data flow followed in [82]. While Fagin’s approach retrieves objects from the
individual streams and buffers them until it reaches the termination condition (|L| > k) and then
returns all the & objects to the user, the algorithms in [82] retrieve only the necessary number of
objects from each stream in order to return the next best match. This demand-driven approach
reduces the wait time of intermediate answers in temporary files or buffers between the operators in
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a query tree. On the other hand, in [31], the items returned by the individual feature indexes must
wait in a temporary file or buffer until the completion of the probing and sorting process. Note
that both approaches are incremental in nature and can support the “get more” feature efficiently.
Several other optimizations of the above algorithms have been proposed recently [73, 43].

An alternative approach to evaluating top-k queries has been proposed by Chaudhuri and
Gravano [24, 25]. It uses the results in [31] to convert top-k queries to alpha-cut queries and
processes them as filter conditions. Under certain conditions (uniquely graded repository), this
approach is expected to access no more objects than the strategy in [31]. Much like the former
approach, this approach also requires temporary storage and sorting of intermediate answers before
returning the results. Unlike the former approaches, this approach cannot support the “get more”
feature without re-executing the query from scratch. Another way to convert top-k queries to
threshold queries is presented in [29]. This work mainly deals with traditional datatypes. It uses
selectivity information from the DBMS to probabilistically estimate the value of the threshold that
would retrieve the desired number of items and then uses this threshold to execute a normal range
query. Carey and Kossman propose techniques to limit the answers in an ORDER BY query to a
user-specified number by placing stop operators in the query tree [14, 15].

Similarity Joins Certain queries in image retrieval applications may require join operations. An
example is finding all pairs of images that are most similar to each other. Such joins are called
similarity joins. A join between two relations returns every pair of tuples from the two relations
that satisfy a certain selection predicate.'® In a traditional relation join, the selection predicate is
precise (i.e., equality between two numbers): hence, a pair of tuples either does or does not satisfy
the predicate. This is not true for general similarity joins where the selection predicate is imprecise
(i.e., similarity between two images): each pair of tuples satisfies the predicate to a certain degree
but some pairs satisfy the predicate more than other pairs. Thus, just using similarity as the join
predicate would return almost all pairs of images including pairs with very low similarity scores.

Since the user is typically interested in the top few best matching pairs, we must restrict the
result to only those pairs with good matching scores. This notion of restricted similarity joins
have been studied in the context of geographic proximity distance [5, 50, 4] and in the similarity
context [12, 97, 2, 98, 85, 64]. The problem of a restricted similarity join between two datasets A and
B containing d-dimensional points is defined as follows [64, 97]. Given points X = (z1, 22, ..., 2q) €
A and Y = (y1,92,...,y4) € B and a threshold distance ¢, the result of the join contains all pairs
(X,Y) whose distance D(X,Y) is less than e. The distance function D5(X,Y) is is typically an
L, metric (Chapter 14), but other distance measures are also possible.

A number of non-indexed and indexed methods have been proposed for similarity joins. Among
the non-indexed ones, the nested loop join is the simplest but has the highest execution cost. If | A]
and |B| are the cardinality of the datasets A and B then the nested loop join has a time complexity
of |A| x |B|, which degenerates to a quadratic cost if the datasets are similarity sized. Among the
indexed methods, one of the earliest proposed ones is the R-Tree based method is presented in [12].
This R-Tree method traverses synchronously the structure of two R-Trees matching corresponding
branches in the two trees. It expands each bounding rectangle by ¢/2 on each side along each
dimension, and recursively searches each pair of overlapping bounding rectangles. Most other index-
based techniques for similarity joins employ variations of this technique [97]. The generalization
of the multidimensional similarity join technique described above (which can be applied to obtain
similar pairs with respect to individual features) to obtain overall similar pairs of images remains
a research challenge.

8Note that the two input relation to a join can be the same relation (known as a self join).
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6 Conclusions

In this chapter, we explored how the evolution of traditional relational databases into powerful
extensible object-relational systems has facilitated the development of applications that require
storage of multimedia objects and retrieval based on their content. In order to support content-
based retrieval, the representation of the multimedia object (object model) must capture its visual
properties. A user formulates a content-based query by providing examples of objects similar to the
ones he/she wishes to retrieve. Such a query is internally mapped to a feature-based representa-
tion (query model). Retrieval is performed by computing similarity between the multimedia object
and the query based on the feature values, and the results are ranked by the computed similarity
values. The key technologies provided by modern databases that facilitate the implementation of
applications requiring content-based retrieval are the support for user-defined data types, including
user-defined functions, and ways to call these functions from within SQL. Content-based retrieval
models can be incorporated within databases using these extensibility options: the internal struc-
ture and content of multimedia objects can be represented in DBMSs as abstract data types, and
similarity models can be implemented as user-defined functions. Most major DBMSs now sup-
port multimedia extensions (either developed in house or by third-party developers) that consist
of predefined multimedia data types, and commonly used functions on those types including func-
tions that support similarity retrieval. Examples of such extensions include the Image Datablade
supported by the Informix Universal Server, and the QBIC extender of DB2.

While existing commercial object-relational databases have come a long way in providing sup-
port for multimedia applications, we believe that there are still many technical challenges that need
to be addressed in incorporating multimedia objects into DBMSs. Among the primary challenges
is that of extensible query processing and query optimization. Multimedia similarity queries differ
significantly from traditional database queries — they deal with high dimensional data sets, for
which existing indexing mechanisms are not sufficient. Furthermore, a user is typically interested
in retrieving the top-k matching answers (possibly progressively) to the query. Many novel index
methods that provide efficient retrieval over high-dimensional multimedia feature spaces have been
proposed in the literature. Furthermore, efficient query processing algorithms for evaluating top-k
queries have been developed. These indexing mechanisms and query processing algorithms need to
be incorporated into database systems. To this end, database systems have begun to support ex-
tensibility options for users to add type-specific access methods. However, current mechanisms are
limited in scope and quite cumbersome to use. For example, to incorporate a new access method,
a user has to address the daunting task of concurrency control and recovery for the access method.
Query optimizers are still not sufficiently extensible to support optimizing access path selection
based on user-defined functions and access methods. Research on these issues is ongoing and we
believe that solutions will be incorporated into future DBMSs, resulting in systems that efficiently
support content-based queries on multimedia types.
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