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Abstract—Recent work on proof-based verifiable computa-
tion has resulted in built systems that employ tools from
complexity theory and cryptography to address a basic
problem in systems security: allowing a local computer to
outsource the execution of a program while providing the
local computer with a guarantee of integrity and the re-
mote computer with a guarantee of privacy. However, sup-
port for programs that use RAM and control flow has been
problematic. State of the art systems either restrict the use
of these constructs (e.g., requiring static loop bounds), in-
cur sizeable overhead on every step, or pay tremendous
costs when the constructs are invoked.

This paper describes Buffet, a built system that solves
these problems by providing inexpensive “a la carte” RAM
and dynamic control flow. Buffet composes an elegant
prior approach to RAM with a novel adaptation of tech-
niques from the compilers literature. Buffet allows the pro-
grammer to express programs in an expansive subset of C
(disallowing only “goto” and function pointers), can han-
dle essentially any example in the verifiable computation
literature, and achieves the best performance in the area
by multiple orders of magnitude.

1 Introduction
How can a client outsource a computation to a server and then
check that the server executed correctly?1 And can this be
done in a way that allows the server to supply private inputs
and keep them confidential? Variants of this problem have
been around for decades [10]; today, cloud computing is a
particularly pertinent use case. Indeed, because cloud providers
are large-scale, we cannot assume that execution is always
correct; because they are opaque, we cannot assume that the
causes of incorrect execution (corruption of data, hardware
faults, malice, and more) are readily detectable. And many
common cloud applications involve private server input that
must remain confidential (e.g., database interactions).

Classical solutions to this problem depend on potentially
undesirable assumptions or restrictions. For example, replica-
tion [29, 30, 56] assumes that replica failures are not correlated
(which does not hold in homogeneous cloud platforms). Au-
diting [47, 60] assumes that failures follow a most-or-none
distribution. Trusted hardware and attestation [63, 67, 68] as-
sumes that the hardware is not faulty (and sometimes requires

1Checking that a given program is expressed correctly is program verification,
which is a different but complementary problem.
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a global root of trust). Tailored solutions exist (see [62, 71, 76]
for surveys) but only for restricted classes of computations.

Over the last few years, a new solution has emerged, called
proof-based verifiable computation [78], that gives comprehen-
sive guarantees, makes few or no assumptions about the server,
and applies generally [16, 19, 28, 33, 37, 40, 52, 62, 69–74, 76].
Although the details differ, all of these works are based on so-
phisticated cryptographic and complexity-theoretic machinery:
probabilistically checkable proofs (PCPs) [7, 8], efficient argu-
ments [21, 22, 26, 40, 41, 46, 49] (including zero-knowledge
variants), interactive proofs [9, 44, 45, 54], etc. To be clear, it
had long been known that this machinery was relevant to veri-
fying outsourced computations [10]; the work of proof-based
verifiable computation has been refining the theory and building
systems around it.

Indeed, publications in this area have showcased dramatic
performance and usability improvements relative to naive im-
plementations of the theory: factors-of-a-trillion speedups; com-
pilers; and sophisticated implementations on smart phones, on
GPUs, and across distributed servers. As a notable example, re-
cent work [37], building on [40, 62], compiles zero-knowledge
applications (that preserve the confidentiality of the server’s
private inputs) into a form that is practical for real use.

All of this work has taken place in the context of built sys-
tems that have two major components: a front-end translates
programs into the formalism required by a cryptographic and
complexity-theoretic back-end. In more detail, the front-end
translates a computation that is expressed in a high-level lan-
guage into a system of equations, or set of constraints; a so-
lution to these constraints corresponds to a valid execution of
the computation. The back-end is a probabilistic proof pro-
tocol [43] (particularly an interactive argument [46, 49] or a
non-interactive argument [21, 23, 40, 62]) by which the server
(or prover) convinces the client (or verifier) that it holds a
solution to the constraints.

The guiding intuition for the area is that the theoretical ad-
vantages of the back-end proof protocol should result in pow-
erful systems: the prover can keep its solution private (when
using zero-knowledge variants), and the verifier handles only
a short certificate, the checks of which are in principle very
efficient. However, there is overhead from the front-end, the
back-end, and their interaction. This overhead manifests most
prominently in setup costs incurred by the verifier and the costs
paid by both verifier and prover for each input-output instance
that the verifier wishes to check.

After a great deal of work, there is now a single approach to
the back-end: in all of the recent systems [16, 19, 28, 37, 52,
62, 70], the core probabilistically checkable encoding is the
remarkable construction of GGPR [40] (or is based on it [52]).
This encoding has slashed prover costs and verifier setup costs—
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though neither cost is low by usual systems standards. Further-
more, there has been a real victory: the verifier’s per-instance
costs are genuinely inexpensive. In fact, under certain usage
models [14, 28, 34], the verifier’s total costs (amortized setup
plus incremental) can be considered practical.

The front-end has also been a locus of activity, but the situa-
tion there is far less clear. Currently, there is a tradeoff between
programmability and costs [19, §5.4; 78, Fig. 2], specifically the
verifier’s setup and the prover’s costs. These costs are driven by
the number of constraints required to represent a computation.
The tradeoff is clear from the two major front-end approaches.

One approach is BCTV [19], which is currently the state
of the art in an elegant line of work [15, 16]. Here, the con-
straints represent the unrolled execution of a general-purpose
MIPS-like CPU, called TinyRAM [17]; one of the inputs to
the constraints is a program expressed in this CPU’s assembly
language. In BCTV, the representation of RAM operations uses
a clever technique [15] based on permutation networks (§2.3).

A principal advantage of BCTV is that the programmer can
use standard C (to produce the assembly program); this is
the best programmability in the verifiable computation litera-
ture. Furthermore, BCTV allows the verifier’s setup work to
be reused across different computations. The principal disad-
vantage is cost. For a computation that takes t program steps,
the constraints include t copies of the simulated CPU’s fetch-
decode-execute loop; that is, every program step incurs the cost
(in number of constraints) of the CPU’s fetch-decode-execute
logic. On top of that, each of those t steps brings additional
constraints to verify RAM operations.

The other front-end approach is to require the programmer
to write in a subset of C that is carefully restricted to allow
a line-by-line translation from the program to constraints; for
each line of code, the resulting constraints contain designated
logic to verify that line. The state of the art here is embodied in
Pantry [28], which builds on, and includes the functionality of,
its predecessors: Pinocchio [62] and Zaatar [70].2 Often, the
representation that arises is very concise; for example, adding
two variables costs only one constraint. An important exception
is RAM: each load or store results in multiple invocations of a
cryptographic hash function, each of which is translated into
constraints. Although this technique is far less expensive (for all
but the smallest memories) than prior RAM representations [62,
70, 72], the technique is still costly in absolute terms.

Pantry’s advantages are roughly the inverse of BCTV’s. De-
pending on the computation, Pantry can handle executions of
comparatively long lengths. Also, it pays for RAM operations
only when they are used. On the other hand, the price of those
RAM operations, in number of constraints, is very high—far
higher than BCTV’s per-operation cost [19, §5; 28, §8.1]. Fur-
thermore, the subset of C that is exposed to the programmer
lacks key constructs, most notably data dependent control flow.

2There is recent work at the forefront of performance that handles set operations
efficiently [52], using the same line-by-line compilation approach. There is
also a cousin of this approach represented by a different line of work [33, 73,
74, 76]. But these works are targeted to particular classes of computations so
fall outside of our focus. (See Section 6.)

This analogy is inexact, but if a Pantry constraint representa-
tion is like an ASIC, then BCTV is like a CPU that is controlled
with software. Unfortunately, in the context of verifiable com-
putation, both the cost of BCTV’s generality and the restriction
on Pantry’s programmability present severe obstacles to prac-
ticality. This state of affairs raises a natural question: Can we
achieve excellent programmability (that is, present the program-
mer with a language that is very close to standard C) together
with an efficient translation into constraints? To that end, this
paper makes the following contributions:
1. We design and build a new system, called Buffet, that an-

swers the above question in the affirmative. Buffet incorpo-
rates the following technical innovations:
• Buffet composes BCTV’s RAM abstraction with the line-

by-line compilation approach of Pantry, resulting in a
Pantry-BCTV hybrid approach to RAM (§3).

• Buffet achieves nearly the expressiveness of BCTV with-
out an underlying CPU abstraction, by adapting loop flat-
tening techniques from the compilers literature (§4). Buf-
fet supports all of C except goto and function pointers.

2. We develop a conceptual framework for understanding
Pantry and BCTV as points on the same design spectrum,
thereby providing a unified description of the state of the art
verifiable computation approaches (§3.3, §4.3). The result-
ing perspective directly enabled the design of Buffet.

3. We carry out a three-way performance comparison, based
on implementations of Buffet, BCTV, and Pantry (§5). Be-
sides experimentally evaluating Buffet, this study carefully
compares Pantry and BCTV, which is the first detailed com-
parison of these approaches.
The result is the best of both worlds: Buffet has the best

performance in the literature (orders of magnitude better than
BCTV and Pantry) and supports almost all of standard C.

There are some disadvantages to Buffet, compared to BCTV.
Buffet has worse amortization behavior in terms of what com-
putations the setup cost can be reused over. Moreover, Buffet
does not provide a machine abstraction, which could hinder
higher-level programmability. However, as discussed in Sec-
tion 7, we believe that both issues are more pronounced in
principle than they will be in practice.

The most significant limitation of Buffet is one that is en-
demic to this research area: in every system released so far,
the prover overhead and setup costs are still too high to be
considered truly practical. Nevertheless, we regard Buffet as
substantial progress: we believe that it is close to optimal, at
least until the next breakthrough on the back-end occurs.

2 Background
This section presents the general framework in which
Pantry [28] and BCTV [16, 19] operate, and then gives de-
tails on each of them. Parts of this description are influenced by
prior work [19, 62, 70, 76, 78]; most notably, there are textual
debts to Pantry [28]. Our description is tailored to the problem
of verifying outsourced deterministic computations [39, 44].
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However, Buffet itself and many of the prior systems (includ-
ing BCTV, Pantry, and Pinocchio [62]) handle a more general
problem—a zero-knowledge proof of knowledge [21, 40]—in
which the prover can supply inputs to the computation and
keep them private (for example, a private database for which
the verifier knows a digest [19, 28, 62]).

2.1 Overview and framework

Existing systems (BCTV, Pantry, etc.) enable the following. A
client, or verifier V , sends a program Ψ, expressed in a high-
level language, to a server, or prover P . V sends input x to P and
receives output y, which is supposed to be Ψ(x). V also receives
a short certificate that it can efficiently and probabilistically
check to determine whether y is in fact Ψ(x). There are no
assumptions about whether and how P malfunctions, though
there is an assumed computational bound on P . The guarantees
are probabilistic, over V’s random choices. They are as follows.
End-to-end Completeness: If y = Ψ(x), then a correct P makes
V accept y with probability 1. End-to-end Soundness: If y ̸=
Ψ(x), then V’s checks pass with less than ϵ probability, where
ϵ is very small. The existing systems work in three steps:
1. Compile, produce constraints. V and P compile the pro-

gram into a system of equations over a set of variables,
including x and y. The equations have a solution if and only
if y = Ψ(x).

2. Solve. P identifies a solution.
3. Argue. P convinces V that it has indeed identified a solution,

which establishes for V that y = Ψ(x).
This paper’s focus is the front-end (steps 1 and 2); the Pantry

and BCTV instantiations of this component are described in
Sections 2.2 and 2.3, respectively.

As a consequence of this focus, we fix a common back-end
(step 3) for all systems under investigation. We can standard-
ize this way because Buffet, Pantry, and BCTV (and many
prior systems for verifiable computation) are modular: their
front-ends can work with each other’s back-ends. Our com-
mon back-end is the Pinocchio protocol [62] (as implemented
and optimized by libsnark [3]).3 Pinocchio is a descendant of
GGPR [40],which we summarize below; details and formal
definitions appear elsewhere [19, 23, 40, 62, 70].

For our purposes, GGPR is a zero-knowledge SNARK (Suc-
cinct Non-interactive Argument of Knowledge) with prepro-
cessing [21, 40], which is to say that it is a protocol with the
following structure and properties. There are two parties, a veri-
fier and prover; the input to the protocol is a set of equations (or
constraints)4 C, to which the prover purportedly holds a solu-
tion (or satisfying assignment), z. In the verifiable computation
context, the constraints and solution are generated by steps 1
and 2 above. In a separate setup phase, the verifier, or some
entity that the verifier trusts, follows a randomized algorithm to

3An alternative is Zaatar’s back-end [70], which we have tested and run with
our Pantry, BCTV, and Buffet front-end implementations. This back-end [46,
71, 72] includes a linear PCP constructed from GGPR’s QAP formalism [40].

4Throughout this paper, we refer to the back-end as working with “con-
straints”. Another name for the same formalism is “arithmetic circuits with
non-deterministic inputs” [19, 62].

generate, and encode, a query. Online, for each new (x, y) pair,
the prover responds to the encoded query with a certificate; the
verifier checks the certificate, and accepts or rejects it. GGPR
has the following properties:

• Completeness: If there is a satisfying assignment to C, a
correct prover causes the verifier’s checks to accept.

• Proof of knowledge: If the prover does not have access to
a satisfying assignment z, then—except with very small
probability—the prover’s purported certificate causes the
verifier to reject. One can use this property and the prior one,
Completeness, to show that the full system (front-end plus
back-end) meets the End-to-end Completeness and Sound-
ness properties stated earlier [28, Apdx. A].

• Zero-knowledge: The protocol provides no information to
the verifier—beyond what the verifier can deduce itself—
about the values in z. In particular, the protocol reveals no
information to the verifier about any input supplied by the
prover, provided that input cannot be easily guessed. (As
with prior work [16, 19, 62], our evaluated examples (§5)
do not have private prover input. However, Buffet supports
the property, and example applications of it are evaluated
elsewhere [14, 28, 37].)

• Efficiency: We detail costs in Section 2.4. For now, we note
that the verifier’s check is fast and the prover’s response is
short. The principal costs are the setup work and the prover’s
work to generate the certificate.

2.2 Pantry

Step 1: Compile, produce constraints. The programmer ex-
presses a computation Ψ in a subset of C. This subset [28,
62, 70] contains loops (with static bounds), functions, structs,
typedefs, preprocessor definitions, if-else statements, explicit
type conversion, and standard integer and bitwise operations.
In addition, Pantry includes a RAM abstraction.

Using a compiler [27, 55, 62, 70, 72], V and P transform Ψ
into a set of constraints C over (X, Y , Z), where X and Y are
vectors of variables that represent the inputs and outputs; we
call the variables in Z intermediate variables. Let C(X=x, Y=y)
mean C with X bound to x (V’s requested input) and Y bound
to y (the purported output). Note that C(X=x, Y=y) is a set of
constraints over Z. C is constructed so that for any x and y, we
have: y = Ψ(x) if and only if C(X=x, Y=y) is satisfiable (by
some Z=z). Step 3 (§2.1) then works over C(X=x, Y=y).

A basic example [27, 28] is the computation add-1, whose
corresponding constraints are C = {Z−X = 0, Z+1−Y = 0}:
for all pairs (x, y), there is a Z=z that satisfies C(X=x, Y=y) if
and only if y = x + 1.

Some technical points: The domain of all variables is a large
finite field, Fp (the integers mod a prime p); p typically has
at least 128 bits. Also, each constraint has degree 2 and is
of a particular form, described elsewhere [62, 70]. Constraint
variables are represented by upper-case letters (X, Y , Z, . . .);
concrete values taken by those variables are represented by
lower-case letters (x, y, z, . . .).
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if (Z1 == 1) {
Z2 = 10;

} else if (Z1 == 2) {
Z2 = 20;

} else {
Z2 = 100;

}

(a) Source.

{ 0 = M0(Z1 − 1),

0 = M0(Z2 − 10),

0 = (1 − M0)(M2(Z1 − 1) − 1),

0 = (1 − M0)(M1(Z1 − 2)),

0 = (1 − M0)(M1(Z2 − 20)),

0 = (1 − M0)((1 − M1)(M3(Z1 − 2) − 1)),

0 = (1 − M0)((1 − M1)(Z2 − 100)) }

(b) Constraints.

FIGURE 1—A conditional statement and corresponding constraints,
under Pantry. For clarity, constraints with degree greater than two are
not expanded.

Compilation process. Given a program, the compiler un-
rolls loops (each iteration gets its own variables) and con-
verts the code to static single assignment (details are described
in [27]). The compiler then transforms each line into one or
more constraints. Arithmetic operations compile concisely. For
example, the line of code z3=z1+z2; compiles to Z3 = Z1+Z2.

As in all of the works that use large finite fields to represent
computations [16, 27, 62, 70, 72], inequality comparisons and
bitwise operations cost ≈w constraints, where w is the bit width
of the variables in question.

Conditional branches include constraints for both branches.
As an example, Figure 1 illustrates a simple if-else statement
and the corresponding constraints.

RAM. Pantry includes primitives for verifiable remote state,
called GetBlock and PutBlock. Each of these primitives com-
piles into constraints that represent the operation of a collision-
resistant hash function, H(·). One way to use GetBlock is for
V to supply as part of the input to Ψ a hash (or digest) d of
a remote input b that Ψ is supposed to work over (though V
does not know b). Then, satisfying the constraints that represent
GetBlock requires P to set the variables B so that H(B) = d.

Applying well-known techniques [24, 38, 53, 57], Pantry
uses GetBlock and PutBlock to create a RAM abstraction. Con-
cretely, each Load and Store compiles into multiple GetBlock
and PutBlock calls—and thus multiple invocations of H(·).

Step 2: Solve. To produce a satisfying assignment, P proceeds
constraint-by-constraint. In cases when the solution is not im-
mediate, a constraint has a compiler-produced annotation that
tells P how to solve it. As an example, if Z1 and Z2 are already
determined, then the solution to Z3 = Z2 + Z1 is immediate.
But in the constraints that correspond to the if-else statement
of Figure 1, the annotations tell P how to set M0, . . . , M3. Sim-
ilarly, to satisfy the constraints that represent GetBlock (and in
response to a PutBlock), the annotations instruct P to interact
with a backing store. We refer to such annotations and actions
as being exogenous to the constraint formalism (the theoretical
term is “non-deterministic input”).

2.3 BCTV

As in Pantry, BCTV’s constraints are over the finite field Fp,
and the constraints have input variables X, output variables Y ,
and intermediate variables Z.

ProcessorState states[t]

state[0].pc = state[0].flag = 0
state[0].regs[0] = ... = state[0].regs[NUM_REGS-1] = 0

for S in [0, t-1):

state[S].instruction = LOAD(state[S].pc)

decode(state[S].instruction, &opcode, &target, &arg1, &arg2)
next_flag = state[S].flag

for i in [0, NUM_REGS):
if (i != target):

state[S+1].regs[i] = state[S].regs[i]

switch (opcode):
case OP_ADD:

state[S+1].regs[target] = arg1 + arg2
next_flag = (arg1 + arg2) > REGISTER_MAX
break

case OP_CJMP:
if (state[S].flag)

state[S+1].pc = arg1
break

case OP_LOAD:
state[S+1].regs[target] = LOAD(arg1)
break

...

state[S+1].flag = next_flag

if (opcode != OP_CJMP && opcode != OP_CNJMP
&& opcode != OP_JMP):

state[S+1].pc = state[S].pc + 1

state[t-1].instruction = LOAD(state[t-1].pc)

decode(state[t-1].instruction, &opcode, &target, &arg1, &arg2)

assert opcode == OP_ANSWER

return arg1 // expands to Y = arg1

FIGURE 2—Pseudocode for Ccpu, the constraints that represent
TinyRAM’s execution [17]. In the constraints, the for loop is un-
rolled: the constraints contain t repeated blocks, one for each iteration.

Step 1: Compile, produce constraints. The programmer ex-
presses a computation Ψ in standard C, and then runs a compiler
to transform Ψ to an assembly program for a simulated MIPS-
like CPU called TinyRAM [16, 17, 19]; we notate this program
text xΨ. The programmer must statically bound t, the number
of machine steps required to execute xΨ on the simulated CPU.
The constraints themselves are produced by V and P in a sep-
arate, offline step that is parameterized by t. The constraints
decompose into three subsets, described below.

CPU execution. The first set of constraints, Ccpu, represents
the simulated CPU’s execution, for t steps, purportedly starting
with memory that contains xΨ and x and producing output y
(this will be enforced below). The constraints have t repeated
blocks; each has variables for the CPU’s state (registers, flag,
program counter, and instruction) and represents one fetch-
decode-execute cycle, the logic for which is shown in Figure 2.

Any assignment (satisfying or otherwise) to Ccpu corresponds
to a purported execution-ordered transcript of the CPU: a list
of its state at each step in the execution. In any satisfying as-
signment to Ccpu, the variable settings correspond to the correct
operation of the CPU, under the assumption that the results
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of LOAD operations are correct; that is, Ccpu leaves LOAD target
variables unconstrained. These variables are restricted by the
next two sets of constraints.

Memory operations. Define an address-ordered transcript
as a sort of the execution-ordered transcript by memory address,
with ties broken by execution order. Observe that in an address-
ordered transcript, each LOAD is preceded either by its corre-
sponding STORE or by another LOAD at the same address. Thus,
one can establish the correctness of an address-ordered tran-
script by checking that sequential entries are coherent, meaning
that a load from a memory cell returns the most recently stored
value to that cell.

Leveraging these observations, the remaining constraints
include variables that represent an address-ordered transcript,
T ; these constraints are satisfiable if and only if T is a sort
of the execution-ordered transcript that is pairwise coherent.
Specifically, the constraints are divided into two groups, Cperm
and Cck-sort. Cperm is satisfiable if and only if T is at least a per-
mutation (but not necessarily a sort) of the execution-ordered
transcript. Cck-sort is satisfiable if and only if this permutation is
indeed sorted and pairwise coherent.

In more detail, Cperm represents the logic of a permutation
network [13, 20]. The inputs to this network are variables from
the execution-ordered transcript, specifically two tuples (time-
stamp, op code, address, data) per machine cycle. One tuple
represents the instruction fetch; the other, whatever the instruc-
tion requested (LOAD, STORE, or no RAM operation). Cperm also
has variables that represent switch settings of the permutation
network. By construction, Cperm is satisfiable if and only if its
outputs are assigned to a permutation of its inputs. Note that
although we have referred to “inputs” and “outputs,” all vari-
ables are intermediate; the prover must obtain values (in its
assignment z) for all of them.
Cck-sort works over the output variables in Cperm, and is sat-

isfiable if and only if the assigned values respect the pairwise
relation establishing ordering and coherence.

Putting the pieces together. Where do the inputs and out-
puts (xΨ, x, y) appear? A BCTV execution begins with a “boot”
phase that stores xΨ into the beginning of memory and x into a
well-known memory location that Ψ expects. Concretely, the
memory transcript that feeds into Cperm includes tuples for xΨ
and x; for example, (j, STORE, j, xΨ[j]), j ∈ {0, . . . , |xΨ| − 1},
where |xΨ| is the length of the program text. Notice that the
relevant values are assigned by the verifier (that is, they are
not part of the assignment z) and thus tether the execution to
the verifier’s request. For the output y, our description assumes
that the output of Ψ is a single machine word that is returned
at the end of the execution.5 Concretely, the final constraint in
Ccpu is y− Z∗ = 0, where Z∗ here is the constraint variable that
represents the final setting of the register arg1 (Fig. 2).

To recap, any satisfying assignment to Ccpu corresponds to an
execution-ordered transcript that (1) correctly represents non-

5A more general way to handle outputs is to supply y as auxiliary input [15, 19],
and to write Ψ so that, after computing its output, it accepts iff that output
equals y. This alternative is supported by our BCTV implementation and
matches the original description of BCTV.

certificate length 288 bytes
V setup |C| · 180µs
V per-instance 6 ms + (|x|+ |y|) · 3 µs
P per-instance |C| · 60 µs + |C| log |C| · 0.9 µs

x, y ∈ Fp: inputs and outputs of C

FIGURE 3—End-to-end costs of any system (including BCTV [19],
Pantry [28], and Buffet) built on the optimized libsnark implemen-
tation [3, 19] of the Pinocchio back-end [62] with 128-bit security,
applied to constraints C. The cost of steps 1–2 is captured in the
number of constraints, |C|. We extracted parameters for this model
from microbenchmarks and experimental data (§5.4). The model as-
sumes that |C| equals the number of intermediate variables (|Z|) and
that the average constraint acts on only a few intermediate variables;
these assumptions hold in our benchmark applications (§5.2) and else-
where [28]. BCTV’s setup costs amortize better than Pantry’s (§2.4).

RAM operations (ALU, control flow, etc.), and (2) ends with
the purported output, y. For Cperm and Cck-sort to be satisfiable,
the values LOADed in the execution-ordered transcript must
be correct and, in particular, consistent with program text xΨ
and program input x. Thus, the three sets of constraints as a
whole are satisfiable if and only if y is the correct output of the
simulated CPU, given program Ψ and input x.

Step 2: Solve. To produce the satisfying assignment z to the
constraint variables, the prover, given xΨ and x, runs a rou-
tine on its native CPU that simulates the execution of xΨ. This
routine produces an execution-ordered transcript, yielding a
satisfying assignment to the variables of Ccpu.6 This routine fur-
ther selects the switch settings and determines the assignment
to the address-ordered transcript variables, in Cperm.

2.4 Costs, amortization, and accounting

The end-to-end costs of BCTV and Pantry (and Buffet) are sum-
marized in Figure 3. There are several things to note here. Most
importantly, the principal costs—setup costs and P’s work for
each protocol run—scale with the number of constraints (|C|).
Thus, there will be an impetus, in the sections ahead, to translate
program structures into economical constraint representations.

Second, we are charging setup costs to V , even though our
evaluation uses the public verifier variant [40] of the back-
end (§5.3); we explain this choice at the end of the section.
Third, setup costs are incurred for each new set of constraints,
yielding different amortization. Under Pantry, these costs are in-
curred for each computation Ψ and amortize over all instances
(input-output pairs) that the verifier invokes. In BCTV, all com-
putations of a given length use the same set of constraints, so
the amortization behavior is potentially better. (BCTV’s con-
straints are sometimes said to be universal, but as discussed in
Section 7, in practice one constraint set would not be enough.)

To be relevant, Pantry and BCTV need to operate in one
of two regimes. The first is when a given V runs the protocol
multiple times on the same set of constraints (for Pantry, this

6Thus, Ccpu can be equivalently understood as validating the state transitions
in a transcript that is non-deterministically supplied by P ; this view is the one
presented in [16, 19].
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C
program logic

source code (Ψ) unrolled

· · ·

Zn = 0

Za0 = Zd + Zn

Za1 = Zd + Zn0

Za2 = Zd + Zn1

Za3 = Zd + Zn2

0 = Zc0 · (Zn2 − 10)

1 = Zc0 + (Zn2 − 10) · Zm

Zop = Zc0 · STORE+ (1 − Zc0) · LOAD

Ztarg = Zc0 · 10 + (1 − Zc0) · Zdummy

· · ·

...
next = 0;

addr0 = data + next;
next0 = load(addr0);
addr1 = data + next0;
next1 = load(addr1);
addr2 = data + next1;
next2 = load(addr2);
addr3 = data + next2;

cond0 = next2 == 10;
if (cond0)
store(10, addr3);

...

...

next = 0;
for (i=0; i<3; i++)
next = data[next];

if (next == 10)
data[next] = 10;

...

(0, LOAD, Za0, Zn0)

(1, LOAD, Za1, Zn1)

(2, LOAD, Za2, Zn2)

(3, Zop, Za3, Ztarg)

⇒ ⇒

ordering,
coherence

checks

switch
settings

permutation
network

execution-ordered trace
address-

ordered trace

FIGURE 4—Buffet’s instantiation of step 1 in the framework of §2.1. Buffet’s compiler translates from an expansive subset of C to an
intermediate representation, and then to three sets of constraints. The first set captures program logic, and results from applying Pantry’s
line-by-line compilation approach [28]. The other sets adapt the permutation network and memory coherence checks of BCTV [16, 19].

means the same Ψ; for BCTV, it means different Ψ that have
approximately the same t); the number of times must be high
enough that amortized overhead drops below the naive solution,
namely running the computation at V . The second regime is
when the computation is not otherwise feasible (because the
inputs are remote or private or both); in this case, we are less
concerned with the amortized overhead of the system, but the
setup costs must still be tolerable. Example computations and
analysis are given in [28].

As noted above, we have charged V for setup costs, even
though the cost could instead be incurred by a query gener-
ator (§2.1) G that is separate from V . To explain this choice,
we note that V must trust G (if G colludes with P , End-to-
end Soundness (§2.1) is lost). Meanwhile, our high-level prob-
lem (§1) is partially motivated by a reluctance to rely on a
globally trusted G (if we had a centralized root of trust, we
could base verifiable outsourcing on trusted hardware, etc.,
as noted in the Introduction). If we instead posit various de-
centralized roots of trust, we could provide naive verifiable
outsourcing by simply executing Ψ at a G that V trusts. And
we could again analyze the applicability of Pantry or BCTV;
the analysis focuses on G’s costs and is similar to the previous
paragraph, replacing “a given V” with “all V that trust a given
G”, and “at V” with “at that G”. For simplicity, the rest of this
paper assumes that V trusts no one besides itself.

3 Representing RAM operations efficiently
As noted in the Introduction and elaborated in Section 2.4,
end-to-end protocol costs are largely driven by |C|, the size of
the constraint representation. Under this metric, both BCTV
and Pantry pay a steep price to expose a RAM abstraction to
programmers. While Pantry pays only when memory is used,
the cost per operation is exorbitant. In BCTV, by contrast, it
is much cheaper to check memory, but the cost is incurred
on every operation—even if the operation is not a load or
store. Concretely, a load or store in Pantry compiles to tens or
hundreds of thousands of constraints [28, §8.1]; in BCTV, every
program step compiles to one to two thousand constraints, of
which several hundred are for memory checking (§3.1).

In light of the above, we ask, Can Buffet pay for RAM only
when the operations are used (as in Pantry), and furthermore
can Buffet pay less per operation than either system?

We find that the answer is yes: Buffet’s approach is to graft
BCTV’s permutation networks into Pantry’s constraints for non-
RAM operations. Described that way, Buffet’s approach might
sound straightforward; instantiating it was not. The fundamen-
tal issue is that BCTV’s techniques are tied to its execution
model; indeed, lifting these techniques from their context had
been regarded as an “intriguing open question” [19, §5.4]. Nev-
ertheless, we have been able to make the hybrid approach work.
The result is orders-of-magnitude savings versus BCTV and
Pantry, for computations that interact with RAM.

3.1 Hybridizing Pantry and BCTV

Under Buffet, the programmer of Ψ interacts with RAM using
standard C pointers and arrays; the compiler transforms each
pointer dereference or array interaction to val=load(addr)
or store(data,addr) in the intermediate unrolled program.

The compiler produces three sets of constraints, depicted in
Figure 4. The first set is the same as Pantry’s constraints, except
that they do not restrict the return values of load (the parame-
ters to a load or store are restricted by usual program logic,
as expressed by constraints “upstream” of the operation). As in
BCTV, the second set of constraints represents a permutation
network; the inputs to this network are the return values and
parameters of all of the loads and stores. And as in BCTV,
the third set of constraints is satisfiable if and only if the permu-
tation network’s output is sorted and pairwise coherent—which
ensures that a satisfying assignment to all of the constraints
respects both program logic and memory correctness.

Refinements and savings. The preceding picture is based on
BCTV’s technique for RAM (§2.3) but with some important
refinements. The cost savings from these refinements are sum-
marized in Figure 5.

First, Buffet sheds the t repeated copies of the simulated
CPU’s fetch-decode-execute logic, saving ccpu constraints on
every operation. Of course, Buffet must still pay for each oper-
ation; Figure 5 summarizes this cost using cavg, which captures
the average cost in constraints of a non-RAM operation in the
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per-op contribution to |C|

system one RAM op. one non-RAM op. total # of constraints (|C|)

Pinocchio [62], Zaatar [70] 3 · 2r cavg (3 · 2r) · k′ + cavg · (t′ − k′)
Pantry [28] 4700 · r cavg (4700 · r) · k′ + cavg · (t′ − k′)
BCTV [19] 2 · cmem + ccpu 2 · cmem + ccpu (2 · cmem + ccpu) · t
Buffet c′mem cavg c′mem · k′ + cavg · (t′ − k′)

t: number of steps to execute Ψ on the simulated CPU (§2.3) t′ (≈ t): number of program steps to execute Ψ in P/Z/P
r: log of memory size (for example, r = 32) k′ (≤ t′): number of memory operations in Ψ in P/Z/P
ccpu = 1114: number of constraints for one BCTV CPU cycle cavg ≈ 22: avg. non-RAM constraints per step for Ψ in P/Z/P
cmem = 67 + 4 · log 2t + 9r : per-tuple constraint cost in BCTV c′mem = 21 + 10 · log k′ + 2r : per-tuple constraint cost in Buffet

FIGURE 5—Per-operation and total constraint costs, for a given computation Ψ. Buffet improves on the others both qualitatively and quantitatively:
its RAM verification costs scale with the number of memory operations (k′) rather than the number of program steps (t, t′), and the scaling factor
(c′mem) is much lower than in BCTV (2 · cmem + ccpu) and Pantry (4700 · r for a load; a store costs twice as much [28, Fig. 9]). “P/Z/P” stands for
“Pinocchio/Zaatar/Pantry execution model”. In Zaatar and Pinocchio (Pantry’s baselines), dynamically-addressed loads and stores translate to
costly switch/case statements [19, 28]. cmem is taken from [19, §5.1] for a CPU with 16 registers of 32 bits. Section 3.1 explains cavg, t, and t′.

Pantry model (shared by its base systems, Pinocchio [62] and
Zaatar [70]). cavg is computation-dependent, but we can im-
pose reasonable bounds, since the cost of non-RAM operations
ranges from 1 (for arithmetic operations) to 34 (for operations
on 32-bit values that require separating numbers into their bits,
such as inequality comparisons and bitwise operations). We
obtained cavg = 22 in the figure by conservatively assuming
that non-RAM operations occur with uniform frequency.

Second, Buffet’s permutation network works over what we
call a trace: a set of tuples, one for each of the k′ operations
that specifically interacts with memory. By contrast, recall that
in BCTV (§2.3), the input to the permutation network is a
transcript: two tuples for each of the t execution steps. These
distinctions—trace versus transcript, one versus two tuples—
are reflected in Figure 5, specifically the c′mem · k′ contribution
in the Buffet row and 2 · cmem · t in the BCTV row.

A critique of the preceding analysis is that t and t′ are dif-
ferent kinds of quantities. For one thing, t counts steps of the
simulated CPU’s execution, whereas t′ counts operations in
Buffet’s intermediate unrolled representation. However, this
objection is not fundamental, as the operations in the latter
roughly correspond to those in the former. A more serious issue
is that t counts the program steps actually taken whereas t′

includes operations in branches not taken. However, this dis-
tinction does not affect the analysis much either: even if we
take t′ = 10 · t (which is highly pessimistic: it means that
conditional statements entail 10 branches on average), Buffet’s
costs are nearly an order of magnitude less than BCTV’s.

Details. Below, we describe how Buffet handles loads and
stores, in terms of steps 1 and 2 in the framework of Section 2.1.
As a backdrop, we note that in step 1, the Buffet compiler main-
tains a monotonically increasing counter, mem-ts, that tracks
memory operations. In step 2, the Buffet prover maintains a
simulated RAM inside its own address space.

Loads. For step 1, when the compiler encounters
Zval=load(Zaddr), it creates constraints that “wire” the tu-
ple (mem-ts, LOAD, Zaddr, Zval) into the permutation network.
The compiler also inserts an annotation for step 2, which tells
P to set Zval by loading address Zaddr from its simulated RAM.

Stores. When executed unconditionally (meaning outside
of an if-then or if-then-else block), stores are similar to loads.
However, inside of a conditional block, a store operation creates
complexity in both steps 1 and 2.

Concerning step 1, the problem is as follows. If a branch that
contains a store operation is taken during execution, then the
variables of that store must enter the permutation network. But
if the branch is not taken, then the store must not be part of the
execution-ordered trace. Meanwhile, Buffet’s compiler must
decide statically what enters the permutation network (without
knowing which branches will be taken). Buffet resolves this
issue by “dynamically casting” the store to a dummy load at run
time, if the branch is not taken. Specifically, when the compiler
encounters store(Zdata, Zaddr) inside a conditional block,
it wires the following tuple (§2.3) into the permutation network:

( mem-ts, Zcond · STORE + (1 − Zcond) · LOAD,
Zaddr, Zcond · Zdata + (1 − Zcond) · Zdummy ),

where Zcond captures the conditions that surround the store
operation. If Zcond=0 at run time, then observe that P is obliged
to treat this tuple (more precisely, the constraints to which this
tuple expands) as a dummy load rather than a store.

Concerning step 2, recall that during Pantry’s solving phase,
there is no longer an explicit notion of control flow, condition-
ality, etc. Pantry’s prover simply walks a list of constraints,
solving each one, as instructed by annotations (§2.2). The diffi-
culty in our present context is that, if a store operation is in an
untaken branch, P should not actually apply the update to its
simulated RAM—if P did so, future loads would return incor-
rect values, and the coherence-checking constraints would not
be satisfied. To address this issue, the Buffet compiler creates
an annotation that instructs P to apply the store operation to its
simulated RAM only if P also sets Zcond=1.7

7Why doesn’t Pantry face the issues just described? Recall that Pantry’s RAM is
implemented on a content-addressable block store (§2.2), which maps digests
d to blocks B, where H(B) = d. When RAM is built this way [24, 38, 53],
each configuration of memory has its own digest. Furthermore, each load and
store takes a digest as an argument, and each store returns a new digest [28,
§5.1]. Thus, if Pantry applied a store to its simulated RAM, but the store
happened in an untaken branch, the (digest, block) entries added to the block
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3.2 Optimizations

Consistent with Buffet’s goal of paying for RAM operations
only when necessary, its compiler eliminates loads and stores
where possible; the result is fewer constraints and hence better
performance. Of course, the compilers of BCTV and Pantry
could apply similar analysis, but the overall effect on their
performance would be muted, as we explain in Section 3.3.

Buffet applies two classes of optimizations. First, the com-
piler can defer, and sometimes eliminate, RAM operations if
the address is available at compile time. To do so, the compiler
maintains a table that maps addresses to intermediate vari-
ables. When the compiler encounters store(Zdata,Zaddr)
where Zaddr is statically determined, it produces no correspond-
ing constraints; it simply adds a new entry in the table, to
map the value of Zaddr to Zdata. When the compiler encounters
Zval=load(Zaddr) where Zaddr is statically determined, it
consults the table. If there is a mapping between Zaddr and an in-
termediate variable Zupstream, the compiler produces a constraint
that assigns Zval = Zupstream (rather than wiring a new tuple into
the permutation network).

When the compiler encounters a load or store whose address
A cannot be fully resolved at compile time, it must apply the
delayed writes for any memory that could be referenced by A.
Specifically, for each entry (ai, Zi) in the delayed writes table,
the compiler uses pointer aliasing analysis [61] to determine
whether A and ai could possibly reference the same memory. If
so, the compiler produces constraints that store the value Zi to
address ai, and removes (ai, Zi) from the table.

The second type of optimization is classical load and store
elimination [61]. In cases when Buffet’s compiler determines
that two operations share the same address (even if the compiler
does not know the address itself), it applies three reductions:
(R1) For two load operations from the same address with no
intervening store, replace the return value of the second load
with the return value of the first, and eliminate the second load.
(R2) For two store operations to the same address with no
intervening load, let the second store obviate the first. (R3) For
a store immediately followed by a load targeting the same
address, eliminate the load, and refer to the data directly.

As an example, consider the following pseudocode:

out[offset] = 0
for i in [0, 10):

out[offset] += input[i]

This code seems to access input[i] 10 times and
out[offset] 21 times. But the optimizations above would
reduce it to only a single store operation. Specifically, the com-
piler can statically determine the address input + i; it then
avoids the corresponding loads, using the table described earlier.
At this point, the remaining RAM operations are an alternat-
ing sequence of stores and loads, at address out + offset;
reduction R3 then eliminates the loads. Finally, reduction R2
eliminates all but the final store.

store would be harmless: they would not overwrite other entries (because
digests are functionally unique), and they would be unreferenced by the
downstream program logic (because the branch is not taken).

3.3 Discussion

What is the fundamental reason that Buffet can pay for memory
only when it is used, whereas BCTV has to incur the cost on
every operation (§3.1)? And why is load-store elimination of
far more benefit to Buffet than BCTV (§3.2)?

These questions have the same answer: the different ab-
straction barriers in the two systems. In Buffet, the C com-
piler produces constraints tailored to the computation, which
is why it can wire selected operations into the permutation
network (§3.1) and optimize out unneeded constraints (§3.2).

In BCTV, the C compiler produces assembly for the simu-
lated CPU (the Ψ → xΨ step in Section 2.3). Meanwhile, this
assembly program has no influence on the constraints them-
selves [19]. Beyond this, recall that each step of the unrolled
CPU execution contains the logic needed to execute any possi-
ble assembly instruction (§2.3, Fig. 2); since any step might be
a load or store, every step in the execution must be wired into
the permutation network. Therefore, while the BCTV compiler
could apply the optimizations in Section 3.2, the result would
only be to reduce program text length |xΨ| (and potentially
t). There is no sense in which the compiler could eliminate
expensive operations: each program step induces the same cost.

Pantry, in contrast, could apply the optimizations of Sec-
tion 3.2 to reduce the number of expensive operations. How-
ever, the ultimate efficacy would be limited by the extremely
high cost of its RAM abstraction: in practice, Pantry is limited
to at most several tens of RAM operations (§5.4).

4 Efficient data dependent control flow
Using the work of the preceding section, Buffet produces con-
cise constraints for straight line computations (because it in-
herits Pantry’s line-by-line compilation), but the subset of C
supported so far does not include a key programming construct:
data dependent control flow. BCTV lets the programmer use
all of C (due to the underlying abstraction of a general-purpose
CPU); however, as discussed in the previous sections, BCTV’s
abstraction brings significant overhead.

The challenge is again for Buffet to provide the best of
both worlds. Buffet’s high-level solution is a source-to-source
translation that adapts techniques from the compilers literature
and exploits aspects of the constraint idiom. Specifically, the
Buffet compiler accepts programs written in a nearly complete
subset of C and applies a flattening transformation to produce
a C program that is less concise but has no data dependent
control structures; the compiler then translates the modified
source efficiently into constraints. This approach works because
there is no cost to making the intermediate source verbose—the
constraint formalism unrolls computations anyway.

4.1 The programmer’s interface

Buffet supports all C control flow constructs except for goto
and function pointers. The programmer annotates any looping
construct that should be flattened, using a C++11-style attribute,
buffet::fsm. This attribute takes one argument, a bound on
the number of iterations in the flattened loop. This is similar

8



while j < MAX1:
<BODY 1>
// data dependent bound
limit = get_limit(j)
for i in [0, limit):

<BODY 2>
<BODY 3>

(a) Original.

state = dummy = 0
while dummy < MAXITERS:

if state == 0:
if j < MAX1:

<BODY 1>
limit = get_limit(j)
i = 0
state = 1

else:
state = 3

if state == 1:
if i < limit:

<BODY 2>
i++

else:
state = 2

if state == 2:
<BODY 3>
state = 0

dummy++

(b) Flattened.

FIGURE 6—Loop flattening example. The original and flattened pseu-
docode have equivalent control flow.

to how the BCTV programmer must choose t (§2.3), as we
discuss in Section 4.3.

4.2 The transformation

As an example, consider the code of Figure 6a. (Consistent with
the language supported by the Buffet compiler, our examples
in this section refer to C code; they are depicted in a Python-
like pseudocode for visual clarity.) Pantry cannot compile this
program (§2.2), since the number of iterations in the inner loop
is determined at runtime. The programmer might naively try
to make the program suitable for Pantry by upper-bounding
both loops separately, but this would come at a quadratic cost,
specifically MAX1 · LIMIT unrolled iterations (where LIMIT is
the maximum possible value that get_limit can return).

An alternative transformation is shown in Figure 6b. The
compiler creates one outer loop that implements a state ma-
chine; the state is which loop or block the program is in. In more
detail,when state transitions from 0 to 1 in the flattened code,
this corresponds in the original code to onset of the inner loop;
similarly, the transition from 1 to 2 corresponds to the inner
loop’s exit. If j reaches the original outer loop’s bound before
dummy reaches MAXITERS (for example, because of data de-
pendent logic in <BODY 2>), state becomes 3, which causes
implicit self-transitions for the remainder of execution, corre-
sponding to termination of the original outer loop.

Note that the MAXITERS bound on dummy cannot be automat-
ically determined for general data dependent code. The pro-
grammer supplies this bound when annotating the loop (§4.1).

Transformations for while and do are similar to the example
just given. All of these are inspired by similar, but not identical,
transformations in the context of parallelizing compilers [42,
48, 50, 65, 79] (see Section 6).

break and continue. Figure 7 depicts Buffet’s handling of
break. The flattened code achieves the desired control flow as
follows: (1) the break statement is replaced by an assignment

while j < MAX1:
<BODY 1>
// data dependent bound
limit = get_limit(j)
for i in [0, limit):

// data dependent break
if condition(i, j):

break
<BODY 2>

<BODY 3>

(a) Original.

state = dummy = 0
while dummy < MAXITERS:

if state == 0:
if j < MAX1:

<BODY 1>
limit = get_limit(j)
i = 0
state = 1

else:
state = 3

if state == 1:
if i < limit:

if condition(i, j):
state = 2

else:
<BODY 2>
i++

else:
state = 2

if state == 2:
<BODY 3>
state = 0

dummy++

(b) Flattened.

FIGURE 7—Flattening a loop containing break statements. The flat-
tened pseudocode emulates the control flow of break.

updating state; and (2) <BODY 2> is if guarded such that it
is not executed after a break.

Similarly, for a continue before <BODY 2>: (1) the
continue statement is replaced by an assignment increment-
ing the inner loop counter; and (2) <BODY 2> is if guarded.

Generalizing the transformation. The flattening transforma-
tion for a single nested loop generalizes directly to deeper
nesting and sequential inner loops. In fact, the Buffet compiler
flattens arbitrary loop nests, with break and continue.

The key observation is that each loop comprises one or more
states, with state transitions determined by the loop condition-
als. When the compiler reaches a loop to be flattened, it con-
structs a control flow graph in which the vertices correspond
to segments of code inside which control flow is unconditional.
The edges of this graph correspond to control flow decisions
connecting these code segments; the compiler determines these
decisions by analyzing the loop body and conditionals. For
example, when the compiler encounters a break statement, it
(1) splits the enclosing vertex into two vertices, corresponding
to code before and after the break statement, and (2) adds two
new edges to the graph, one that connects from the pre-break
vertex to the post-break vertex (no break executed), and the
other connecting the pre-break vertex to the vertex containing
the next statement after loop execution ends (break executed).

After the compiler has assembled this control flow graph,
it emits corresponding C code. This code comprises a stati-
cally bounded while loop containing a sequence of states and
transitions as in the examples above. The states are code se-
quences corresponding to the vertices of the control flow graph,
with if guards that test the value of a state variable. Transi-
tions, which correspond to the graph edges, are expressed as
assignments that update the state variable.
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4.3 Discussion

With regard to control flow, the three systems (Pantry, BCTV,
and Buffet) can be seen as points on the same design spectrum,
with different tradeoffs. We first cover their similarities and
then their differences.

All three systems require static bounds on execution length.
Pantry requires the programmer to impose bounds on all loops,
nested or otherwise (§2.2, Step 1); BCTV requires the pro-
grammer to set t to bound the processor’s loop (§2.3); and for
each flattened loop in Buffet, the programmer must provide a
bound (§4.1).

In addition, the three systems handle conditionality in similar
ways. For each if statement in the original computation, Pantry
includes constraints to represent both branches (§2.2, Fig. 1).
In BCTV, the constraint set for each processor step includes
separate constraints for every instruction type (§2.3, Fig. 2).
Buffet has aspects of BCTV and Pantry: the constraint set for
each iteration of a flattened loop includes separate constraints
for every case within the switch. Note that Buffet and BCTV
support data dependent control flow using essentially the same
mechanism: each iteration of a flattened loop and each fetch-
decode-execute step is a state machine transition, where the
choice of the next state is dynamically determined.

The source of these correspondences is the underlying con-
straint formalism, specifically that constraints project time and
conditionality onto space. Indeed, constraints are equivalent to
(Boolean or arithmetic) acyclic circuits, where the flow through
the circuit is analogous to the passage of time.

One distinction between Buffet and BCTV is that the former
transforms sections of the program into a state machine, while
the latter simulates the (finite state) execution of a general-
purpose CPU on which the program runs. Buffet’s approach is
consistent with paying only for what is needed, first, because
Buffet’s compiler tailors the transition function to the loop, and
second, because the Buffet compiler applies the transformation
only as directed by the programmer. Buffet thus pays lower
overhead than BCTV in almost all cases.8

Another apparent distinction between the systems concerns
programmability. BCTV elegantly supports not only all of C (as
noted throughout) but also in principle any high-level program-
ming language. Indeed, this programmability was the motiva-
tion for BCTV’s simulated CPU abstraction [15, §1.1]. Buffet,
by contrast, does not expose a machine interface; hence, it has
no concept of a software-controlled program counter, and thus
does not easily support language features that involve choos-
ing arbitrary control flow at run time. In the context of C, this
means that Buffet does not support function pointers. (Buffet
also lacks goto support, as noted earlier, but this lacuna is not
fundamental.) We discuss programmability further in Section 7.

8In principle, Buffet’s tailored transition function could incur greater overhead
than BCTV’s simulated CPU. However, we believe that this is not a problem
in practice, as such behavior occurs only in degenerate cases (extremely deep
nesting and complex conditionals). Further, all programs can be compiled
with overhead at most equal to BCTV’s: the compiler could determine which
approach is less costly and produce constraints accordingly [76].

5 Implementation and empirical evaluation
This section answers the following questions:
1. How do Pantry and BCTV compare on (a) straight line

computations and (b) random memory access?
2. What is the gain of Buffet’s RAM abstraction (§3)?
3. What is the gain of Buffet’s flattening transformation (§4)?
We base this evaluation on implementations of Buffet, Pantry,
and BCTV, running on several benchmarks.

Our principal focus is on the various front-ends. As noted
earlier (§2.4, Fig. 3), the costs imposed by the front-end appear
in the number of constraints that the back-end works over. To
provide context, we will also report end-to-end costs, although
these depend upon both front-end and back-end performance.

The summary of the comparison is as follows. For straight
line computations, Buffet matches Pantry’s performance; both
outperform BCTV by 2–4 orders of magnitude. For RAM oper-
ations, Buffet improves on BCTV’s performance by 1–2 orders
of magnitude, and on Pantry’s by 2–3 orders of magnitude. For
data dependent looping, Buffet again exceeds BCTV’s perfor-
mance by 1–2 orders of magnitude.

5.1 Implementation

Our Buffet implementation is built on the Pantry codebase [1].
We extended the compiler to provide support for RAM oper-
ations using C syntax. (Pantry’s compiler requires arrays and
pointers to be statically determined, and RAM operations re-
quire explicit annotation [28, §3].)

The Pantry and Buffet compilers operate in two stages. The
first stage transforms programs into an intermediate set of con-
straints and pseudoconstraints, which abstract operations that
require multiple constraints (for example, inequalities). In the
second stage, the compiler expands pseudoconstraints and adds
annotations (§2.2).

Buffet enhances the first stage by adding new pseudocon-
straints corresponding to RAM operations (§3.1), and by opti-
mizing the generation of these pseudocontraints (§3.2). In the
second stage, Buffet adds new annotations for RAM operations.

To support the flattening transformation (§4), Buffet uses
a separate C source-to-source compiler based on Clang [4];
we modify Clang to support the buffet::fsm attribute (§4.1).
The output of this compiler is the input to the compiler de-
scribed just above.

The modifications to the Pantry compiler comprise 1700
lines of Java, 400 lines of Python, and 340 lines of C++. The
source-to-source compiler comprises 1000 lines of C++.

5.2 Baselines and benchmarks

Pantry. Our Pantry evaluation uses the released codebase [1].

BCTV. No source code was available for BCTV’s front-end
or its simulated CPU architecture, TinyRAM [17], so we built
an independent implementation. Our implementation differs
from the original in several ways, described below. However, as
discussed later (§5.3), the two have comparable performance.

First, our instruction set is slightly different from the pub-
lished description [17], with the aim of optimizing the cost of
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computation (Ψ) size type

Matrix multiplication m×m straight line

PAM clustering [75]
m points, d dimensions,
k medoids, ℓ iterations

straight line

Fannkuch benchmark [6] m elements, ℓ iterations straight line

Pointer chasing m dereferences RAM
Merge sort m elements RAM
Boyer-Moore delta1 table

generation [25]
m length pattern,
k length alphabet

RAM

Knuth-Morris-Pratt
string search [51]

m length pattern,
k length string

data dependent

RLE decoding output length m data dependent
CSR sparse matrix–vector

multiplication [42]
m×m matrix,
k nonzero elements data dependent

FIGURE 8—Benchmark applications.

Ccpu (§2.3) while retaining equivalent functionality. In brief, we
borrow the zero register concept from MIPS [59], obviating
several of the TinyRAM architecture’s conditional instructions.
We also shorten immediate operands such that instructions fit in
one rather than two memory words, and update the immediate
semantics of several operations (e.g., SUB) to compensate.

Second, we use a different method to generate the simulated
CPU’s constraint set (Ccpu, Cperm, and Cck-sort). Whereas the
original implementation uses a hand-optimized “circuit gadget”
approach [16, §2.3.3], we implement the CPU logic, permuta-
tion network, and coherence checks (§2.3) in the Pantry subset
of C, and compile this code with the Pantry compiler. To ac-
commodate this, we added support for a new pseudoconstraint,
exo_compute, to the Pantry prover. This primitive instructs
P to execute a program on a simulated CPU and to retain an
execution-ordered transcript, which P then uses (together with
switch settings that it computes) as the satisfying assignment.

Third, to permute memory operation tuples (§2.3, §3.1), our
implementation uses a Beneš network [20], whereas BCTV
uses a Waksman network [13]. The former requires a power-of-
2 sized input; the latter does not.

Finally, during compilation (§2.1, step 1), our software ana-
lyzes the simulated CPU’s assembly code and removes from
Ccpu the logic corresponding to unused instructions. For many
programs, this results in substantially fewer constraints.9

Our BCTV implementation comprises 280 lines of Pantry-C
for the simulated CPU and memory constraints, and 7200 lines
of Java for the CPU’s assembler, disassembler, and simulator.

BCGTV [16] report on a compiler from standard C to the
simulated CPU’s assembly (Ψ → xΨ, §2.3). We did not reim-
plement this; instead, we programmed the benchmarks, de-
scribed below, directly in assembly.

Benchmarks. Figure 8 lists our benchmarks. We implemented
each for native execution, Pantry, BCTV, and Buffet.

Native benchmarks are written in C or C++, compiled with
Intel’s C++ compiler v14 with maximum optimizations (-O3).

9This optimization interferes with self-modifying code if the program generates
instructions that do not otherwise appear in the program text.

The Pantry benchmarks are written in Pantry-C. The straight
line code is identical to the native benchmarks. For memory
benchmarks, the size of verifiable RAM is the minimum re-
quired for each computation, based on the input size.

The BCTV benchmark implementations are written for a
simulated CPU comprising 32 registers of 32 bits. Each bench-
mark is written in heavily optimized, hand coded assembly. In
producing the constraint set for each benchmark, we parameter-
ize based on the exact values required for t, |x|, and |xΨ| (§2.3);
our hand optimizations mean that t and |xΨ| are small.

The Buffet benchmark implementations are written in the
Buffet subset of C. For the straight line benchmarks we use the
native benchmark code, as in Pantry. For the RAM and data
dependent benchmarks, Buffet uses the code from the native
implementations, except that in the data dependent benchmarks,
we inserted the buffet::fsm attribute (§4.1, §5.1).

5.3 Setup

Configuration. We standardize the back-end protocol to be
Pinocchio [62], as described earlier (§2.1). We use the libsnark
implementation [3], which is optimized for speed, and includes
a minor protocol modification that improves V’s costs [19]. We
run in public verifier mode at 128-bit equivalent security [19].

Our testbed is a cluster of machines, each of which runs
Linux on a 16-core Intel Xeon E5-2680 with 32 GB RAM; the
nodes are connected by a 56 Gb/s InfiniBand network.

Measurement procedure. For each system and benchmark,
we execute the computation ten times, averaging the result.
The Pantry and Buffet compilers report |C|, the number of con-
straints. The Pantry compiler also reports |C| for the simulated
CPU’s constraint set in each BCTV benchmark. V and P each
track resource costs with getrusage and PAPI [2].

Calibrating baselines. Our BCTV implementation (§5.2) re-
sults in slightly larger values of |C| than are reported in [19,
§5.1] for the same execution lengths. We have carefully an-
alyzed this discrepancy. It results, first, from the fact that
our implementation and the original apply different optimiza-
tions (§5.2). Second, we experiment with a simulated CPU that
has 32 registers of 32 bits each; by contrast, the relevant results
in [19] are for a CPU with 16 such registers. We use the “more
powerful” CPU because it tends to reduce t and hence BCTV’s
costs. These choices can increase ccpu by 15% in the worst
case (note from Figure 5 that reducing t and increasing ccpu are
opposing effects). At the very worst, then, we are overstating
BCTV’s costs by 15%—but this difference is swamped by the
multiple orders of magnitude that separate BCTV and Buffet.

For the data dependent benchmarks (Fig. 8), we measure Buf-
fet not against Pantry but against a related system, BuffetStatic;
BuffetStatic requires static loop bounds, like Pantry, but uses
Buffet’s memory abstraction. The purpose of BuffetStatic is to
isolate the effects of Section 4, versus Pantry.

5.4 Method and results

We wish to do an apples-to-apples comparison of the three
systems: an examination of their running times on the same
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benchmark system size |C| (millions) V setup P exec

Matrix mult. BCTV m=7 6.67 21.0 min 8.8 min
Pantry m=215 9.94 29.3 min 17.0 min

native: 4610 µs Buffet m=215 9.94 29.3 min 17.0 min
PAM BCTV † 10.2 30.7 min 12.6 min

Pantry ‡ 10 29.2 min 13.8 min
native: 2140 µs Buffet ‡ 10 29.2 min 13.8 min
Fannkuch BCTV m=7, l=20 9.9 30.5 min 12.1 min

Pantry m=13, l=850 10 30.5 min 13.7 min
native: 96.1 µs Buffet m=13, l=850 10 30.5 min 13.7 min
Pointer chase Pantry m=32 2.41 10.5 min 3.5 min

BCTV m=1664 9.98 31.2 min 12.2 min
native: 40.2 µs Buffet m=16384 7.54 21.7 min 9.4 min
Merge sort Pantry m=8 2.44 10.8 min 3.5 min

BCTV m=32 5.37 16.8 min 6.8 min
native: 25.3 µs Buffet m=512 7.9 22.2 min 9.2 min
Boyer-Moore Pantry m=16, k=32 3.13 13.8 min 4.3 min

BCTV m=32, k=448 10.1 31.0 min 12.4 min
native: 7.64 µs Buffet m=512, k=16128 7.55 21.7 min 9.3 min
K-M-P search BCTV m=16, k=160 9.71 30.2 min 11.9 min

BuffetStatic m=36, k=432 7.77 22.2 min 9.1 min
native: 7.7 µs Buffet m=256, k=2900 8.56 24.7 min 10.3 min
RLE decode BuffetStatic m=128 8.75 24.8 min 10.3 min

BCTV m=432 10 31.0 min 12.3 min
native: 2.35 µs Buffet m=5450 8.37 23.3 min 9.7 min
Sparse mat–vec BuffetStatic m=125, k=250 10.1 28.0 min 12.2 min

BCTV m=150, k=300 10.5 32.8 min 14.2 min
native: 4.19 µs Buffet m=1150, k=2300 8.03 23.0 min 9.5 min

†: m=4, d=4, k=2, l=5 ‡: m=20, d=128, k=2, l=30

FIGURE 9—Scaling limits of BCTV, Pantry, and Buffet: the problem
sizes (in terms of input size and resulting number of constraints, |C|)
for each benchmark that each system is able to handle. V’s setup time
and P’s execution time (depicted) depend largely on C (§2.4). V’s
verification time is not depicted because it is nearly the same for all
systems, independent of |C| (Figure 3), and not the principal protocol
cost (§1, §2). Native execution times correspond to the largest input
size. The first three benchmarks are straight line computations; the
middle three are RAM benchmarks; the final three use data dependent
control flow. Computations are limited (by available testbed RAM)
to about ten million constraints or less. This corresponds to different
computation sizes per system because of the different efficiency with
which each system represents the execution of Ψ in constraints.

computations, on the same input sizes. However, the maximum
input size for which each system is able to execute a given
benchmark differs. Thus, our method is as follows. First, we
obtain measurements of each system by running it on the maxi-
mum input size that it can handle, in our testbed. These mea-
surements both give us ground truth and indicate the qualitative
performance of the systems. Second, we use these measure-
ments to extrapolate the performance of the baseline systems to
the input size at which Buffet executes the benchmark. Third,
we perform a three-way comparison of the systems, using this
extrapolated performance.

Ground truth and extrapolation

Figure 9 details our measurements. The results demonstrate,
first, that all computations are limited to about ten million con-
straints or less in all of the systems (using our experimental

configuration). The limiting factor is testbed memory. Specifi-
cally, V’s setup and P’s “argue” step (§2.1, step 3) use multi-
exponentiation, and P also does polynomial arithmetic based
on the fast Fourier transform; these operations require mem-
ory proportional to |C| [19, 32, 40, 62, 70]. Second, for each
system, this constraint budget corresponds to very different
computation sizes. The reason is that the systems vary widely
in their efficiency at representing computations in constraints.

To extrapolate to larger input sizes, we do the following
for BCTV: (1) compute the per-cycle cost, |Cmeasured|/tmeasured;
(2) determine the number of cycles needed to execute the larger
computation; and (3) account for the logarithmic increase in
the per-cycle cost due to the growth of the permutation network.
This yields the per-cycle constraint cost at the larger compu-
tation size and thus |Cextrapolated|. We also check the measured
and computed per-cycle constraint costs against the published
BCTV figures [19, §5.1] to ensure that our model and imple-
mentation accurately represent BCTV’s performance. We apply
analogous procedures for the other baseline systems. Further-
more, we verify our extrapolation model for each baseline with
a series of measurements at different computation sizes.

Three-way comparison

We report P’s execution time normalized to Buffet, as this
quantity captures the front-end efficiency of each system; the
reason is that V’s setup costs are roughly proportional to P’s
execution time (≈ 3×, per Figs. 3 and 9), and both end-to-end
figures are driven by |C|. Figure 10 summarizes the results.

Pantry and BCTV. In comparing Pantry and BCTV, we con-
sider the straight line and RAM benchmarks of Figure 8. Be-
cause Pantry turns arithmetic operations into at most tens of
constraints (§2.2), we expect excellent performance on straight
line computations; conversely, we expect these computations
to be inefficient under BCTV because every operation pays
ccpu (§3.1, Fig. 5) to represent the logic of a CPU cycle (§2.3,
Fig. 2). For computations involving random memory access,
however, BCTV should outperform Pantry because of the lat-
ter’s expensive hashing (§2.2).

The predicted performance is evident in Figure 10: on
straight line computations, Pantry outperforms BCTV by 2–
4 orders of magnitude, while BCTV is consistently 1–2 orders
of magnitude more efficient for random memory access.

RAM performance in Buffet. As summarized in Figure 5,
we expect Buffet to retain Pantry’s performance on straight
line benchmarks, and substantially outperform both systems for
RAM operations. Figure 10 confirms this hypothesis: Buffet
and Pantry show identical performance on straight line pro-
grams. Meanwhile, Buffet’s performance on RAM operations
is 1–2 orders of magnitude better than BCTV’s, which is itself
1–2 orders of magnitude better than Pantry’s.

Data dependent control flow in Buffet. The final set of
benchmarks evaluates the performance of BCTV, BuffetStatic
(§5.3), and Buffet on data dependent computations. We expect
that Buffet will perform better than BCTV, owing to its lower
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FIGURE 10—Comparative performance evaluation: P’s execution time, normalized to Buffet. V’s setup time is roughly proportional, and both
track |C| (§2.4, Fig. 3). For each benchmark, we extrapolate the performance of BCTV, Pantry, and/or BuffetStatic on the input size for which
Buffet completed the computation (§5.4). All systems run on the same back-end (§2.1, §5.3); thus, the ratio of end-to-end P cost is a measure of
the relative front-end performance of each system.

overhead for individual arithmetic, logical, and RAM opera-
tions. Similarly, we expect that while Buffet and BuffetStatic
have identical per-operation performance, BuffetStatic will
execute many more operations (§4.2).

In Figure 10, it is evident that Buffet exceeds the performance
of the other systems by 1–3 orders of magnitude, consistent
with expectations. Importantly, the large performance gap be-
tween BuffetStatic and Buffet on all benchmarks demonstrates
the impact of Buffet’s flattening transformation in enabling
efficient data dependent control flow in the Pantry model.

5.5 Results in context

The foregoing discussion compares front-end performance; we
now turn briefly to the more general question of applicability.
As discussed in Section 2.4, there are two scenarios in which
any of these systems can be considered applicable: (1) when V
can save work by verifiable outsourcing, relative to executing
locally; and (2) when the system is used for computations that
V cannot perform itself.

An important concept for the first scenario is V’s cross-over
point: the number of instances that V must outsource before the
amortized setup cost drops below the cost of local execution [28,
§8.2; 70, §4]. For example, if V can save 60 ms per instance,
it can amortize a 20 minute setup after outsourcing 20,000
instances. Note that V can only break even when local execution
takes more than 6 ms, since this is the minimum cost to check
P (§2.4, Fig. 3). (None of our benchmarks meets this criterion,
though matrix multiplication comes close (Fig. 9).)

We briefly discuss the second scenario in Section 2.4.

6 Related work
As described in the Introduction, there has been an explosion of
work in the last few years on implemented systems for general-
purpose verifiable computation based on probabilistic proof
systems (PCPs, etc.) and sophisticated cryptography. The liter-
ature has grown to the point that we cannot do a complete sum-
mary here. However, there is a survey that covers the area [78],
including works [11, 44, 73, 74, 76] that are not specifically

relevant here, given Buffet’s focus on general-purpose compu-
tation with potentially private server inputs.

Buffet builds on Pantry [28] and BCTV [19]. The technical
details of these systems were described in Section 2; here, we
cover their significance and debts.

Pantry builds on Zaatar [70] (an improvement on [71, 72];
this line of work refines the PCP-based interactive argument
protocol of IKO [46]) and on Pinocchio [62] (an implementa-
tion of GGPR [40], which itself is described in Section 2.1).
Pantry’s central contribution is extending verifiable computa-
tion to allow the programmer to work with state. Its core ab-
straction is a verifiable block store, which enables applications
under certain usage regimes (MapReduce, remote databases,
and private server state). Using this block store for RAM, how-
ever, is prohibitively expensive (as experiments reveal).

Our other foundation, BCTV [19], is the most recent in a line
of work [15, 16] that supports a general programming interface,
including RAM and control flow constructs. The central con-
tributions here are the decision to represent a general-purpose
CPU in constraints, and the permutation network approach to
verifying RAM. BCTV comprises a front-end, described in Sec-
tion 2.3, and a highly optimized implementation of Pinocchio’s
protocol, described in Section 5.3.

Several systems have applied and built on these foundations.
For example, Trueset handles set operations efficiently, by re-
fining GGPR and Pinocchio [52]. Like Buffet, Trueset uses
the front-end strategy of line-by-line compilation; it could be
profitably integrated with Buffet. In a similar vein, Backes
et al. [12] extend Pinocchio to efficiently support operations
where the prover receives the input from a trusted third party
and the verifier learns only the output. As another example,
ZØ [37] extends C#; ZØ uses Pinocchio or ZQL [36], with the
selection controlled by sophisticated cost models, to compile
code regions that invoke zero-knowledge features. As a final ex-
ample, some works [14, 34] use the same back-end that Buffet
does and, in lieu of a front-end, manually write constraints that
work in the execution model of Pantry, Zaatar, and Pinocchio;
the goal is to extend the Bitcoin protocol to provide anonymity.

Recent work [18] has combined BCTV with theoretical foun-
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dations for the back-end [22] that make the verifier’s setup work
(and the prover’s memory requirement) independent of the com-
putation length. Although this is an exciting development, so
far the gains are mostly theoretical. For instance, the verifier
must still do expensive setup work (proportional to the cost of
representing the verifier’s checking step in constraints), and
the prover’s computational costs are many orders of magnitude
more than in Pantry, BCTV, and Buffet.

Section 4 adapts the idea of loop flattening, which has been
described in other contexts [42, 48, 50, 65]. Unlike Buffet,
none of these systems handle control statements (break and
continue); also, Buffet supports irregular loop nests whereas
some of the prior techniques handle only regular loop nests.
Macah [79] uses loop flattening in the context of a program-
ming language and compiler for FPGAs. Like Buffet, Macah
appears to be able to handle break and continue; however,
few details are given, so the precise relationship is unclear.

7 Summary, discussion, and future work
The experimental results (§5.4) demonstrate that Buffet
achieves its goals. RAM operations are dramatically less ex-
pensive than in BCTV and Pantry, and they incur no overhead
unless used. Data dependent control flow is supported and is
again substantially less expensive than in BCTV.

Nevertheless, Buffet has some limitations as compared to
BCTV. First, Buffet’s circuits are not universal, in the sense
that BCTV uses the term (recall that BCTV’s constraints work
for all computations that satisfy a bound on execution time). In
practice, however, BCTV would need thousands of constraint
sets. This is because BCTV’s constraints have three parame-
ters (t, |xΨ|, |x|) [19]. Supposing that we construct constraints
for exponentially increasing values of each, we would require
roughly n=(log2 M)3 constraint sets, where M upper-bounds
the parameters; for M = 32000 [19], n ≈ 3000.

Moreover, we have assumed throughout that Buffet and
BCTV have similar per-instance verification costs (§1, §2.1,
§2.4, §5). In reality, BCTV’s are strictly higher: xΨ is an input
to C, and thus contributes to V’s per-instance cost (§2.4, Fig. 3).
The verifier can amortize this additional cost over multiple runs
of Ψ—but this induces the same amortization regime as Buffet,
Pantry, and Pinocchio (albeit with less to amortize for each Ψ).

A second comparative limitation is expressiveness. In princi-
ple, TinyRAM supports any programming language that com-
piles to machine instructions (§4.3). However, Buffet’s disad-
vantage here is not clear cut: although Buffet’s approach has
implications for the programming languages that it can support,
it does not necessarily sacrifice support for particular program
constructs. In more detail, the absence of a machine abstraction
means that Buffet cannot support function pointers in C (§4.3).
More generally, Buffet cannot efficiently compile code that con-
trols an abstract machine’s program counter at runtime, such
as object-oriented constructs in C++ or Java, which involve
indirection through a dispatch table. On the other hand, there
are programming languages in which polymorphism and other
language features do not require direct manipulation of the

program counter. For example, polymorphism in Haskell [64]
and Rust [5] works statically [77]; and some Standard ML [58]
compilers transform higher-order function calls (a powerful
construct) into a form with no indirect dispatching [31, 35, 66].

Based on this discussion, we conjecture that Buffet’s com-
piler can map a rich set of higher-level programming language
features to economical representations in Buffet’s execution
model. This conjecture implies that higher-level programma-
bility does not require a machine abstraction, given a suitable
choice of programming language. In fact, there is a broader
research question here: if a computation is to be compiled to
constraints (or non-deterministic circuits), what is the right
combination of programming language and execution model?
We leave these questions to the future.

For the present, there are two vantages from which one can
summarize Buffet. One view is that Buffet has the same limita-
tion of all systems in this research area (§6): overhead for the
prover is simply too high to be useful for general applications.
Thus, applicability is restricted to situations when the costs
of the protocol are acceptable for one reason or another, as
discussed briefly in Section 5.5 and explored at length else-
where [28] (other examples include [14, 34, 37]). The other
view is that verifiable computation as an area has tremendous
potential and that—within the context of this area—Buffet
strikes a sensible balance between cost and programmability.
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