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Abstract. Monadic predicates play a prominent role in many decid-
able cases, including decision procedures for symbolic automata. We are
here interested in discovering whether a formula can be rewritten into
a Boolean combination of monadic predicates. Our setting is quantifier-
free formulas over a decidable background theory, such as arithmetic
and we here develop a semi-decision procedure for extracting a monadic
decomposition of a formula when it exists.

1 Introduction

Classical decidability results of fragments of logic [7] are based on careful sys-
tematic study of restricted cases either by limiting allowed symbols of the lan-
guage, limiting the syntax of the formulas, fixing the background theory, or
by using combinations of such restrictions. Many decidable classes of problems,
such as monadic first-order logic or the Löwenheim class [29], the Löb-Gurevich
class [28], monadic second-order logic with one successor (S1S) [8], and monadic
second-order logic with two successors (S2S) [35] impose at some level restric-
tions to monadic or unary predicates to achieve decidability.

Here we propose and study an orthogonal problem of whether and how we can
transform a formula that uses multiple free variables into a simpler equivalent
formula, but where the formula is not a priori syntactically or semantically
restricted to any fixed fragment of logic. Simpler in this context means that we
have eliminated all theory specific dependencies between the variables and have
transformed the formula into an equivalent Boolean combination of predicates
that are “essentially” unary. We call the problem monadic decomposition:

Given an effective representation of a nonempty binary relation R, de-
cide if R equals a finite union

⋃

0≤i<k Ri of k Cartesian products Ri =
Ai×Bi, and if so, construct such Ri effectively.

The fundamental assumption that we are making here is:

We have a Boolean closed class of formulas Ψ and a solver for Ψ .

More precisely, we assume a background structure U with an r.e. (recursively
enumerable) universe U (so all elements a ∈ U can be named; we write a also
for a term denoting a) and an r.e. set Ψ of formulas such that:



1. If a ∈ U , x is a variable and ϕ ∈ Ψ then ϕ[x/a] ∈ Ψ ,
2. If ψ, ϕ ∈ Ψ then ψ ∧ ϕ, ψ ∨ ϕ,¬ϕ ∈ Ψ .
3. Satisfiability of ϕ(x̄) ∈ Ψ (i.e., U |= ∃x̄ϕ(x̄)) is decidable by the solver.

When ϕ(x̄) is satisfiable it follows that we can also effectively generate a witness
ā such that ϕ(ā) holds, because U is r.e.. Effectiveness means that the solver
uses a finite number of steps for deciding satisfiability and for finding a witness.
An effective representation of a relation is given by a formula from Ψ . The
above formulation is very natural from the standpoint of modern logical inference
engines, because Ψ embodies the basic properties supported by any state-of-the-
art satisfiability modulo theories (SMT) solver [12]. One observation that we can
immediately make about Ψ is that it is (without loss of generality) closed under
formation of tuples, i.e., we can always group variables together and view the
group as a single variable. We can also note certain properties that Ψ cannot
express. For example, Ψ cannot represent formulas ϕL(x) that are at least as
expressive as deterministic context free languages L. Otherwise construct ϕL

such that w ∈ L iff ϕL(w) holds; then ϕL(x)∧ϕL′(x) is satisfiable if and only if
L ∩ L′ 6= ∅, but that is an undecidable problem [22].

A formula ϕ(x, y) ∈ Ψ denotes the relationR = {(a, b) ∈ U×U | U |= ϕ(a, b)}.
The main two questions that we are interested in are: 1) deciding if R is monadic;
2) constructing a monadic decomposition of R if R is monadic. The key insight
is that we can define the following equivalence relation over A = {a | ∃bR(a, b)},

x ∼ x′
def

= ∀y y′((R(x, y) ∧R(x′, y′)) ⇒ (R(x′, y) ∧R(x, y′)))

Moreover, we can decide if a ∼ a′ because a 6∼ a′ has the equivalent form
∃y y′ ψ(y, y′) for some ψ(y, y′) ∈ Ψ . This gives us a systematic way of how to
subdivide A into equivalence classes A∼, namely by using the solver for Ψ to
enumerate enough witnesses that cover A∼. The main technical lemma is that
there are finitely many such witnesses if and only if R is monadic. The question
of deciding if R is monadic is not completely settled here. We show that the
problem is decidable for integer linear arithmetic and real algebraic polynomial
arithmetic but the general case is an open problem.

As the main strength of this approach we see its simplicity combined with
its generality. For monadic decomposition to work, there are no assumptions on
Ψ other than the ones listed above. The technique works in all theories where
a solver is available, such as linear arithmetic, bit-vectors, arrays, uninterpreted
function symbols, algebraic data types, algebraic reals, as well as combinations
thereof. The technique provides a general simplification principle, tantamount
to a semantic normal form. It can be used in many different contexts where
it is useful to simplify formulas by eliminating variable dependencies, such as
program analysis, optimization, theorem proving, and compiler optimization. It
also provides a new way how to investigate new decidability results.

Rest of the paper: § 2 describes the motivation. In § 3 and § 4 the problem
is defined formally, we prove the main decomposition Theorem 1, correctness of
the main algorithm, Theorem 2, and we prove some decidable cases, Theorems 3
and 4. § 5 provides some evaluation. § 6 is related work. § 7 concludes.



⊥, 0 q

λx.(0 ≤ x ≤ 7F16)/[x]

λx.(7F16 < x ≤ 7FF16)/[6 · x〈10,6〉, 2 · x〈5,0〉]

λx.(7FF16 < x ≤ FFFF16 ∧ ¬Surrogate(x))/[14 · x〈15,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

λx.(FFFF16 < x ≤ 10FFFF16)/[30 · x〈20,18〉, 2 · x〈17,12〉, 2 · x〈11,6〉, 2 · x〈5,0〉]

Fig. 1. SFT EncUTF8: UTF8 encoder for valid Unicode code points; x〈h,l〉 extracts bits

from h to l from x, e.g., 8〈3,2〉 = 2; Surrogate
def

= λx.D80016 ≤ x ≤ DFFF16, surrogates
are not valid code points; x · y denotes bit-append, e.g., 6 · x〈10,6〉 = C016 + x〈10,6〉.

2 Motivation

We start by describing the concrete application that originally lead us to inves-
tigate monadic decomposition. We then list other potential applications.

Symbolic Automata and Transducers. In the context of web security,
it is important to understand and analyze various properties of sanitizers [38].
Sanitizers are special purpose string encoders that escape or remove potentially
dangerous strings in order to prevent cross site scripting (XSS) attacks. Bek is
a programming language that is specifically designed for this purpose [20] and
builds on the theory and algorithms of Symbolic Finite Transducers or SFTs [44].
Monadic decomposition is a useful technique for enabling many analyses involv-
ing SFTs. One such case is to decide if the range of an SFT is regular and, if
so, to construct the corresponding symbolic automaton or SFA. Unlike in the
classical case [32, 45], a range automaton of an SFT is not always regular but
accepted by an Extended SFA or ESFA (SFA with bounded lookahead over the
input) and intersection emptiness of ESFAs is undecidable [9]. Transforming an
ESFA into and SFA, when possible, requires monadic decomposition.

Figure 1 illustrates an SFT EncUTF8 that performs UTF8 encoding that
is also used by some sanitizers [1] as the first encoding step. The input to
EncUTF8 is a sequence of Unicode code points, that are integers ranging from 0
to 10FFFF16, and the output is a sequence of bytes. Each of the four transitions
of EncUTF8 corresponds to the number of bytes needed in the encoding of the
code point.3 For example EncUTF8([1F60A16]) = [F016, 9F16, 9816, 8A16], where
1F60A16 is the code point of the , emoticon [40].

For example, the second rule of EncUTF8 becomes the following transition
of the range ESFA and has lookahead 2, i.e., it reads 2 bytes at a time

q
λ(y,z).∃x(7F16<x≤7FF16∧y=(6·x〈10,6〉)∧z=(2·x〈5,0〉))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

The existential quantifier over x can be eliminated automatically by using any
known quantifier elimination technique for integer linear arithmetic [31]. For
ease of presentation we use the fact that x = y〈4,0〉 · z〈5,0〉. This gives us the

3 The corresponding encoder in [10, Figure 3] uses 5 states and 11 transitions because
there the input is assumed to be UTF16 encoded.
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Fig. 2. Minimal symbolic automaton that recognizes valid UTF8 encoded strings.

equivalent transition q
λ(y,z).7F16<(y〈4,0〉·z〈5,0〉)≤7FF16∧y=6·y〈4,0〉∧z=2·z〈5,0〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q. Next,

monadic decomposition of the guard yields the following equivalent transition,

q
λ(y,z).y〈5,1〉 6=0∧y〈5,5〉=0∧y=6·y〈4,0〉∧z=2·z〈5,0〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q that, after simplification, is equiv-

alent to the following two transition path q
λy.C216≤y≤DF16
−−−−−−−−−−→ q3

λz.8016≤z≤BF16−−−−−−−−−−→ q
where q3 is a new state. The ESFA rules with lookahead 3 and 4 are a bit more
challenging and yield monadic decompositions with higher widths. After fur-
ther minimization [11] of the resulting SFA we obtain the SFA in Figure 2 that
accepts the range of EncUTF8.

Program analysis. Monadic decomposition can be used to break down de-
pendencies between program variables and thus simplify various symbolic tech-
niques that are used in the context of modern program analysis [30]. The use of
an SMT solver as a black box is particularly well suited in this context because
it allows seamless combination of different theories for different data types.

Program synthesis. The range SFA construction of EncUTF8 illustrates
another potential usage. We can automatically invert EncUTF8 into a UTF8
decoder DecUTF8 in a way that guarantees the correctness criterion that for
all valid input sequences s, DecUTF8(EncUTF8(s)) = s, by using the SFA
in Figure 2 as the control-flow graph of the corresponding transducer and by
inverting the individual rules of the encoder.

Linear optimization. A new SMT based optimization algorithm SYMBA
is described in [27] that uses linear real arithmetic objective functions and an
SMT solver as a black box. Monadic decomposition is a potential simplification
technique of objective functions in this context [4].

Theorem proving. In the context of automated first-order resolution based
theorem proving modulo theories, Skolemization may benefit from monadic de-
composition by enabling simpler Skolem functions [26]. The use of SMT solvers in
this context comes into play when the classical resolution technique is extended
to work modulo background theories [24, 25].

Compiler technology. Monadic decomposition can be used to simplify ex-
pressions and thus enable new (or enhance existing) automatic compiler opti-
mization techniques [3]. Moreover, it may be used for code parallelization.



3 Monadic predicates

We assume a decidable background U as described above. The Boolean type
is bool with truth values {⊤,⊥}. In our expressions, all variables are typed
and all terms and formulas are well-typed. The subuniverse of elements of type
τ is denoted by Uτ . We use λ-expressions to define anonymous functions and
relations, given ϕ(x̄) ∈ Ψ where all the free variables of ϕ(x̄) are among x̄ =
(x1, . . . , xn), we write λx̄.ϕ(x̄) or simply ϕ, when the arity n and types of xi are
clear from the context, for the corresponding predicate and [[ϕ]] for the n-ary
relation defined by ϕ.

LetR be an n-ary relation for some n ≥ 2 and of type
∏n

i=1 τi.
4 R is Cartesian

if there exist sets Ui ⊆ Uτi , for 1 ≤ i ≤ n, such that R =
∏n

i=1 Ui. R is monadic

if there exists finite k > 0 and Cartesian Ri, for 1 ≤ i ≤ k, s.t. R =
⋃k

i=1Ri;
{Ri}ki=1 is called a monadic decomposition of R of width k. R is k-monadic if
R has a monadic decomposition of width k. The (monadic) width of R is the
smallest k such that R is k-monadic. Note that R has width 1 iff it is Cartesian.

Example 1. Let ϕ be the predicate λ(x, y).(x + (y mod 2)) > 5, where x and
y have integer type. Then R = [[ϕ]] is the corresponding binary relation over
integers. R is not Cartesian but it is 2-monadic because R = ([[λx.x > 5]] ×
[[λy.⊤]]) ∪ ([[λx.x > 4]]× [[λy.odd(y)]]). ⊠

We lift the notions to predicates. A unary formula is a formula with at most
one free variable. An explicitly monadic formula is some Boolean combination
of unary formulas. Observe that the difference between monadic and explicitly
monadic, is that the first notion is semantic (depends on U) while the second is
syntactic (independent of U).

4 Monadic decomposition

We are interested in the following two problems: 1) Deciding if a predicate ϕ
is monadic; 2) Given a monadic predicate ϕ, effectively constructing a monadic
decomposition of ϕ. We restrict our attention to binary predicates. The decom-
position can be reduced recursively to the binary case and applied to n-ary
predicates with n > 2, such as the range predicates arising from the third and
fourth rules of EncUTF8 in Figure 1.

4.1 Deciding if a predicate is monadic

Consider any term f(x) in the background theory denoting a function over inte-
gers. Let ϕf (x, y) be the formula f(x)

.
= y.5 Then ϕf (x, y) is monadic iff there

exists k such that ϕf (x, y) is equivalent to
∨

i<k αi(x) ∧ βi(y). Since there can
only be one y for a given x (because f is a function) it follows that |[[βi]]| = 1 for

4 Type
∏

2

i=1
τi is also denoted τ1 × τ2.

5 We assume that formal equality
.
= is allowed.
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AND; a) Geometrical view of R3: (x, y) is marked iff R3(x, y) holds; if two Y -cuts Ym

and Yn are identical then m ∼ n, e.g., 1 ∼ 9; if two X-cuts Xm and Xn are identical
then m ∽ n, e.g., 22 ∽ 25; b) Venn Diagram view of R3: R3 =

⋃
3

i=1
Ai ×Bi.

all i < k. So ϕf is monadic iff f is bounded (finite-valued). While boundedness
of f is an undecidable problem in general by using Rice’s Theorem [37], we can-
not use this argument because we cannot even encode context free languages in
Ψ , so much less arbitrary recursive languages. We show in Section 4.4 that the
question is decidable for some cases, but the general case is an open problem.

4.2 Decomposition procedure

In the following, we provide a brute force semidecision procedure for monadic
decomposition. While the procedure is complete for monadic predicates, in the
nonmonadic case it will not terminate. The input is a binary predicate ϕ ∈ Ψ .
Let R = [[ϕ]] ⊆ A×B, where we assume that R 6= ∅ and

A
def

= {a | ∃bR(a, b)}, B
def

= {b | ∃aR(a, b)}.

Define the relations:

x ∼ x′
def

= ∀y y′((ϕ(x, y) ∧ ϕ(x′, y′)) ⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

y ∽ y′
def

= ∀xx′((ϕ(x, y) ∧ ϕ(x′, y′)) ⇒ (ϕ(x′, y) ∧ ϕ(x, y′)))

For a ∈ A, define the Y-cut of R by a as the set Ya = {b | R(a, b)}. Similarly,
for b ∈ B, define the X-cut of R by b as the set Xb = {a | R(a, b)}. The idea of
cuts can be illustrated geometrically. See Figure 3(a). The following properties
are used below.

Lemma 1. Let R and A be given as above. 1) For all a, a′ ∈ A: a ∼ a′ if and
only if Ya = Ya′ . 2) The relation ∼ is an equivalence relation over A.

Lemma 1 holds obviously also for ∽ and B. We let [a]∼ (resp. [b]
∽
) denote the

equivalence class {e ∈ A | e ∼ a} (resp. {e ∈ B | e ∽ b}). The following is the
main lemma.



Lemma 2. R is monadic ⇔ the number of ∼-equivalence classes is finite.

Proof. ⇒: Assume R has a monadic decomposition {Ai × Bi}i<n. Let Ãi =
⋃

a∈Ai
[a]∼. We show first that {Ãi × Bi}i<n is also a monadic decomposition

of R. Suppose (a, b) ∈ Ãi × Bi. So there is ai ∈ Ai such that a ∼ ai. Since
(ai, b) ∈ Ai×Bi it follows that (ai, b) ∈ R, so b ∈ Yai

. But Yai
= Ya by Lemma 1

because ai ∼ a, so b ∈ Ya, i.e., (a, b) ∈ R. The direction R ⊆
⋃

i<n Ãi × Bi is

immediate because R ⊆
⋃

i<nAi ×Bi and Ai ⊆ Ãi.

Next, we normalize {Ãi×Bi}i<n into a form {A′
i×B

′
i}i<m where each A′

i ends
up being exactly one ∼-equivalence class of A. For all I ⊆ {i | 0 ≤ i < n} letMI

be the minterm (
⋂

i∈I Ãi)\ (
⋃

j /∈I Ãj). By using standard Boolean laws, each Ãi

is a finite union of disjoint nonempty minterms. Apply the following equivalence
preserving transformations to the monadic decomposition {Ãi×Bi}i<n until no
more transformations can be made:

– replace (MI ∪M)×Bi by (MI ×Bi) ∪ (M ×Bi),
– replace (MI ×Bi) ∪ (MI ×Bj) by MI × (Bi ∪Bj).

Let the resulting decomposition be {A′
i×B

′
i}i<m, where, for all a ∈ A and b ∈ B,

we have (a, b) ∈ R iff there exists exactly one i such that (a, b) ∈ A′
i × B′

i. In
other words, for all a ∈ A, Ya is the set B′

i such that a ∈ A′
i. It follows that

a ∼ a′ for all a, a′ ∈ A′
i.

Thus, the number of ∼-equivalence classes is bounded by 2n−1 where n is the
monadic width of R, because the number m of different (nonempty) minterms
MI is, due to the powerset construction, at most 2n − 1.

⇐: Assume that the number of ∼-equivalence classes is finite. Let A =
⋃n−1

i=0 Ai where Ai = [ai]∼. Let Bi = Yai
for 0 ≤ i < n. Thus if (a, b) ∈ Ai ×Bi

then a ∼ ai and b ∈ Yai
, i.e., Ya = Yai

and b ∈ Yai
. So b ∈ Ya, i.e., (a, b) ∈ R.

Conversely, if (a, b) ∈ R then b ∈ Ya. But Ya = Yai
= Bi, for some i < n, where

a ∈ Ai and b ∈ Bi. Thus, {Ai ×Bi}i<n is a monadic decomposition of R. ⊠

Next, we provide a simple iterative procedure to compute a witness set WA that
covers A∼. We use the negated form of ∼:

x 6∼ x′ ⇔ ∃y y′(ϕ(x, y) ∧ ϕ(x′, y′) ∧ (¬ϕ(x′, y) ∨ ¬ϕ(x, y′)))

So, for all a, a′ ∈ A, a 6∼ a′ means that a and a′ must participate in distinct
Cartesian components of a monadic decomposition of ϕ, i.e., if {Ri}i<k is a
monadic decomposition of R, then there exist b, b′ ∈ B and i 6= j such that
(a, b) ∈ Ri \Rj and (a′, b′) ∈ Rj \Ri.

Computation of WA : Let (a0, b0) ∈ [[ϕ]] and let WA = {a0}. Repeat:
1. Let ψ(x) be the formula

∧

a∈WA
x 6∼ a.

2. If there exists a such that ψ(a) holds thenWA :=WA∪{a} else terminate.

Observe that satisfiability checking of ψ in the above procedure as well as
generating the witness a is decidable because we can transform ψ to prenex nor-
mal form as an ∃-formula and treat all the existential variables as free variables.



In other words, the resulting formula is in Ψ . When ψ becomes unsatisfiable
then any further element from A must be ∼-equivalent to one of the elements
already inWA, while all elements in WA belong to distinct ∼-equivalence classes.
Therefore, if ϕ is monadic then the process terminates by Lemma 2, and upon
termination WA is a finite collection of witnesses that divides A into a set A∼ of
∼-equivalence classes [a]∼ for a ∈ WA. For example, if ϕ is Cartesian then ψ is
unsatisfiable initially, because then A∼ = {[a0]∼}.

Computation of witness set WB is analogous to computation ofWA. Observe
that |WB|, |WA| < 2n where n is the monadic width of ϕ, which follows from
the proof of Lemma 2. We also have that n ≤ |WB |, |WA|.

Example 2. Consider the relation R = R3 in Figure 3. The width of R is 3.
We have A∼ = {[a]∼ | 1 ≤ a ≤ 7} where [a]∼ = {n | n〈2,0〉 = a} and B

∽
=

{[20]
∽
, [21]

∽
, [22]

∽
} were [2m]

∽
= {2n | nmod 3 = m}. Figure 3(b) illustrates

the equivalence classes as nonempty regions of a Venn Diagram view of R. ⊠

Lemma 3. If R is monadic then, for all a ∈ A∼ and b ∈ B
∽
, we can effectively

construct αa, βb ∈ Ψ such that [[αa]] = a and [[βb]] = b.

Proof. By using Lemma 2 let WA be constructed as above, so A∼ = {[a]∼ | a ∈
WA}. Similarly to WA, construct a finite WB s.t. B

∽
= {[b]

∽
| b ∈WB}. Let

(for b ∈ WB) βb(y)
def

= β[b]∽(y)
def

= (
∧

a∈WA∩Xb

ϕ(a, y)) ∧ (
∧

a∈WA\Xb

¬ϕ(a, y))

(for a ∈WA) αa(x)
def

= α[a]∼(x)
def

= (
∧

b∈WB∩Ya

ϕ(x, b)) ∧ (
∧

b∈WB\Ya

¬ϕ(x, b))

Observe that αa is well-defined because for all a′ ∈ [a]∼ we have that Ya = Ya′ .
Similarly for βb. One can show that [[βb]] = [b]

∽
and [[αa]] = [a]∼. Fix a ∈WA and

consider the definition of αa. SupposeWB∩Ya = {b1, b2} andWB \Ya = {b3, b4}.
Then [a]∼ ⊆ Xb1∩Xb2 and [a]∼ ⊆ (Xb3∪Xb4)

c. So [a]∼ ⊆ [[αa]]. For the direction
[[αa]] ⊆ [a]∼ take a′ ∈ [[αa]]. Suppose, by way of contradiction that, a 6∼ a′ and
thus Ya′ 6= Ya. Then there exists b ∈ WB\Ya such that a′ ∈ Xb. But, by definition
of αa, Xb ∩ [[αa]] = ∅, which contradicts that a′ ∈ Xb and a′ ∈ [[αa]]. ⊠

Lemma 3 is essentially a quantifier elimination property that allows us to elimiate
the ∀ quantifier from the definition of λx.x ∼ a (resp. λy.y ∽ b) by stating that
it is enough to consider the elements in WB (resp. WA). We can now prove the
following result. It gives us a brute force method for monadic decomposition.

Theorem 1. If ϕ(x, y) is monadic then
a) ϕ(x, y) is equivalent to λ(x, y).

∨

a∈WA
(αa(x) ∧ ϕ(a, y)).

b) ϕ(x, y) is equivalent to λ(x, y).
∨

b∈WB
(βb(y) ∧ ϕ(x, b)).

c) ϕ(x, y) is equivalent to λ(x, y).
∨

a∈WA,b∈WB ,(a,b)∈[[ϕ]](αa(x) ∧ βb(y)).

Proof. We prove (a). The other cases are similar. By Lemma 3 we have [[αa]] =
[a]∼. By construction ofWA we have that, for all a ∈ WA we have [a]∼×Ya ⊆ [[ϕ]]
where [a]∼ × Ya = [[λ(x, y).αa(x)∧ϕ(a, y)]]. In the other direction, if (a, b) ∈ [[ϕ]]
then a ∈ [[αa]] and b ∈ Ya. In other words, (a, b) ∈ [[λ(x, y).αa(x) ∧ ϕ(a, y)]]. ⊠



Theorem 1 does not guarantee smallest monadic width. Example 3 shows that
the monadic width may be strictly smaller than min(|WB |, |WA|).

Example 3. Take R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 1), (5, 2), (3, 5), (4, 5)} where
A = B = {1, 2, 3, 4, 5}. Then |WA| = 5 and |WB| = 5 but R has width 4:
R = ({1, 5} × {1}) ∪ ({2, 5} × {2}) ∪ ({3} × {3, 5}) ∪ ({4} × {4, 5}). ⊠

Example 4. Let φ(x, y) := (0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 ∧ x + y < 2). The example
illustrates a case where φ is satisfied by a finite model of the form:

a b′

a′ b

We get the following predicates by using Lemma 3 and simplifications.

αa(x)
def

= x
.
= a, αa′(x)

def

= x
.
= a′, βb(y)

def

= y
.
= b, βb′(y)

def

= y
.
= b′

where a = 0, a′ = 1, b = 0, b′ = 1. Monadic decomposition of φ reconstructs the
formula αa(x)∧βb(y) ∨ αa(x)∧βb′(y) ∨ αa′(x)∧βb(y) by using Theorem 1(c).
Case αa′(x) ∧ βb′(y) is not included because φ(1, 1) is false. ⊠

4.3 Another decomposition algorithm

If implemented directly, Theorem 1 suggests creating a decomposition which is in
a disjunctive normal form (DNF) with respect to the unary sub-formulas. Instead
of creating what amounts to a DNF, we can use case analysis on ϕ(a, y)∧ϕ(x, b)
for all ([a]∼, [b]∽) ∈ A∼×B∽

. The output may be any explicitly monadic formula,
not necessarily in DNF. Moreover, Theorem 1 suggests full exploration of WA

and WB. We show how to avoid this by using lifted versions of the definitions
of ∼ and ∽. We lift the definitions of ∼ (resp. ∽) to all elements of the type of

x (resp. y). We define a1 ∼ a2
def

= Ya1
= Ya2

and b1 ∽ b2
def

= Xb1 = Xb2 . This is
consistent with the earlier definition (due to Lemma 1) and is simpler to work
with because the equivalence classes cover the full universe (of the given type)
and are identical for ϕ and ¬ϕ. For example, consider the equivalence classes
N∼ in Figure 3. Then [0]∼ = N \ (A1 ∪A2 ∪ A3). Thus

x 6∼ x′ ⇔ ∃z(¬(ϕ(x, z) ⇔ ϕ(x′, z))), y 6∽ y′ ⇔ ∃z(¬(ϕ(z, y) ⇔ ϕ(z, y′))).

We introduce a procedure namedmondec that given a monadic predicate ϕ(x, y)
produces an equivalent explicitly monadic predicate mondec(ϕ); it uses a recur-
sive procedure δ. The argument π of δ below is the path condition and ν is the
the accumulated side condition; the purpose of ν is to ensure new combinations



from A∼ × B
∽
. Here A (resp. B) is the set of all values of the type of x (resp.

y). We write (ψ ?φt : φf ) for ((ψ ∧ φt) ∨ (¬ψ ∧ φf )).

mondec(ϕ)
def

= δ(⊤,⊤), where

δ(ν, π)
def

=







⊥, if unsat(π ∧ ϕ);
⊤, else if unsat(π ∧ ¬ϕ);
(ψa

b ? δ(ν ∧ ν
a
b , π ∧ ψa

b ) : δ(ν ∧ ν
a
b , π ∧ ¬ψa

b )), else let (a, b) |= ν,

νab
def

= a 6∼ x ∨ y 6∽ b,

ψa
b

def

= ϕ(a, y) ∧ ϕ(x, b).

Theorem 2. If ϕ is monadic then mondec(ϕ) is defined and mondec(ϕ) is
an explicitly monadic predicate that is equivalent to ϕ.

Proof. Assume ϕ is monadic. Assume also that ϕ is satisfiable or else it is trivially
equivalent to the explicitly monadic predicate ⊥. Let A and B be as above. By
using Lemma 2, A∼ and B

∽
are finite. Observe that the argument ν of δ remains

of the form that all existential quantifiers occur positively in it, so the selection
of (a, b) |= ν in δ is decidable (using the solver for Ψ).

The proceduremondec creates an if-then-else expression that can be thought
of as a binary tree whose leaves are either ⊤ or ⊥ and whose nodes are formulas
ψa
b for some a ∈ A and b ∈ B. The formula mondec(ϕ) is explicitly monadic

because each ψa
b is explicitly monadic.

First, we show that mondec(ϕ) is well-defined (terminates) by showing that
there are finitely many nodes. A new node ψa

b is created only when there exists
a ∈ A and b ∈ B such that (a, b) |= ν. In the subsequent recursive calls, any
node that is equivalent to ψa

b is eliminated by the constraint νab . Termination

follows because A∼ and B
∽

are finite and ψa
b ⇔ ψa′

b′ iff a ∼ a′ and b ∽ b′.
Next, we show that ν must be satisfiable if both π ∧ ϕ and π ∧ ¬ϕ are

satisfiable. Let (a, b) |= π ∧ ϕ and (a′, b′) |= π ∧ ¬ϕ. We know that it is possible
to strengthen π to π1 so that π1 is equivalent to αa(x)∧βb(y) and currently this
is not the case because a 6∼ a′ or b 6∽ b′. Moreover, and without loss of generality,
π1 is of the form π ∧ ψ where ψ is a conjunction of predicates ψc

d or ¬ψc
d for

some c ∈ A and d ∈ B. We have, by definition of δ, that π has the form

m
∧

i=1

ψai

bi
∧

n
∧

i=m+1

¬ψai

bi

for some n ≥ m ≥ 0 and n ≥ 1, and that ¬ν is equivalent to
∨n

i=1 ai ∼ x∧bi ∽ y.
Thus, any use of a predicate ψc

d such that (c, d) |= ¬ν is useless because it makes
ψc
d equivalent to some ψai

bi
for some i, 1 ≤ i ≤ n, and so π ∧ ψc

d or π ∧ ¬ψc
d is

either equivalent to π or to ⊥. Therefore, ν must be satisfiable or else π1 cannot
be constructed.

To show that mondec(ϕ) ⇔ ϕ is immediate from the definition of δ. First,
consider a branch π in mondec(ϕ) ending in ⊤. We know that π implies ϕ as
a condition for ⊤. The case ¬mondec(ϕ) ⇒ ¬ϕ is symmetrical by considering
branches π in mondec(ϕ) ending in ⊥. ⊠
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Fig. 4. mondec(R3).

To illustrate mondec, take ϕ(x, y) to be the
predicate R3 in Figure 3. Consider the result
of mondec(ϕ) that starts with (4, 4) |= ϕ so
the root is ψ4

4 . In the depiction of mondec(ϕ)
in Figure 4, the left subtree of a node is the
true case and right subtree of a node is the false
case. For example, ¬ψ4

4 ∧ ψ3
2 ∧ ψ2

2 is a branch
that implies ϕ, this branch covers the case A2 ×B2 in Figure 3(b).

4.4 Two decidable cases

We show decidability of monadic decomposition in two cases. We leave decid-
abilty of monadicity for other theories and tight complexity bounds as open
problems.

Consider first integer linear arithmetic. It clearly meets the requirements
of U. Take a linear arithmetic formula ϕ(x, y). Let the predicate ∼ be defined
as above, let ‘x ∈ A’ stand for the formula ∃yϕ(x, y). Construct the following

quantified formula: IsMonadic(ϕ)
def

= ∃x̂(∀x(x ∈ A⇒ ∃x′(|x′| < x̂ ∧ x ∼ x′)))

Theorem 3. Monadic decomposition is decidable for integer linear arithmetic.

Proof. Let ϕ(x, y) be a formula in integer linear arithmetic. We show that ϕ is
monadic ⇔ IsMonadic(ϕ) is true in Presburger arithmetic. Decidability follows
by [34]. Proof of ⇒: Assume ϕ is monadic. Then A∼ is finite by Lemma 2. Let
â = max{min(abs(C)) | C ∈ A∼}+1. Then, for all a ∈ A, a belongs to some C
in A∼, and so there is a′ ∈ C such that |a′| = min(abs(C)) and so |a′| < â and
a ∼ a′. Proof of ⇐: Assume IsMonadic(ϕ) holds. Choose a witness â for x̂ and
consider the classes A = {[a]∼ | 0 ≤ |a| < â}. It follows that A = A∼ is finite,
so ϕ is monadic by Lemma 2. ⊠

The formula IsMonadic(ϕ) has the quantifier prefix ∃∀∃∀ in Prenex normal
form when ϕ is quantifier free. So there are three quantifier alternations in

IsMonadic(ϕ). This implies an upper bound on time complexity 22
cn7

for some
constant c and size n of ϕ for deciding if ϕ is monadic [36]. This is one exponent

lower than the upper bound 22
2
cn

known for the full Presburger arithmetic [14].
Moreover, the structure of the formula is quite specific and may justify the design
of a special purpose algorithm. Likewise, but for a different reason:

Theorem 4. Monadic decomposition is decidable for real algebraic arithmetic
with addition and multiplication.

Proof (Sketch). The atomic subformulas of ϕ are of the form p(x, y) ≥ 0, where
p(x, y) is in general a multi-variate polynomial. Thus, for every value b, ϕ(x, b) is
a uni-variate polynomial, and the sign of such polynomials induce a finite set of
intervals that partition the reals. Without loss of generality consider the case for
an a, b and ǫ, such that for all b′ where ǫ ≥ b′ > b we have ϕ(a, b) but ¬ϕ(a, b′).
Then ϕ contains an atomic formula p(x, y) ≥ 0 whose truth value changes over
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Fig. 5. Comparison of monadic decomposition algorithms.

b, b′. Monadicity of ϕ fails if it is determined by signs of polynomials p(x, y) that
depend on both x and y (recall that polynomials are continuous and differen-
tiable). Thus, we can limit the search for a monadic decomposition up to the
maximal number of regions induced by the polynomials in ϕ. This (potentially
very large) number is bounded by the polynomial degrees and number of atomic
subformulas. ⊠

5 Experiments

We present here a set of micro benchmarks using the sample predicate Rk from
Figure 3 by letting k range from 2 to 16; k also happens to be the monadic width
of Rk. The worst case scenario of the size of a monadic decomposition of Rk,
according to Theorem 1(c), is O(k2k) because |A∼| = 2k and |B

∽
| = k (including

the classes [0]∼ and [0]
∽
). We compare three algorithms, implemented as z3

python scripts, that are indicated in Figure 5 by thm1, mondec, and mondec1.
The output is in all cases an explicitly monadic formula in form of an if-then-
else expression, its size is the number of ψa

b nodes in it, e.g., the size of the
expression in Figure 4 is 5.6 Algorithm thm1 is based on Theorem 1 but avoids
explicit DNF construction. Algorithm mondec1 is a variant of mondec; its python
script is shown in Appendix A. The only difference compared to mondec is that
mondec1 uses the following heuristic for selecting a witness (a, b) |= ν:

(a, b) |= if sat(ν ∧ ϕ ∧ π) then ν ∧ ϕ ∧ π else if sat(ν ∧ ϕ) then ν ∧ ϕ else ν

that amounts to changing a single line of code in the python script. In other
words, for selecting new (a, b) first try to do so in the context of ϕ and π. The
most interesting aspect about this experiment is that it shows that different
heuristics can influence the performance characteristics of monadic decomposi-
tion by an exponential factor. The above heuristic reduces the size of the decom-
position exponentially in this experiment, while constructing nodes in mondec

based solely on ν provides worse performance than exhaustive search of WA and
WB , as in thm1. For example, the time to decompose R9 with mondec gave an
ouput of size 2281 and took around 11 minutes, while with mondec1 the output

6 The experiments were carried out on a laptop with a 2GHz CPU.



size was 23 and the decomposition took 1.4 seconds. For the formulas arising in
Section 2, all algorithms terminate in a fraction of a second. Appendix A shows
the python script of mondec (and mondec1) generalized to arbitrary arities.

6 Related work

Study of monadic fragments of logic was started by Löwenheim in 1915 and
spans a full century of literature by now. Work related to automata theory and
its relation to monadic fragments of logic is, likewise, a very thoroughly studied
topic [39]. Despite this, there is renewed interest in this topic, but with a new
angle. From our perspective, this is due to many advances in automated logical
inference engines. The angle is, how to make use of such advances in a modular
way in the context of automata theoretic problems. This makes questions like the
one posed in this paper relevant in many different potential application areas.
Monadic decomposition can also be used to study new decidable fragments of
logics; revisiting techniques in [13, 18, 6] could be relevant in this context.

Monadic fragments. Unary relations play a key role in many decision prob-
lems and decidable logics. Monadic first-order logic, or the Löwenheim class [29],
is the classical example of a decidable fragment of first-order logic where all sym-
bols are unary relation symbols. The Löb-Gurevich class [28], is the extension of
the Löwenheim class where also unary function symbols are allowed. Both classes
are decidable by having the finite model property [7]. Monadic second-order logic
allows quantification over unary predicates. Among one of the most celebrated
and applied decidability results are those of the monadic second-order theory
S1S with one successor relation by Büchi [8] and decidability of the monadic
second-order theory S2S of the binary tree with two successor relations by Ra-
bin [35]. The ability to apply Rabin’s theorem and automata based techniques
to establish decidability results of a logic is often described as the logic hav-
ing the tree model property. Modal logics do not have the finite model property
but they do have the tree model property. Vardi attributes [41] their decidabil-
ity to this. Grädel discusses this topic further in [17] and its relation to the
guarded fragment [5]. Unlike in modal logics, simple extensions of the guarded
fragment cause undecidability [16], one exception is the monadic guarded frag-
ment with two variables and equivalence relations that does have the tree model
property [15]. The theorems of Büchi and Rabin have also been revisited and
extended by Gurevich through game based techniques [18]. Another technique
discussed in [18] is the use of the Feferman-Vaught generalized products [13] as
a model-theoretic method for establishing decidability results in the context of
monadic second-order logic.

Symbolic automata. Remarkably, the Feferman-Vaught theorem is revis-
ited in [6] where it is shown that a special version of it is closely related to the
theory of M-automata where M is a first-order structure. Although M-automata
are defined as multi-tape automata, by using tuples, they correspond precisely to
SFAs. Independently, a variant of SFAs was originally introduced in the context
of natural language processing, where they are called predicate-augmented finite



state recognizers [33]. Symbolic finite transducers were introduced in [44], a dif-
ferent notion of symbolic transducers is also studied in [33]. The extension from
SFTs to ESFTs is introduced in [10]. Equivalence of ESFTs, properties of ESFAs,
and the notion of Cartesian ESFTs are studied in [9]. The monadic decomposi-
tion problem first surfaced in the context of trying to lift algorithms for symbolic
automata without lookahead to symbolic automata with lookahead. In classical
automata theory this problem does not exist because lookahead can be elimi-
nated by introducing more states since the alphabet is finite. Most other SFA
algorithms can, in theory, be lifted to finite alphabets. For example, closure under
complement [6, Proposition 2.6] is shown by reduction to NFA determinization
through minterm construction by considering the Boolean combinations of all
guards of the M-automaton as the finite alphabet of the NFA. Practically this
approach does not scale, it suffers from an exponential blowup of the number of
transitions, even before the actual NFA determinization algorithm starts.

Applications. For many analysis tasks, some of which are discussed in Se-
cion 2, monadic decomposition plays a key role in enabling the use of SFA and
SFT algorithms in the context of symbolic automata and transducers. Other
SFA algorithms, such as difference and complement, are discussed in [43] in the
context of SMT solvers, and more algorithms are discussed in [21] in the more
specialized context of string analysis. A symbolic automata toolkit is described
in [42]. SFT algorithms, in particular equivalence checking, are studied in [44]
and their use for web security is discussed in [20]. A new minimization algo-
rithm of SFAs was recently presented in [11], showing that the new algorithm
can enable some analysis scenarios involving monadic second-order logic that
did not scale with earlier techniques; the reduction itself from monadic second-
order formulas to SFAs is essentially the classical one [39] and the performance
is compared to Mona [19, 23].

7 Conclusion

We introduced the problem of monadic decomposition of predicates in decidable
theories. Theorem 1 provided an effective means to computing a monadic decom-
position and we described an implementation with correctness proof, Theorem 2,
that avoids expanding solutions directly into DNF; it leverages a Shannon de-
composition. We left the general case of decidability of monadic decomposition
as an open problem. Deciding if a predicate is monadic in a specific background
theory is another interesting open problem. While we show that the problem is
decidable for integer linear arithmetic and polynomial real algebraic arithmetic,
we have not investigated concrete algorithms for these cases.
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A Monadic decomposition in python

Below is a self-contained python script mondec that computes a monadic decom-
position of a predicate R with given variables. It uses z3.

from z3 import *

def nu_ab(R, x, y, a, b):

x_ = [ Const("x_%d" %i,x[i].sort()) for i in range(len(x))]
y_ = [ Const("y_%d" %i,y[i].sort()) for i in range(len(y))]

return Or(Exists(y_,R(x+y_)!=R(a+y_)),Exists(x_,R(x_+y)!=R(x_+b)))

def isUnsat(fml):

s = Solver(); s.add(fml); return unsat == s.check()

def lastSat(s, m, fmls):
if len(fmls) == 0: return m

s.push(); s.add(fmls[0])
if s.check() == sat: m = lastSat(s, s.model(), fmls[1:])
s.pop(); return m

def mondec(R, variables):

phi = R(variables);
if len(variables)==1: return phi
m = len(variables)/2

x,y = variables[0:m],variables[m:]
def d(nu, pi):

if isUnsat(And(pi, phi)): return BoolVal(False)
if isUnsat(And(pi, Not(phi))): return BoolVal(True)

fmls = [BoolVal(True)]
if FLAG: fmls = [BoolVal(True), phi, pi] #---- use the heuristic from Section 5
m = lastSat(nu, None, fmls) #---- try to extend nu with fmls

assert(m != None) #---- nu must be consistent
a,b = [ m.evaluate(z,True) for z in x ],[ m.evaluate(z,True) for z in y ]

psi_ab = And(R(a+y), R(x+b))
phi_a, phi_b = mondec(lambda z: R(a+z),y), mondec(lambda z: R(z+b),x)
nu.push()

nu.add(nu_ab(R, x, y, a, b)) #---- extend nu to exlude case: x~a and y~b
t, f = d(nu, And(pi, psi_ab)), d(nu, And(pi, Not(psi_ab)))

nu.pop()
return If(And(phi_a, phi_b), t, f)

return d(Solver(),BoolVal(True)) #---- nu is initially a fresh z3 solver

def test_mondec(k): #---- decompose R^k from Figure 3

R = lambda v:And(v[1]>0,(v[1]&(v[1]-1))==0,(v[0]& (v[1]%((1<<k)-1)))!=0)
bvs = BitVecSort(2*k) #---- use 2k-bit bitvectors

x,y = Const("x",bvs),Const("y",bvs)
res = mondec(R,[x,y])
assert(isUnsat(res != R([x,y]))) #---- check correctness of decomposition

print "mondec1(", R([x,y]), ") ="; print res
FLAG = True #---- run as mondec1

test_mondec(2) #---- decompose R^2

Running it produces the following decomposition of R2 where Rk is defined in
Figure 3. The output corresponds to the expression (ψ2

2 ?⊤ : (ψ5
1 ?⊤ :⊥)) where

ψa
b is the formula R2(a, y)∧R2(x, b). The script can be run online using Z3Py [2].

mondec1( And(y > 0, y & y - 1 == 0, x & y%3 != 0) ) =
If(And(And(y > 0, y & y - 1 == 0, 2 & y%3 != 0),

And(2 > 0, 2 & 2 - 1 == 0, x & 2%3 != 0)),

True,
If(And(And(y > 0, y & y - 1 == 0, 5 & y%3 != 0),

And(1 > 0, 1 & 1 - 1 == 0, x & 1%3 != 0)),
True,

False))
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