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Abstract. We show how interpolants can be viewed as classifiers in su-
pervised machine learning. This view has several advantages: First, we
are able to use off-the-shelf classification techniques, in particular support
vector machines (SVMs), for interpolation. Second, we show that SVMs
can find relevant predicates for a number of benchmarks. Since classifica-
tion algorithms are predictive, the interpolants computed via classifica-
tion are likely to be relevant predicates or invariants. Finally, the machine
learning view also enables us to handle superficial non-linearities. Even
if the underlying problem structure is linear, the symbolic constraints
can give an impression that we are solving a non-linear problem. Since
learning algorithms try to mine the underlying structure directly, we can
discover the linear structure for such problems. We demonstrate the fea-
sibility of our approach via experiments over benchmarks from various
papers on program verification.
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1 Introduction

Problems in program verification can be formalized as learning problems. In
particular, we show how interpolants [4,17,11] that are useful heuristics for com-
puting “simple” proofs in program verification can be looked upon as classifiers
in supervised machine learning. Informally, an interpolant is a predicate that
separates good or positive program states from bad or negative program states
and a set of appropriately chosen interpolants forms a program proof. Our main
technical insight is to view interpolants as classifiers that distinguish positive
examples from negative examples. This view allows us to make the following
contributions:

– We are able to use state-of-the-art classification algorithms for the purpose
of computing invariants. Specifically, we show how support vector machines
(SVMs) [21] for binary classification can be used to compute interpolants.

– Since classification algorithms are predictive, the interpolants we compute
are relevant predicates for program proofs. We show that we can discover
inductive invariants for a number of benchmarks. Moreover, since SVMs are
routinely used in large scale data processing, we believe that our approach
can scale to verification of practical systems.
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mance Computing Research Center.



– Classification based interpolation also has the ability to detect superficial
non-linearities. As shown in Sect. 4, even if the underlying problem structure
is linear, the symbolic constraints can give an impression that we are solving
a non-linear problem. Since our algorithm mines the underlying structure
directly, we can discover the linear structure for such problems.

The rest of the paper is organized as follows. We informally introduce our tech-
nique by way of an example in Sect. 1.1. In Sect. 2, we describe necessary back-
ground material including a primer on SVMs. Sect. 3 describes the main results
of our work. We first introduce a simple algorithm Basic that uses an SVM as
a black box to compute a candidate interpolant and we formally characterize
its output. SVMs rely on the assumption that the input is linearly separable.
Hence, we give an algorithm SVM-I (which makes multiple queries to an SVM)
that does not rely on the linear separability assumption and prove correctness
of SVM-I. We augment Basic with a call to SVM-I; the output of the result-
ing algorithm is still not guaranteed to be an interpolant. This algorithm fails
to output an interpolant when we do not have a sufficient number of positive
and negative examples. Finally, we describe an algorithm Interpolant that
generates a sufficient number of positive and negative examples by calling Ba-
sic iteratively. The output of Interpolant is guaranteed to be an interpolant
and we formally prove its soundness. In Sect. 4, we show how our technique can
handle superficial non-linearities via an example that previous techniques are
not capable of handling. Sect. 5 describes our implementation and experiments
over a number of benchmarks. Sect. 6 places our work in the context of existing
work on interpolants and machine learning. Finally, Sect. 7 concludes with some
directions for future work.

1.1 An Overview of the Technique

We show an example of how our technique for interpolation discovers invariants
for program verification. Consider the program in Fig. 1. This program executes
the loop at line 2 a non-deterministic number of times. Upon exiting this loop,
the program decrements x and y until x becomes zero. At line 6, if y is not 0 then
we go to an error state. To prove that the error() statement is unreachable, we
need invariants for the loops. We follow the standard verification by interpolants
recipe and try to find invariants by finding interpolants for finite infeasible traces
of the program. The hope is that the interpolants thus obtained will give us
predicates that generalize well. In particular, we aim to obtain an inductive loop
invariant. For example, x = y is a sufficiently strong loop invariant for proving
the correctness of Fig. 1.

Suppose we consider a trace that goes through all the loops once. Then we
get the following infeasible trace: (1, 2, 3, 2, 4, 5, 4, 6, 7). We decompose this
trace into two parts A and B and thereby find interpolants for this infeasible
trace. A represents the values of x and y obtained after executing lines 1, 2, and
3. B represents the values of x and y such that if we were to execute lines 4, 5,
6, and 7 then the program reaches the error() statement. Now, we have (A,B)



foo( )

{

1: x = y = 0;

2: while (*)

3: { x++; y++; }

4: while ( x != 0 )

5: { x--; y--; }

6: if ( y != 0 )

7: error() ;

}

Fig. 1. Motivating example for our technique.

where A ∧B ≡ ⊥:

A ≡ x1 = 0 ∧ y1 = 0 ∧ ite(b, x = x1 ∧ y = y1, x = x1 + 1 ∧ y = y1 + 1)
B ≡ ite(x = 0, x2 = x ∧ y2 = y, x2 = x− 1 ∧ y2 = y − 1) ∧ x2 = 0 ∧ ¬(y2 = 0)

Here ite stands for if-then-else. As is evident from this example, A is typically
the set of reachable states and B is the set of states that reach error(). An
interpolant is a proof that shows A and B are disjoint and is expressed using
the common variables of A and B. In this example, x and y are the variables
common to A and B. Our technique for finding an interpolant between A and
B operates as follows: First, we compute samples of values for (x, y) that satisfy
the predicates A and B. Fig. 2 plots satisfying assignments of A as +’s (points
(0, 0) and (1, 1)) and of B as ◦’s (points (1, 0) and (0, 1)). Next, we use an SVM
to find lines separating the ◦’s from the +’s.
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Fig. 2. Finding interpolants using an SVM.

We consider the ◦ points one by one and ask an SVM to find a line which
separates the chosen ◦ point from the +’s. On considering (0, 1), we get the
line 2y = 2x + 1 and from (1,0) we obtain 2y = 2x − 1. Using these two lines,
we obtain the interpolant, 2y ≤ 2x + 1 ∧ 2y ≥ 2x − 1. It can be checked that
this predicate is an invariant and is sufficient to prove the error() statement of
Fig. 1 unreachable.



We will see in Sect. 2.1 that we can easily obtain the stronger predicate x = y.
Intuitively, we just have to translate the separating lines as close to the +’s as
possible while ensuring that they still separate the +’s from the ◦’s.

2 Preliminaries

Let A and B be two formulas in the theory of linear arithmetic:

φ ::= wTx+ d ≥ 0 | true | false | φ ∧ φ | φ ∨ φ | ¬φ

w = (w1, . . . , wn)T ∈ Rn is a point: an n-dimensional vector of constants; x =
(x1, . . . , xn)T is an n-dimensional vector of variables. The inner product 〈w, x〉 of
w and x is wTx = w1x1 + . . .+wnxn. The equation wTx+d = 0 is a hyperplane
in n-1 dimensions. Each hyperplane corresponds to two half-spaces: wTx+ d ≥ 0
and wTx+ d ≤ 0. A half-spaces divides Rn into two parts: variable values that
satisfy the half-space and those which do not. For example, x − y = 0 is a 1-
dimensional hyperplane, x−y+2z = 0 is a 2-dimensional hyperplane, and x ≥ y
and x ≤ y are half-spaces corresponding to the hyperplane x = y.

Suppose A ∧ B ≡ ⊥, i.e., there is no assignment to variables present in the
formula A∧B that makes the formula true. Informally, an interpolant is a simple
explanation as to why A and B are disjoint. Formally, it is defined as follows:

Definition 1 (Interpolant [17]). An interpolant for a pair of formulas (A,B)
such that A ∧ B ≡ ⊥ is a formula I satisfying A ⇒ I, I ∧ B ≡ ⊥, and I refers
only to variables common to both A and B.

Let Vars(A,B) denote the common variables of A and B. We refer to the val-
ues assigned to Vars(A,B) by satisfying assignments of A as positive examples.
Dually, negative examples are values assigned to Vars(A,B) by satisfying assign-
ments of B. Sampling is the process of obtaining positive and negative examples
given A and B. For instance, sampling from (A ≡ y < x) and (B ≡ y > x) with
common variables x and y, can give us a positive example (1, 0) and a negative
example (0, 1).

A well studied problem in machine learning is binary classification. The input
to the binary classification problem is a set of points with associated labels. By
convention, these labels are l ∈{+1,-1}. The goal of the binary classification
problem given points with labels is to find a classifier C : point → {true, false}
s.t. C(a) = true for all points a with label +1, and C(b) = false for all points b
with label −1. This process is called training a classifier and the set of labeled
points is called the training data. The goal is to find classifiers that are predictive,
i.e., even if we are given a new labeled point w with label l not contained in the
training data then it should be very likely that C(w) is true iff l = +1.

Our goal in this paper is to apply standard binary classification algorithms
to positive and negative examples to obtain interpolants. We will assign positive
examples the label +1 and the negative examples the label -1 to obtain the
training data. We are interested in classifiers, in the theory of linear arithmetic,
that classify correctly.



Definition 2 (Correct Classification). A classifier C classifies correctly on
a given training data X if for all positive examples a ∈ X, C(a) = true, and for
all negative examples b ∈ X, C(b) = false. If there exists a positive example a
such that C(a) = false (or a negative example b such that C(b) = true), then C
is said to have misclassified a (or b).

There are classification algorithms that need not classify correctly on training
data [10]. These are useful because typically the data in machine learning is noisy.
A classifier that misclassifies a training example is definitely not an interpolant.
Hence we focus on classifiers that classify correctly on training data. In par-
ticular, we use optimal margin classifiers generated by support vector machines
(SVMs).

2.1 SVM Primer

We provide some basic background on SVMs in the context of binary classifica-
tion using half-spaces. Let us denote the training data by X, the set of positive
examples by X+, and the set of negative examples by X−.

Let us assume that the training data X is linearly separable: there exists
a hyperplane, called a separating hyperplane, wTx + d = 0 such that ∀a ∈
X+. wTa + d > 0 and ∀b ∈ X−. wT b + d < 0. For linearly separable training
data, an SVM is guaranteed to terminate with a separating hyperplane. To use
a separating hyperplane to predict the label of a new point z we simply compute
sgn(wT z+ d). In other words, if wT z+ d ≥ 0 then we predict the label to be +1
and -1 otherwise.

An interesting question to consider is the following: If there are multiple
separating hyperplanes then which one is the best? If a point is away from
the separating hyperplane, say wTx + d >> 0, then our prediction that x is a
positive example is reasonably confident. On the other hand, if x is very close
to the separating hyperplane then our prediction is no longer confident as a
minor perturbation can change the predicted label. We say such points have a
very low margin. The optimal margin classifier is the separating hyperplane that
maximizes the distance from the points nearest to it. The points closest to the
optimal margin classifier are called support vectors. An SVM finds the optimal
margin classifier and the support vectors given linearly separable training data
efficiently [21] by solving a convex optimization problem.

An example of SVM in action is shown in Fig. 3. The positive examples are
shown by +’s and negative examples by ◦’s. Line 4 is a separating hyperplane
and we can observe that several points of training data lie very close to it and
hence its predictions are not so confident. Line 2 is the optimal margin classifier.
The points on the dotted lines are closest to the optimal margin classifier and
hence are the support vectors.

We observe that using SVMs provides us with a choice of half-spaces for the
classifier. We can return the half-space above line 2 as a classifier. All positive
examples are contained in it and all negative examples are outside it. Or we can
return the half-space above line 1 and that will be a stronger predicate. Or we
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Fig. 3. Line 2 and line 4 are separating hyperplanes. The support vectors for optimal
margin classifier (line 2) lie on dotted lines.

can return the negation of the half-space below line 3 and that will be a weaker
predicate. Or any line parallel to line 2 and lying between line 1 and line 3
will work. The choice of predicate depends on the application (i.e., the program
verification tool that consumes these predicates) and all these predicates can be
easily generated by taking a linear combinations of the support vectors.

3 Classification Based Algorithms for Interpolation

We now discuss an algorithm for computing interpolants using an SVM as a
black box. We start with a basic version as described in Fig. 4. Basic takes as
input two predicates A and B over the theory of linear arithmetic and generates
as output a half-space h over the common variables of A and B. Basic also
has access to (possibly empty) sets of already known positive examples X+ and
negative examples X−.

Basic(A, B)
Vars := Common variables of A and B
Add Samples(A,X+) to X+

Add Samples(B,X−) to X−

SV := SVM(X+, X−)
h := Process(SV , X+, X−);
return h

Fig. 4. The basic algorithm for computing a separating hyperplane.



Basic first computes the variables common to both A and B and stores them in
the set Vars. It then computes the positive examples X+ by repeatedly asking
a theorem prover for satisfying assignments of A not already present in X+(by
calling Samples(A, X+)). The values assigned to variables in Vars by these sat-
isfying assignments are stored in X+. The negative examples X− are computed
from B in a similar fashion (by calling Samples(B, X−)). Let us assume that X+

and X− are linearly separable. Next, we compute the support vectors (SV of
Fig. 4) for X+ and X− by calling an off-the-shelf SVM to generate the optimal
margin classifier. The result is then processed via the call to procedure Process
which takes a linear combination of support vectors in SV to obtain the classifier
h = wTx+ d ≥ 0 s.t. wTx+ d = 0 is the optimal margin classifier between X+

and X−, and ∀a ∈ X+. h(a) > 0 and ∀b ∈ X−. h(b) < 0. This half-space h is
returned as output after correction for minor numerical artifacts (say rounding
4.9996 to 5). Process can be modified to produce stronger or weaker predicates
(Sect. 2.1). The output of Basic is characterized by the following lemma:

Lemma 1 (Correctness of SVM). Given positive examples X+ which are
linearly separable from negative examples X−, SVM and Process compute a half-
space h s.t. ∀a ∈ X+. h(a) > 0 and ∀a ∈ X−. h(x) < 0.

Proof. The lemma follows from the fact that SVM returns an optimal margin
classifier under the assumption that X+ and X− are linearly separable, and
that rounding performed by Process does not affect the predicted label of any
example in X+ or X−.

However, the algorithm Basic has two major problems:

1. SVM will produce a sound output only when X+ and X− are linearly sep-
arable.

2. Basic computes a separator for X+ and X− which might or might not
separate all possible models of A from all possible models of B.

We will now provide partial solutions for both of these concerns.

3.1 Algorithm for Intersection of Half-spaces

Suppose Basic samples X+ and X− which are not linearly separable. If we
denote x1, . . . , xn as the variables contained in Vars then there is an obvious
(albeit not very useful) separator between X+ and X− given by the following
predicate:

P =
∨

(a1,...,an)∈X+ x1 = a1 ∧ . . . ∧ xn = an

Observe that ∀a ∈ X+. P (a) = true and ∀b ∈ X−. P (b) = false. The predicate P
is a union (or disjunction) of intersection (or conjunction) of half-spaces. To avoid
the discovery of such specific predicates, we restrict ourselves to the case where
the classifier is either a union or an intersection of half-spaces. This means that
we will not be able to find classifiers in all cases even if they exist in the theory
of linear arithmetic. We will now give an algorithm which is only guaranteed



to succeed if there exists a classifier which is an intersection of half-spaces. We
only discuss the case of intersection here as finding union of half-spaces can be
reduced to finding intersection of half-spaces by solving the dual problem.

Definition 3 (Problem Statement). Given X+ and X− such that there exist
a set of half-spaces H = {h1, . . . , hn} classifying X+ and X− correctly (i.e.,
∀a ∈ X+.

∧n
i=1 hi(a) and ∀b ∈ X−. ¬

∧n
i=1 hi(a)) find H.

SVM-I(X+,X−)
H := true
Misclassified := X−

while |Misclassified |6= 0
Arbitrarily choose b from Misclassified
h := Process(SVM(X+, {b}), X+, X−)
∀b′ ∈Misclassified s.t. h(b′) < 0 : remove b′ from Misclassified
H := H ∧ h

end while

return H

Fig. 5. Algorithm for classifying by intersection of half-spaces

We find such a classifier using the algorithm of Fig. 5. We initialize the classifier
H to true or 0 ≤ 0. Next we compute the set of examples misclassified by H. ∀a ∈
X+.H(a) = true and hence all positive examples have been classified correctly.
∀b ∈ X−.H(b) = true and hence all negative examples have been misclassified.
Therefore we initialize the set of misclassified points, Misclassified, by X−. We
consider a misclassified element b and find the support vectors between b andX+.
Using the assumption that a classifier using intersection of half-spaces exists for
X+ and X−, we can show that b is linearly separable from X+. Using Lemma 1,
we will obtain a half-space h = wTx+ d ≥ 0 for which h(b) < 0. We will add h
to our classifier and remove the points which h classifies correctly from the set
of misclassified points. In particular, b is no longer misclassified and we repeat
until all examples have been classified correctly. A formal proof of the following
theorem can be developed along the lines of the argument above:

Theorem 1 (Correctness of SVM-I). If there exists an intersection of half-
spaces, H, that can correctly classify X+ and X− then SVM-I is a sound and
complete procedure for finding H.

We make the following observations about SVM-I:

– The classifier found depends on the order by which the misclassified element
b is chosen and different choices can lead to different classifiers.

– In the worst case, it is possible that SVM-I will find as many half-spaces
as the number of negative examples. But since optimal margin classifiers
generalize well, the worst case behavior does not usually happen in practice.



– SVM-I is related to the problem of “learning intersection of half-spaces”.
In the latter problem, given positive and negative examples, the goal of the
learner is to output an intersection of half-spaces which classifies any new
example correctly with high probability. There are several negative results
about learning intersection of half-spaces. If no assumptions are made re-
garding the distribution from which examples come from, we cannot learn
intersection of even 2 half-spaces in polynomial time unless RP=NP [2,18].

SVM-I can be incorporated into Basic by replacing the calls to SVM and Pro-
cess with SVM-I in Fig. 4. Now Basic with SVM-I can find classifiers when
X+ and X− are not linearly separable but can be separated by an intersection
of half-spaces.

3.2 A Sound Algorithm

We observe that Basic, with or without SVM-I, only finds classifiers between
X+ and X−. The way Basic is defined, these candidate interpolants are over
the common variables of A and B. But if we do not have enough positive and
negative examples then a classifier between X+ and X− is not necessarily an
interpolant. When this happens, we need to add more positive and negative
examples refuting the candidate interpolant.

Interpolant(A, B)
X+, X−:= ∅
while true

H := Basic(A, B) // Basic with SVM-I
if SAT(A ∧ ¬H)

Add satisfying assignment to X+ and continue

if SAT(B ∧H)
Add satisfying assignment to X− and continue

break

return H

Fig. 6. A sound algorithm for interpolation

The algorithm Interpolant computes a classifier H which classifies X+ and
X− correctly i.e., ∀a ∈ X+. H(a) = true and ∀b ∈ X−. H(b) = false by calling
Basic with SVM-I. If H is implied by A and is unsatisfiable in conjunction
with B then we have found an interpolant and we exit the loop. Otherwise we
update X+ and X− and try again. We have the following theorem:

Theorem 2 (Soundness of Interpolant). Interpolant(A,B) terminates
if and only if the output H is an interpolant between A and B.

Proof. The output H is defined over the common variables of A and B (follows
from the output of Basic).



only if : Let Interpolant(A, B) terminate. This means that both conditions
B ∧ H ≡ ⊥ and A ∧ ¬H ≡ ⊥ must be satisfied (these are conditions for
reaching break statement), which in turn implies that A ⇒ H holds and
therefore H is an interpolant of A and B.

if : Let H be an interpolant of A and B. This means that A ⇒ H and hence
A ∧ ¬H ≡ ⊥. B ∧H ≡ ⊥ holds because H is an interpolant and therefore,
the break statement is reachable and Interpolant(A, B) terminates.

4 Handling Superficial Non-linearities

Most program verification engines do not reason about non-linear arithmetic
directly. They try to over-approximate non-linear functions, say by using unin-
terpreted function symbols. In this section, we discuss how to use our technique
to over-approximate non-linear arithmetic by linear functions.

Suppose A∧B ≡ ⊥ and A is a non-linear predicate. If we can find a linear in-
terpolant I between A and B then A⇒ I. Hence I is a linear over-approximation
of the non-linear predicate A. We discuss, using an example, how such a predicate
I can be useful for program verification.

Suppose we want to prove that line 5 is unreachable in Fig. 7. There are
some lines which are commented. These will be considered later. This program
assigns z non-deterministically and does some non-linear computations. If we
can show that an over-approximation of reachable states after line 3 is disjoint
from x = 2 ∧ y 6= 2 then have a proof that error() is unreachable.

foo()

{

// do{

1: z = nondet();

2: x = 4 * sin(z) * sin(z);

3: y = 4 * cos(z) * cos(z);

// } while (*);

4: if ( x == 2 && y != 2 )

5: error() ;

}

Fig. 7. A contrived example with superficial non-linearities

We use our technique for computing interpolants over the non-linear predicates
to construct an easy to analyze over-approximation of this program. We want to
find an interpolant of the following predicates (corresponding to the infeasible
trace (1, 2, 3, 4, 5)):

A ≡ x = 4sin2(z) ∧ y = 4cos2(z)
B ≡ x = 2 ∧ y 6= 2

Observe that SVMs consume examples and are agnostic to how the examples are
obtained. Since A is non-linear, we can obtain positive examples by randomly



substituting values for z in A and recording the values of x and y. Since B
is linear, we can ask an SMT solver [19] for satisfying assignments of B to
obtain the negative examples. We have plotted one possible situation in Fig. 8 –
the positive and negative examples are represented by +’s and ◦’s respectively.
Running SVM-I and choosing the stronger predicate from the available choices
(Sect. 2.1) generates the predicate P ≡ (x + y = 4). We remark that to obtain
this predicate, we only need one negative example above, one negative example
below, one positive example to the left, and one positive example to the right
of (2, 2). Adding more examples will leave P unaffected, due to the way optimal
margin classifier is defined (Sect. 2.1). This shows the robustness of the classifier.
That is, once a sufficient number of samples have been obtained then the classifier
is not easily perturbed by changes in the training data.

Now we need to verify that P is actually an interpolant. We use an SMT
solver to show that P ∧B ≡ ⊥. To show A⇒ P can be hard. For this example,
any theorem prover with access to the axiom sin2(x) + cos2(x) = 1 will succeed.
But we would like to warn the reader that the verification step, where we check
A⇒ I and I ∧B ≡ ⊥, can become intractable for arbitrary non-linear formulas.

Using the interpolant P , we can replace Fig. 7 by its over-approximation
given in Fig. 9 for verification. A predicate abstraction engine using predicates
{x + y = 4, x = 2, y = 2} can easily show the correctness of the program of
Fig. 9. Moreover, suppose we uncomment the lines which have been commented
out in Fig. 7. To verify the resulting program we need a sufficiently strong loop
invariant. To find it we consider a trace executing the loop once and try to find
the interpolant. We do the exact same analysis we did above and obtain the
interpolant (x+ y = 4). This predicate is an invariant and is sufficient to prove
the unreachability of error().

Other techniques for interpolation fail on this example because either they
replace sin and cos by uninterpreted functions [13,24] or because of the re-
stricted expressivity of the range of interpolants computed (e.g. combination
of boxes [15]). We succeed on this example because of two reasons:

1. We are working with examples and hence we are not over-approximating the
original constraints.

2. SVM succeeds in computing a predicate which generalizes well.
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Fig. 8. Positive and negative examples for Fig. 7. The lines show classifiers.



foo()

{

assume ( x + y == 4 );

if ( x == 2 && y != 2)

error() ;

}

Fig. 9. An over-approximation of Fig. 7.

5 Experiments

We have implemented a prototype version of the algorithm described in this
paper in 1000 lines of C++ using libsvm [3] for SVM queries and the Z3 theorem
prover [19]. Specifically, we use the C-SVC algorithm with a linear kernel for
finding the optimal margin classifier. C-SVC is parametrized by a cost parameter
c. A low value of c allows the generated classifier to make errors on the training
data. Since we are interested in classifiers that classify correctly, we assign a very
high value to c (1000 in our experiments). The input to our implementation is two
SMT-LIB formulas and the output is also obtained as an SMT-LIB formula. We
try to sample for at most ten distinct positive and negative examples each before
Basic makes a call to libsvm. In these experiments, the classifier is described
by the hyperplane parallel to the optimal margin classifier and passing through
the positive support vectors. We consider the half-space, corresponding to this
hyperplane, such that the negative examples lie outside the half-space. Hence
we are considering the strongest predicate from the options provided to us by
SVM (Sect. 2.1).

We have tried our technique on small programs and our results are quite
encouraging (see Table 1). The goal of our experiments was to verify the imple-
mentability of our approach. We consider traces that go through the loops once
and manually generate A and B in SMT-LIB format for input to our tool. These
programs contain assertions that can be discharged using loop invariants that
are a conjunction of linear inequalities.

First, let us consider the left half of the table. The programs f1a, ex1, and
f2 are adapted from the benchmarks used in [6]. The programs nec1 to nec5

are adapted from NECLA static analysis benchmarks [12]. The program fse06

is from [7] and is an example on which Yogi [7] does not terminate because it
cannot find the invariant x ≥ 0 ∧ y ≥ 0.

The program pldi08, adapted from [9], requires a disjunction of half-spaces
as an invariant. We obtain that by solving the dual problem: we interchange the
labels of positive and negative examples and output the negation of the inter-
polant obtained. For these examples, we were generating at most ten positive
and negative examples before invoking SVM. Hence we expect the column “To-
tal Ex” to have entries less than or equal to 20. Most entries are strictly less
than twenty because several predicates have strictly less than ten satisfying as-
signments. This is expected for A as it represents reachable states and we are
considering only one iteration of the loops. So very few states are reachable and



Table 1. File is the name of the benchmark, LOC is lines of code, Interpolant is the
computed interpolant, Total Ex is the sum of the number of positive and negative ex-
amples generated for the first iteration of Interpolant. For the second part, Iterations
represents the number of iterations of Interpolant.

File LOC Interpolant Total Ex Time (s) Interpolant Iterations Time (s)

f1a 20 x = y 12 0.017 x = y & y >= 0 4 0.017

ex1 22 xa + 2*ya >= 0 13 0.019 xa + 2*ya >= 0 4 0.02

f2 18 3*x >= y 13 0.021 3*x >= y 12 0.022

nec1 17 x <= 8 19 0.015 x <= 8 9 0.02

nec2 22 x < y 12 0.014 x < y 2 0.019

nec3 15 y <= 9 11 0.014 y <= 9 1 0.012

nec4 22 x = y 20 0.019 x = y 4 0.017

nec5 9 s >= 0 11 0.013 s >= 0 1 0.016

pldi08 10 x < 0 | y > 0 17 0.02 6*x < y 1 0.013

fse06 8 y >= 0 & x >= 0 11 0.014 y >= 0 & x >= 0 2 0.015

hence A has very few satisfying assignments. Nevertheless, 11 to 20 examples are
sufficient to terminate Interpolant in a single iteration for all the benchmarks.

To get more intuition about Interpolant, we generate the second part of
the table. Here we start with one positive and one negative example. If the
classifier is not an interpolant then we add one new point that the classifier
misclassifies. The general trend is that we are able to find the same classifier
with a smaller number of samples and few iterations. In f1a we generate a
predicate with more inequalities. This demonstrates that the generated classifier
from SVM-I might be sensitive to the order in which misclassified examples are
traversed (Fig. 5). For pldi08, when we found the classifier between the first
positive and negative example generated by Z3 then we found that it was an
interpolant. Since the classifier has been generated using only two examples,
the training data is insufficient to reflect the full structure of the problem, and
unsurprisingly we obtain a predicate that does not generalize well. These exper-
iments suggest that the convergence of Interpolant is faster and the results
are better if we start with a reasonable number of samples.

Finally, we compare with the interpolation procedure implemented within
OpenSMT [16] in Table 2. OpenSMT fails to find the predicate representing
the loop invariant for f1a, pldi08, and fse06. This is in line with our claim
that machine learning algorithms can provide relevant predicates. OpenSMT
fails on nec1 because this benchmark contains non-linear multiplications. It
turns out that the program has a linear interpolant, found by our technique,
which is sufficient to discharge the assertions in the program. Finally, the timing
measurements show that we are competitive with OpenSMT.

6 Related Work

In this section, we place our work in the context of existing work on interpolation
and machine learning. Our philosophy of computing interpolants from samples



Table 2. File is the name of the benchmark and Interpolant is the interpolant computed
by the interpolation procedure implemented within OpenSMT. SAME refers to the
benchmarks for which interpolants computed by OpenSMT were identical to those
computed by our technique.

File Time(s) Interpolant

f1a 0.022 ( (y = 1 | x <= 0) & x = 1 ) | ( y = 0 & (y = 1 | x <= 0) )

ex1 0.021 xa + 2*ya >= 0 | xa + 2*ya >= 5 | xa + 2*ya >= 5

f2 0.020 y <= 3*x | y <= 3*x + 1 | y <= 3*x + 1

nec1 NA FAIL

nec2 0.018 x < y (SAME)

nec3 0.016 y <= 9 (SAME)

nec4 0.021 ( x = y | y = 0 ) | ( y = x ) | ( y = x)

nec5 0.018 s >= 0 (SAME)

pldi08 0.017 y > x

fse06 0.017 y + x >= 0 & y >= 0 & y >= 0 & y >= 0

is similar to Daikon [5]; Daikon computes likely invariants from program tests.
Whereas, we compute sound interpolants statically.

We have considered interpolation only over the quantifier free theory of linear
arithmetic. Extension to richer theories, such as the theory of arrays, is left for
future work. The interpolants found by our technique are limited to conjunctions
of linear inequalities. To handle programs requiring interpolants which are a
combination of disjunctions and conjunctions of linear inequalities, we propose to
use the existing techniques for control flow refinement [1,8,26]. These techniques
perform source to source semantics preserving transformations so that the loops
in the resulting program require only disjunction-free invariants.

Extending the work of [14,22], McMillan [17] computed interpolants of (A,B),
where A and B are in the quantifier free theory of linear arithmetic, in a linear
scan of the proof of unsatisfiablity of A ∧ B. This method requires an explicit
construction of the proof of unsatisfiability. In a recent work, Kupferschmid
et al. [15] gave a proof based method for finding Craig interpolants for non-
linear predicates. The proof based methods like these are generally not scalable:
Rybalchenko et al. [24] remark that “Explicit construction of such proofs is a
difficult task, which hinders the practical applicability of interpolants for ver-
ification.” Like our approach, their method for interpolation is also not proof
based. They apply linear programming to find separating hyperplanes between
A and B. In contrast to their approach, we are working with samples and not
symbolic constraints. This allows us to use mature machine learning techniques
like SVMs as well as gives us the ability to handle superficial non-linearities.

We selected SVM for classification as they are one of the simplest and most
widely used machine learning algorithms. There are some classification tech-
niques which are even simpler than SVM [10]. We discuss them here and give
the reasons behind not using them for classification. In linear regression, we
construct a quadratic penalty term for misclassification and find the hyperplane
which minimizes the penalty. Unfortunately the classifiers obtained might err



on the training data even if it is linearly separable. Another widespread tech-
nique, logistic regression, is guaranteed to find a separating hyperplane if one
exists. But the output of logistic regression depends on all examples and hence
the output keeps changing even if we add redundant examples. The output of
SVMs, on the other hand, is entirely governed by the support vectors and is not
affected by other points at all. This results in a robust classifier which is not
easily perturbed and leads to better predictability in results.

There has been research on finding non-linear invariants [25,20,23]. These
techniques aim at finding invariants which are restricted to polynomials of vari-
ables. In contrast, we are not generating non-linear predicates. We are finding
linear over-approximations of non-linear constraints and hence our technique
only generates linear predicates. On the other hand, unlike [25,20,23] we are not
restricted to non-linearities resulting only from polynomials and have demon-
strated our technique on an example with transcendental functions.

7 Conclusion

We have shown that classification based machine learning algorithms can be
profitably used to compute interpolants and therefore are useful in the context
of program verification. In particular, we have given a step-by-step account of
how off-the-shelf SVM algorithms can be used to compute interpolants in a
sound way. We have also demonstrated the feasibility of applying our approach
via experiments over small programs from the literature. Moreover, we are also
able to compute interpolants for programs that are not analyzable by existing
approaches – specifically, our technique can handle superficial non-linearities.

As future work, we would like to extend our algorithms to compute inter-
polants for non-linear formulas. We believe that SVMs are a natural tool for this
generalization as they have been extensively used to find non-linear classifiers.
We would also like to integrate our SVM-based interpolation algorithm with a
verification tool and perform a more extensive evaluation of our approach.
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