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ABSTRACT
Asynchronous systems programs are usually written in an
event-driven style which is tailored for performance rather
than analyzability. Such programs have non-sequential con-
trol �ow and make heavy use of heap data structures to
store and retrieve state related to pending operations. As
a result, existing tools that analyze sequential programs are
ine�ective in analyzing asynchronous systems components.
We describe clarity, a programming language that en-

ables analyzable design of asynchronous components. clar-
ity has three novel features: (1) Nonblocking function calls
that allow event-driven code to be written in a sequential
style. If a blocking statement is encountered during the ex-
ecution of such a call, the call returns and the remainder
of the operation is automatically queued for later execution.
(2) Coords, a set of high-level coordination primitives, en-
capsulate common interactions between asynchronous com-
ponents and make high-level coordination protocols explicit.
(3) Linearity annotations delegate coord protocol obliga-
tions to exactly one thread at each asynchronous function
call, transforming a concurrent analysis problem into a se-
quential one.
We demonstrate how these language features enable both

a more intuitive expression of program logic and more e�ec-
tive program analysis�most checking is done using simple
sequential analysis. We describe our experience in devel-
oping, testing, and analyzing a network device driver using
clarity.

1. INTRODUCTION
High-performance systems components are often written

using asynchronous layers. Rather than waiting for a time
consuming operation to complete, a component typically
executes whatever portion of the operation it can without
blocking, records the progress of the operation, and returns
to the caller with status �pending.� The remainder of the
operation executes at a later time�perhaps in a di�erent
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thread context. When the operation is �nished�perhaps af-
ter being blocked and resumed in several thread contexts�a
callback function signals completion.
This kind of asynchronous systems programming is usu-

ally done in an event-driven style which is tailored for perfor-
mance rather than analyzability: the stages of an operation
are �manually scheduled,� often by placing them in several
di�erent functions which are unrelated in the call graph;
asynchronous operations achieve low synchronization over-
head using low-level primitives like locks, semaphores, and
completion ports; component state is managed manually us-
ing heap-allocated data structures like queues. This style of
programming leads to e�cient implementations, but is dif-
�cult and error prone.
Recently, there has been progress in using static analysis

tools for error detection [13, 6, 17, 11]. These tools can per-
form scalable whole-program inter-procedural analysis for
sequential programs on properties that do not involve rea-
soning about the heap, such as locking discipline and the safe
initialization and de-allocation of pointers from the stack.
Once an object is put into a heap data structure, such as
a linked list or queue, these techniques lose precision and
become ine�ective.
Event-driven programs are non-sequential, asynchronous,

and maintain state in the heap for most operations. Thus,
most current static analysis tools can check only limited
properties of such programs. An enormous amount of re-
search e�ort has gone into improving the precision and scal-
ability of static analysis for concurrent programs and heap
data, but the performance of these analyses continues to be
a signi�cant problem. This paper attempts to change the
statement of the problem: Can we write event-driven pro-
grams di�erently, so that they become more analyzable?
We introduce a programming language, clarity, which

enables analyzable design of asynchronous components.
clarity has three novel features: nonblocking function
calls, high-level coordination primitives, and linearity an-
notations.
Nonblocking function calls. Traditional programming
languages have two types of calls: synchronous and asyn-
chronous. In synchronous calls, the caller blocks until the
callee �nishes�if the callee has to wait for resources to be-
come available, the caller waits as well. In asynchronous
calls (e.g., POSIX fork/exec), the call returns immediately
and the body of the called function runs in a separate thread.
clarity introduces a nonblocking call, a new type of asyn-
chronous call that is particularly suited for writing event
driven programs. When a blocking statement is executed



during a nonblocking call, the call returns and the remain-
ing part of the computation is automatically queued for later
execution.
The behavior of a nonblocking call can be simulated in C

by returning a special �pending� value and manually queuing
the remainder of the computation. This is the strategy fol-
lowed by many �asynchronous� systems interfaces. clarity
allows the programmer to write each operation in a sequen-
tial fashion and choose between blocking and non-blocking
behavior at the call site. The programmer and analysis soft-
ware can reason about the call as though it is synchronous,
while the clarity compiler transforms the call into asyn-
chronous, event-driven code that uses queues to track the
state of pending operations.
Coords. clarity provides a set of high-level coordination
primitives, or coords, which encapsulate common interac-
tions between asynchronous components; logical operations
are de�ned sequentially, using coords and event-based com-
munication to indicate synchronization requirements. Each
coord has a protocol declaration de�ning the correct usage
of its coordination interface. A sequential static analysis en-
sures that clarity code using the coord follows the protocol
along all code paths.
Linearity annotations. Code annotations in clarity

delegate protocol obligations to exactly one thread at each
asynchronous function call, making the behavior of an oper-
ation with respect to each coord e�ectively sequential. Using
the coord protocol, a clarity program can be analyzed us-
ing simple compositional reasoning: �rst, we can check that
the operation follows the protocol, using a purely sequential
analysis; then, assuming that all operations follow the pro-
tocol, we can verify that the implementation of the coord
does not have deadlocks or assertion violations.
These primitives and design decisions make clarity pro-

grams easier to analyze. We believe that easy mechanical
analysis is correlated with easy human comprehension. In
our experience, we �nd that clarity programs are far eas-
ier to understand than event-driven programs written in C.
Since ease of understanding is subjective, we will focus on
more objective criteria: we demonstrate that we can analyze
and check properties in clarity programs that cannot be
checked using existing techniques directly on event-driven C
programs.

2. OVERVIEW
Motivating example. We illustrate the di�culties of an-
alyzing event-driven systems code using code snippets from
a network miniport driver (Figure 1).
The function sendpacket transmits the packet pointed-to

by the function argument p. The function is able to trans-
mit the packet (by calling NICSendPacket) only if the hard-
ware is available; otherwise, it simply adds the packet to
the queue a->pSendList. It is not obvious what happens to
this packet after it has been added to this queue, since there
is no control dependency between sendpacket and the code
that processes the queue. Packets from this queue are re-
moved and transmitted at several places in the driver code�
the logical operation �send packet� is �manually scheduled�
or �ripped� across several functions. One such example is
shown in function doPendingSend.
A property we might want to check is that every packet

passed to sendpacket is �completed� along all code paths
(by calling CompletePacket). In the sendpacket code, this

STATUS sendpacket(Packet *p, Adapter *a) {
if( a->AdapterState == NicPausing )
return STATUS_FAILED;

INC_REF_CNT(a);
AcquireSpinLock(&a->sendLock);
if( !NIC_IS_IDLE_OR_BUSY(a->pHwCsr) ) {
Status = NICSendPacket(a);
CompletePacket(a, p);
DEC_REF_CNT(a);

} else {
Status = STATUS_PENDING;
ListAddEnd( a->pSendList, p);

}
ReleaseSpinLock(&a->sendLock);
return Status;

}

/* Called with sendLock held */
STATUS doPendingSend(Adapter *a) {

assert( !NIC_IS_IDLE_OR_BUSY(a->pHwCsr) );
a->pCurPacket = ListRemoveHead( a->pSendList );
Status = NICSendPacket(a);
CompletePacket(a, a->pCurPacket);
DEC_REF_CNT(a);
return Status;

}

STATUS pause(Adapter *a) {
if( a->AdapterState == NicPausing )
return STATUS_FAILED;

if(REF_CNT(a) == 0) {
a->AdapterState = NicPaused;
PauseComplete(a->AdapterHandle);
return STATUS_SUCCESS;

}
else
return STATUS_PENDING;

}

void ReleaseBuffers() {
if (REF_CNT(a) == 0) {

a->AdapterState = NicPaused;
PauseComplete(a->AdapterHandle);

}
}

Figure 1: Sending packets with pausing using C

readily holds in the if branch. The situation is more com-
plicated in the else branch, since the packet is put into a
queue from which it is retrieved and completed at a later
time, in another function. Because of the di�culty of track-
ing heap objects and non-sequential control �ow, sequential
error detection tools are unable to check if every packet is
completed along all execution paths.
Often, di�erent operations need to coordinate; such coor-

dination is implemented using ad hoc synchronization mech-
anisms that are hard to understand and reason about. For
example, consider the function pause in Figure 1. This
function is the entry point for a �pause� operation, which
needs to wait until all outstanding sends are �nished be-
fore it informs the operating system that it has completed
(by calling PauseComplete). This particular driver main-
tains a reference count, REF_CNT(a), which tracks the num-
ber of outstanding sends in progress. In several unrelated
places in the code, inside and outside the pause function, the
reference count is checked, updated, and PauseComplete is
called. Suppose we wish to automatically check that the



STATUS sendpacket(Packet *p, Adapter *a)
{
if( !(a->sendGate->Enter()) )

return STATUS_FAILED;
waitfor( STATUS_PENDING,

!NIC_IS_IDLE_OR_BUSY(a->pHwCsr), [] );
Status = NICSendPacket(a);
CompletePacket(a, p);
a->sendGate->Exit();
return Status ;

}
STATUS pause(Adapter *a)
{
if( !(a->sendGate->Close()) )

return STATUS_FAILED;
waitfor( STATUS_PENDING, a->sendGate->IsEmpty(),

[a->sendGate->e] );
a->AdapterState = NicPaused;
PauseComplete(a->AdapterHandle);
NICDisableInterrupt(a);
return STATUS_SUCCESS;

}

Figure 2: Sending packets with pausing using clar-

ity

pause operation coordinates with all the other operations
correctly. This is possible only by doing a global analysis
that considers all possible interleavings between pause and
other operations, taking into account all the implicit control
dependencies, the reference counts, and the heap objects in-
volved. Such a check is beyond the reach of today's analysis
technology.
Miniport driver in clarity. Figure 2 shows a clarity
implementation of the sendpacket and pause functions.
All the code that handles the logical operation of send-

ing a packet is now present together in sendpacket. In-
side sendpacket, clarity's waitfor primitive is used to
logically wait until the hardware becomes ready and then
transmit the packet. Calls to the sendpacket function from
the operating system are nonblocking�if the hardware is
not ready, the caller is returned the value STATUS_PENDING
immediately (the �rst argument to waitfor); the remainder
of the computation is automatically converted into a clo-
sure and put into a queue. Thus, it works essentially like
the code in Figure 1, but the programmer does not have to
manually schedule the code or manage the persistent state.
Moreover, a sequential analysis tool can now easily check
that every packet is completed on all execution paths be-
fore the sendpacket function exits, without doing any heap
analysis.
clarity uses higher level abstractions called coords to

express coordination between di�erent asynchronous opera-
tions. The code in Figure 2 uses sendGate, an instance of
the gate coord. All send operations �enter� the gate �rst
by calling sendGate->Enter() and �exit� the gate before re-
turning by calling sendGate->Exit(). The function pause
merely �closes� the gate by calling sendGate->Close(), then
waits for the gate to become �empty� and returns. Unlike
Figure 1, there is only one place in the code (inside the body
of pause) where the pause operation is completed. At run-
time, pause may need to wait asynchronously for pending
send operations to complete, but the programmer does not
have to worry about these details.
Signi�cantly, clarity enables the programmer to make

coord gate
{
/* Sent when a closed gate is empty. */
event e;
/* Called by a "client" thread to enter the gate.
* Returns false if the gate is closed. */
bool Enter();
/* Called by a "client" thread to exit the gate.
* If the gate is closed and this is the last thread
* to exit the gate, the event e is sent by Exit() */
void Exit();
/* Called by a "control" thread to close the gate.
* Returns false if the gate is already closed.
* If gate is empty, event e is sent by Close() */
bool Close();
/* Called by a "control" thread waiting
* for the gate to clear. */
bool IsEmpty();

protocol{
enum state {init,s1,s2,done,final} = init;
Enter.return{

if(state==init && $ret) state = s1;
elseif (state==init && !$ret) state = done;
else abort();

}
Exit.return{

if(state==s1) state= done;
else abort();

}
Close.return{

if(state==init && $ret) state = s2;
elseif (state==init && !$ret) state = done;
else abort();

}
waitfor{
if($1 == IsEmpty() && $2 == e) state = done;
else abort();

}
ThreadDone{
if (state==done || state==init) state = final;
else abort();

}
}

Figure 3: Coord for gate

the high-level contract between pause and the other op-
erations explicit. Consequently, it is possible to perform
simple compositional analysis automatically and check that
the coordination has been implemented and used properly.
Consider again the example from Figure 2. The object
a->sendGate is an instance of the coord gate, whose inter-
face is given in Figure 3. The interface has four functions:
the �rst two, Enter and Exit, are used by �client� threads
when they begin and end operations that are controlled by
the gate; the second two, Close and IsEmpty, are used by
�control� threads. Close is used to prevent new operations
from beginning and IsEmpty is used to check whether pend-
ing operations have completed. The gate coord models the
�asynchronous rundown� of a collection of processes�a com-
mon pattern in asynchronous systems programming. A gate
can be implemented in a few dozen lines of code using an
atomic counter and a boolean �ag.
Each coord declaration is required to specify the sequence

of calls by which every logical thread accesses the coord. The
protocol declaration is given as a slic property [7]. The
protocol declares a set of variables and then de�nes tran-



void read(FILE *fp, int n) {
chute c;
read_block(fp,0,n,&c);

}

void read_block(FILE *fp, int i, int max, chute *c) {
FileBlock fb;
if( i==max ) return;
/* Enter the chute before spawning thread, to

ensure ordering. */
int token = c->Enter();
/* parallel call to the next file block reader. */
fork read_block(fp,i+1,max,c);
/* asynchronous part, can execute without any

ordering */
fb = fs_read(fp,n);
/* Synch before sending block on the network. */
waitfor( c->IsMyTurn(token), [c->e] );
/* Send and exit. */
net_send(fb);
c->Exit();

}

Figure 4: Network �le server with asynchronous

reading but serialized sending

sitions caused by triggers, e.g., a function call return, the
evaluation of a waitfor statement, or thread termination.
A transition may inspect and update the values of the proto-
col variables. A call return transition may inspect the return
value using the $ret variable. A waitfor or call transition
may inspect the argument list using positional variables $1,
$2, etc. A transition to an error state is represented by a
call to abort.
In the case of the gate coord, the protocol declaration

states that the thread either: (1) calls Enter �rst and, if
the call returns true, then calls Exit (a �client� thread),
or (2) calls Close �rst and, if the call returns true, then
waits until IsEmpty() returns true (a �control� thread). Us-
ing the protocol speci�cation, a gate implementation can
be compositionally checked for correct concurrent behavior:
assuming that threads using the gate obey the protocol, we
can create a deductive proof or run an automated model
checker to show that the gate implementation is deadlock
free.
We can check that the sendpacket and pause threads

in Figure 2 satisfy the protocol for gate by using a per-
thread sequential analysis. The compositional reasoning in
this case is simplistic, since no threads are created dynam-
ically. If new threads are created, compositional analysis
of coord protocol conformance becomes complicated. We
make a particular design choice�every coord protocol in-
stance in progress needs to be handed o� to exactly one of
the two threads at each asynchronous call; the hand-o� is
speci�ed using linearity annotations. We illustrate this with
an example.
File Server. Consider the network �le server shown in
Figure 4. To read and transmit a large �le with n blocks,
the �le server launches n parallel threads�one to read each
block. After launching the reads in parallel, the main thread
waits for the reads to complete and sends them in sequence
over the network. The code spawns n logical threads each
of which execute read_block. The spawning is done recur-
sively by the fork call to read_block inside the body of
read_block. The code uses c, an instance of the chute co-

coord chute
{
/* Sent when a thread exits. */
event e;
/* Called by a thread to "get on line"
* in the chute. Returns an integer token
* (the thread's "ticket"). */
int Enter();
/* Called by a thread to check if it is
* "first in line" given its token. */
bool IsMyTurn(int);
/* Called by a thread to exit the chute. */
/* Sends the event e */
void Exit();

protocol{
enum state {init,s1,s2,done,final} = init;
int token;
Enter.return{

if(state==init){token = $ret; state = s1;}
else abort();

}
waitfor{

if(state==s1 && $1==IsMyTurn(token) && $2==e)
state=s2;

else
abort();

}
Exit.return{

if(state==s2) state=done;
else abort();

}
ThreadDone{

if(state==done || state==init) state = final;
else abort();

}
}

Figure 5: Coord for chute

ord, to do the necessary synchronization. We omit the �rst
argument to waitfor because the return type of read_block
is void.
The interface for the coord chute is shown in Figure 5.

The protocol declaration speci�es that each thread using
the chute must: �rst call Enter, the return value of which is
an integer token; then call waitfor(IsMyTurn(token),e),
where e is the event belonging to the chute; �nally, call
Exit. This protocol can be understood as a variation of
Lamport's bakery algorithm [22] where the thread may enter
an non-critical section after �taking a number� (entering the
chute).
Unlike gate, there is only one correct usage pattern for a

chute�there is no distinction between �client� and �control�
threads. Note that Exit does not take a token argument�
the protocol forbids any thread to call Exit except when
IsMyTurn returns true. Note also that the protocol forbids
a thread from trying to �spoof� a token and steal a turn�
for each thread the argument to IsMyTurn must match the
return value of Enter. Again, checking if each thread follows
the protocol can be done using purely sequential analysis,
one thread at a time. Separately, the correctness of the
chute implementation can be established once and for all,
assuming that all the client threads conform to the protocol.
Iterative File Server. Our �nal example is an iterative
implementation of the network �le server, shown in Figure 6.
Instead of a chain of n recursive fork calls to read_block,



void read(FILE *fp, int n) {
chute c;
for(i = 0; i < n; i++) {

/* Enter the chute before spawning
thread, to ensure ordering. */

int token = c.Enter();
// The annotation @c in the call below
// indicates that the remainder of the
// protocol in chute c will be
// carried over by the callee
fork read_and_send_block (fp,i,token,&c)@c;

}
}

void read_and_send_block(FILE *fp, block i, int token,
chute *c)

{
FileBlock fb;
fb = fs_read(fp,i);
/* Synch before sending block on the network. */
waitfor( c->IsMyTurn(token), [c->e] );
/* Send and exit. */
net_send(fb);
c->Exit();

}

Figure 6: Alternate implementation for Network �le

server

the iterative implementation has a �master� thread that gen-
erates n parallel calls to the function read_and_send_block
inside a loop. Note that the thread executing read calls
Enter, but never calls IsMyTurn or Exit; likewise, each
read_and_send_block thread calls IsMyTurn and Exit with-
out �rst calling Enter.
Whenever a logical thread makes an fork call, it e�ec-

tively creates two logical threads of execution. We require
that each coordination protocol in progress be handed o� to
exactly one of the two threads; each fork call is annotated
with those instances of the protocol that will be handled by
the callee (i.e., the new thread). Note that the fork call to
read_and_send_block in Figure 6 is annotated with @c. The
annotation indicates that the callee read_and_send_block
is responsible for completing the protocol for chute c. Note
that the recursive fork call to function read_block in Fig-
ure 4 does not contain the annotation @c. This indicates
that the calling thread continues to be responsible for the
protocol on c.
Since exactly one logical thread is responsible for carrying

out the remainder of the protocol at every asynchronous
call, the sequential analysis merely follows one of the two
continuations at the call and ignores the other, depending
on which instance of the protocol is currently being analyzed
(see Section 5).

3. RELATED WORK
The merits of the event-driven programming style have

been the subject of controversy for decades (see, e.g., [24,
30, 23, 35]). Recent work, e.g., the Capriccio project [36]
and Adya et al [1], has focused on capturing the perfor-
mance of the event-driven style in a more thread-like id-
iom. Li and Zdancewic have demonstrated how this ap-
proach can be incorporated into a language like Haskell [27].
Some of the techniques presented in the above papers (e.g.,
[35, 36]) could be used to optimize the clarity compiler

and runtime. However, none of the above e�orts address
inter-operation coordination in a way that allows for simple
compositional reasoning.
Lee [26] discusses the di�culties of writing correct con-

current software using the threaded model and calls for the
use of design patterns for concurrent computation (cf. [25,
31]). We believe coords are exactly these kinds of design
patterns. To our knowledge, patterns like gate and chute
have not previously been described in the literature. The
coords we present here are inspired by a concurrency li-
brary developed by one of the authors�they represent de-
sign patterns derived from the folk wisdom of systems pro-
grammers. clarity is an attempt to capture this folk wis-
dom and give language-level support to these abstractions.
Further, clarity allows programmers to write their own
coords, which allows the development of customized coor-
dination schemes. with the aid of modular static analysis
tools. For example, our tinynetapi driver (see Section 6)
uses a gchute coord which combines elements from both the
gate and chute coords.
The language primitives of clarity used for sending and

waiting for events are derived from process calculi such as
CCS [28], CSP [19], and the π-calculus [29]. Coords have
some similarity to Hoare's monitors [18]. The distinctive
feature of clarity's coords are the protocol speci�cation
and the linear hand-o� at asynchronous calls, which allows
compositional analyzability.
Our compilation strategy relies in part on a transforma-

tion to continuation-passing style (CPS) [3], which requires
collecting the execution environment of the current function
in a form that can be stored and resumed. This is a well-
studied problem. Scheme's closures [34] have been the most
in�uential work in this area. The idea has also appeared be-
fore in Algol's thunks [20] and in Hewitt's actors [32]. Sev-
eral systems provide light-weight threads or ��bers�, which
allow programmers to create, save and resume closures ef-
�ciently [35, 36, 1]. These mechanisms can been used to
mimic the behavior of clarity's blocking primitives, but
they do not constitute a full solution to the di�culties of
asynchronous programming�because of the lack of high-
level coordination patterns like coords, state still needs to
be managed manually and kept on the heap, limiting the
analyzability of the code.
Demsky [12] and Fischer et al. [15] describe CPS trans-

formations from threaded to event-driven code similar to
the one implemented in the clarity compiler. Demsky's
transformation creates a new continuation at every blocking
I/O call and relies on the scheduler to invoke the continu-
ation when the I/O is complete. Fischer et al. introduce a
wait primitive similar to our waitfor and require poten-
tially blocking functions to have a special type modi�er.
Our key contribution is to move consideration of blocking
vs. non-blocking call behavior to the caller and leverage
the simpler sequential semantics of the source program to
perform precise program analysis.
Simpler programming models for concurrency have been

tried before in specialized domains. In the hardware domain,
synchronous programming languages like Esterel [8] enforce
deterministic concurrency by design and statically schedule
the concurrent operations. For cache coherence protocols,
Teapot presents a domain speci�c high-level language that
can be both analyzed using model checking and compiled to
an implementation [10]. Languages like Cilk [9] and Mul-



Stmt ::= (Send | CallStmt | WaitFor) ;
Send ::= (send | sendall) EventId
CallStmt ::= Fork | NonBlock | Block
Fork ::= fork CallExpr Annot?
Nonblock ::= (Lvalue =)? nonblock CallExpr Annot?
Block ::= (Lvalue =)? block? CallExpr
CallExpr ::= FuncId ( CExpr List )
Annot ::= @ ProtocolId List
WaitFor ::= waitfor( CExpr , WaitCond List )
WaitCond ::= (LabelId :)? CExpr , [ EventId List ]
A List ::= A (, A)∗ | ε

Figure 7: clarity syntax

tiLisp [16] include parallel execution primitives similar to
fork, but have focused primarily on e�cient multiprocessor
implementations rather than analyzability.

4. SYNTAX AND SEMANTICS
We give the syntax and semantics for the new language

features of clarity.
Syntax. clarity is a superset of standard C [21]. clar-
ity's extensions to C syntax are given in Figure 7. The
productions EventId, FuncId, ProtocolId, and LabelId rep-
resent alpha-numeric identi�ers with event, function, proto-
col, and label types, respectively. The production Lvalue
represents a standard C lvalue expression, The production
CExpr represents a standard C expression.
A clarity Stmt may appear anywhere a statement is

allowed in standard C (e.g., in the bodies of loops and
if-then-else statements). The new statement types are
Send, CallStmt, and WaitFor. Send statements (both send
or sendall) use an event identi�er. There are three types
of call statements: Fork, Nonblock, and Block. Fork and
Nonblock calls can take an optional linearity annotation.
Block and Nonblock calls can assign their return value to
an optional Lvalue. Calls not speci�ed as fork, nonblock,
or block are understood to be blocking by default. The
WaitFor statement uses an expression (a return value) and a
(possibly empty) list of WaitCond records (wait conditions).
If the return type of the function in which the statement ap-
pears is void, the return value may be omitted. AWaitCond
record is tagged using an optional wait label and uses an ex-
pression (the wait predicate) and a (possibly empty) list of
event identi�ers (wait events) enclosed in square brackets.
The label is used by the runtime to identify the wait condi-
tion that enabled execution.
Semantics. We give a partial operational semantics for the
new statements and expressions in clarity. We omit the
semantics for sendall and waitfor statements with more
than one wait condition for space reasons. The full semantics
are presented in Appendix A.
Let A be a set. We use 2A to denote the powerset of A and

A∗ to denote the set of multisets of elements from A. We
use ∪ for set union, ] for multiset sum, and {{a1, . . . , an}}
for a multiset of elements a1, . . . , an.
Let Var, Expr, Stmt be sets of, respectively, variables,

expressions, and statements appearing in the program. Let
Locs be a set of locations, Vals ⊆ Expr a set of values,
and Evts a set of events. Let false and true be elements
of Vals such that false 6= true.
Let M = Locs → Vals be the set of memory states,

functions from locations to values. Let M : Expr → Vals
be a function from expressions to values in memory state

M . We require that M(v) = v for all v ∈ Vals.
Let C be the set of continuations. A continuation is either

blk x.S (a blocking continuation) or nbl x.S (a nonblocking
continuation), where x ∈ Var and S ∈ Stmt. Let K be
the set of continuation stacks. A continuation stack is ei-
ther • (the empty stack) or a sequence k; K, where k is a
continuation and K is a continuation stack.
Let B = Expr × 2Evts × Stmt × K be the set of blocked

thread descriptors. Each 〈b, E, S, K〉 ∈ B represents a thread
that has blocked at a waitfor statement with wait predicate
b, wait events E, next statement S, and continuation stack
K.
Let R = Stmt × K be the set of running thread descrip-

tors. Each 〈S, K〉 ∈ R represents a thread that is currently
executing with next statement S and continuation stack K.
Let S = M×2Evts×B∗×R∗ be the set of system con�gu-

rations. Each 〈M, E, Q, P 〉 ∈ S represents a system con�gu-
ration with memory state M , set of global events E, multiset
of blocked thread descriptors Q (the blocked thread list), and
multiset of running thread descriptors P (the active thread
list).
Some of the semantic rules for clarity are given in Fig-

ure 8. Semantic rules are of the form C =⇒ D, representing
the evolution of the system from con�guration C to con�g-
uration D. The semantics are nondeterministic�if a con�g-
uration C matches the left-hand side of more than one se-
mantic rule, the system may evolve according to any one of
the matched rules. Semantic rules are evaluated atomically.
Although more than one process may execute in parallel, the
set of global events and the blocked and active thread lists
will remain consistent. However, the memory state compo-
nent of a con�guration is shared between processes: race
conditions can occur if processes access the same location
without using a safe coordination scheme.
We make several simplifying assumptions in the semantic

rules. First, since clarity statements require only triv-
ial intraprocedural control �ow, we assume that each state-
ment is of the form S1; S2, where S1 is a clarity statement
and S2 is an arbitrary C statement. Second, we treat func-
tions as if they have no arguments. Function arguments
can be handled as assignments from actuals to formals; we
assume that rules not shown have evaluated these assign-
ments, leaving only the function invocation. Finally, we as-
sume that rules not shown reduce the arguments to return,
send, and waitfor from syntactic expressions to values, as
necessary: we write return v where v ∈ Vals; send e where
e ∈ Evts; and waitfor r b E where r ∈ Vals, b ∈ Expr,
and E ⊆ Evts (the pair (b, E) represents a single unlabeled
wait condition). An empty list of wait conditions is equiva-
lent to a single wait condition with the wait predicate false
(i.e., it is unsatis�able). The clarity compiler will issue a
warning in this case.
A fork call creates a new running thread descriptor and

invokes the called function (Call-Fork). A blocking call
adds a blocking continuation (blk) to the continuation stack
(Call-Blk). A nonblocking call adds a nonblocking contin-
uation (nbl) to the continuation stack (Call-Nbl). Once
the continuation stack has been updated, a called func-
tion f is expanded into the statement representing its body
(Call). The behavior of the return statement is indepen-
dent of whether the continuation stack has a blocking or
nonblocking continuation (Return-Blk and Return-Nbl,
respectively). When the continuation stack is empty, the



〈M, E, Q, P ] 〈fork f(); S, K〉〉 =⇒ 〈M, E, Q, P ] {{〈S, K〉, 〈f(), •〉}}〉 (Call-Fork)

〈M, E, Q, P ] 〈x = block f(); S, K〉〉 =⇒ 〈M, E, Q, P ] 〈f(), (blk x.S); K〉〉 (Call-Blk)

〈M, E, Q, P ] 〈x = nonblock f(); S, K〉〉 =⇒ 〈M, E, Q, P ] 〈f(), (nbl x.S); K〉〉 (Call-Nbl)

〈M, E, Q, P ] 〈f(), K〉〉 =⇒ 〈M, E, Q, P ] 〈S, K〉〉, where S is the body of f (Call)

〈M, E, Q, P ] 〈return v, (blk x.S); K〉〉 =⇒ 〈M, E, Q, P ] 〈x = v; S, K〉〉 (Return-Blk)

〈M, E, Q, P ] 〈return v, (nbl x.S); K〉〉 =⇒ 〈M, E, Q, P ] 〈x = v; S, K〉〉 (Return-Nbl)

〈M, E, Q, P ] 〈return v, •〉〉 =⇒ 〈M, E, Q, P 〉 (Return-Empty)

〈M, E, Q, P ] 〈send e; S, K〉〉 =⇒ 〈M, E ∪ {e}, Q, P ] 〈S, K〉〉 (Send)

〈M, E1 ∪ E2, Q, P ] 〈waitfor r b E2; S, K〉〉,when M(b) 6= false =⇒ 〈M, E1, Q, P ] 〈S, K〉〉 (WaitFor-Sat)

〈M, E1, Q, P ] 〈waitfor r b E2; S, k1; . . . ; kn; •〉〉, (WaitFor-Blk)

when ki = blk xi.S
′
i for 1 ≤ i ≤ n and either M(b) = false or E2 6⊆ E1 =⇒ 〈M, E1, Q ] 〈b, E2, S, k1; . . . ; kk; •〉, P 〉

〈M, E1, Q, P ] 〈waitfor r E2 b; S1, k1; . . . ; kn; (nbl x.S2); K〉〉, (WaitFor-Nbl)

when ki = blk xi.S
′
i for 1 ≤ i ≤ n and either M(b) = false or E2 6⊆ E1 =⇒ 〈M, E1, Q ] 〈b, E2, S1, k1; . . . ; kn; •〉, P ] 〈x = r; S2, K〉〉

〈M, E1 ∪ E2, Q ] 〈b, E2, S, K〉, P 〉,when M(b) 6= false =⇒ 〈M, E1, Q, P ] 〈S, K〉〉 (Unblock)

〈M, E, Q, P 〉,when f is called externally =⇒ 〈M, E, Q, P ] 〈f(), •〉〉 (Call-Ext)

Figure 8: Semantic rules for clarity programs.

thread exits (Return-Empty). The statement send e re-
sults in the event e being added to the set of global events
(Send).
The waitfor statement does not block if the wait pred-

icate evaluates to true and the wait events are available
(WaitFor-Sat). If the waitfor statement blocks, the be-
havior di�ers depending on whether or not there is a nbl
continuation on the stack. If all continuations on the stack
are blk continuations, the next statement and the continua-
tion stack are added to the blocked process list�every func-
tion in the call stack is blocked until the wait condition is
satis�ed (WaitFor-Blk). If there is a nbl continuation on
the stack, the next statement and portion of the stack pre-
ceding the nbl continuation (the blocking pre�x ) are added
to the blocked process list, but the return value argument
to waitfor is passed to the nbl continuation and the non-
blocking caller remains active�control returns to the most
recent non-blocking context (WaitFor-Nbl). Note that
the return type of all of the functions in the blocking pre�x
must match�this can be checked using a simple type analy-
sis. When the wait condition of a blocked thread descriptor
is satis�ed, the thread consumes its wait events and move
from blocked to running (Unblock).
When an external (i.e., non-clarity) caller invokes a

clarity function f, a new thread is created for f (Call-
Ext). When the thread blocks or exits, the caller receives
a return value, as if the call was nonblocking.
Rules for C language statements not given are as in stan-

dard C.
We assume that the thread scheduler is fair, i.e., that a

blocked thread whose wait condition is in�nitely often satis-
�ed will eventually move to the active thread list (by applica-
tion of Unblock) and that every active thread will eventu-
ally execute (by evaluation of its next statement). Note that
this does not preclude threads blocking inde�nitely: there
is no guarantee that a wait condition will ever be satis�ed
(or, indeed, is satis�able).
It is up to the programmer to design the clarity program

in such a way that deadlock is avoided and wait conditions
are eventually satis�ed. The use of coords and clarity's

static analysis can help avoid many concurrency errors.

5. STATIC ANALYSIS
The primary goal of clarity's static analysis is to check

if coords are implemented and used correctly. We want to
check that assertions in the implementation of the coord
never fail during execution and that no deadlocks can occur
due to the use of coords (i.e., it is not the case that one
thread is waiting for an event that is never sent). One way
to check this is to model check all threads together with
the states of the coords and explore the states that arise
from all possible interleavings. This approach scales poorly.
We exploit the protocol speci�cations of coords to do com-
positional analysis: (1) Using sequential analysis (ignoring
concurrency), we use the slam tool [6] to check that each
thread of execution uses coords according to each coord's
protocol; (2) Assuming that each thread obeys the coord's
protocol, we use the zing model checker [2] to check that
the implementation of the coord is correct.

5.1 Sequential analysis
Coord protocol speci�cations are slic properties that

slam can accept as input. Recall that we require each co-
ordination protocol in progress to be handed o� to exactly
one of the two threads at each fork call site. This enables
the static analysis to transform a clarity program with an-
notations at the fork calls to a nondeterministic sequential
program. The transformation merely one of the two contin-
uations at each parallel call depending on which protocol is
currently being analyzed.
This transformation assumes that linearity annotations

are consistent with the code. We assume that the program-
mer does not continue to use a coord after a hand-o� to
another thread, either explicitly or through an alias. Fig-
ure 9 gives examples of such inconsistencies. We can use
existing techniques to enforce linearity [33, 14].
In sequential type-state analyzers such as slam, a type-

state property is checked independently on every statically
identi�able distinct instance of the given type. There is
an internal variable called curfsm that holds the current



read(FILE *fp, int n, chute *c) {
for(i = 0; i < n; i++){

int token = c->Enter();
//aliasing c2 with c is illegal
//since c is handed off below
chute *c2 = c;
fork read_and_send_block (fp,i,token,c)@c;
//the following reference to c
//is illegal since c has been handed off
waitfor(c->isMyTurn(token),[c->e]);
//the reference to c through the alias
//c2 is also illegal
waitfor(c2->isMyTurn(token),[c2->e]);

}
}

Figure 9: Incorrect usage of �@� annotations

instance being checked. curfsm is equal to null until an
instance is detected, e.g., at a variable declaration.
We transform a clarity program P to a sequen-

tial program C(P ) such that we can analyze C(P ) in-
stead of P for conformance to the protocol speci�cation
ϕ. The transformation syntactically translates every call
fork foo(args)@c1, . . . , cn to the program segment shown
in Figure 10. We use if(*) to represent a nondeterministic
choice. In the if branch, the assume statement allows the
analysis to proceed only if curfsm is null or curfsm is equal
to one of the annotated values c1, c2, . . . , cn. Note that the
call to foo is a regular sequential call in the transformed
program and not a fork call. After the call returns, the
statement assume(false) forces the analysis to stop. In the
else branch, the assume statement allows the analysis to
proceed only if curfsm is null or curfsm is not equal to any
of the values c1, c2, . . . , cn.
We explain this transformation by considering three cases:

1. Suppose curfsm is equal to one of the annotated val-
ues, say c1. This means that the protocol obligations
should be satis�ed by the callee. First, consider the
if branch. Here, the condition

∨
1≤i≤n(curfsm = ci)

evaluates to true. Thus, the analysis proceeds to
the call to foo. After executing a synchronous call
to foo, the transformed code calls ThreadDone(), fol-
lowed by assume(false). Thus the function foo is
responsible for carrying out the remainder of the pro-
tocol on curfsm. Next consider the else branch.
Since curfsm = c1, the condition (curfsm = null) ∨∧

1≤i≤n(curfsm 6= ci) evaluates to false. Thus, fur-
ther analysis along this path is stopped.

2. Suppose curfsm is not null, and not equal to any of the
annotated values c1, c2, . . . , cn. This means that the
protocol obligations should be satis�ed by the caller.
In the if branch, the assume statement evaluates to
false, stopping the analysis. In the else branch, the
assume statement evaluates to true and and the re-
maining code is responsible for carrying out the re-
mainder of the protocol on curfsm.

3. Suppose curfsm is null. Then the assume statements
in both the if and else branches evaluate to true.
Thus, foo or the remainder of the callee may initiate
a new protocol, and the analysis can track these.

1: if * then

2: assume curfsm = null ∨
[∨

1≤i≤n curfsm = ci

]
3: foo(args);
4: ThreadDone();
5: assume (false);
6: else
7: assume curfsm = null ∨

[∧
1≤i≤n curfsm 6= ci

]
8: end if

Figure 10: Transformation for a parallel call

fork foo(args)@c1, . . . , cn.

read_block(FILE *fp, int i, int max, chute *filechute) {
...
/* fork call to the next file block reader. */
if(*){
assume(curfsm == null);
read_block(fp, i+1, max, filechute);
ThreadDone();
assume(false);

} else {
assume(true);

}
...

}

Figure 11: Sequential analysis for code in Figure 4

We omit a similar transformation for nonblocking calls.
We present the full details of both transformations in Ap-
pendix B.
We illustrate this using two examples. First, consider

the �le server example from Figure 4, where the call to
read_block is annotated with an empty list. A portion of
the transformed sequential program C(P ) is shown in Fig-
ure 11. Consider the if branch �rst. Since the annotation
list is empty the assume statement in the if branch passes
only if curfsm == null, and the assume statement in the
else branch always passes. Thus, if curfsm = filechute,
then only the else branch is analyzed and the continuation
of the else branch is responsible for the remainder of the
protocol on filechute.
Next, consider the alternate implementation of

the �le server from Figure 6, where the call to
read_and_send_block is annotated with @c. The re-
sulting sequential program is shown in Figure 12. Here
the annotation at the fork call is the singleton c. Thus,
the assume statement in the if branch passes if curfsm
== null or curfsm == c. Thus, the body of the callee
read_and_send_block is obligated to carry out the
remainder of the protocol on c.
In addition to coords, there are other objects on which

usage protocols can be stated. For example, we might want
to check the completion property for each packet p that is
passed to sendpacket in the network driver shown in Fig-
ure 2. We can check this property also using a sequential
analysis, as long as we follow the programming discipline
that at each fork only one of the continuations is given the
responsibility for completing the protocol and use linearity
annotations to guide the analysis.

5.2 Concurrency analysis
The objective of the concurrency analysis is to check

the implementation of the coords. We assume that each



read(FILE *fp, int n) {
chute *c = new chute();
for(int i = 0; i < n; i++) {

/* Enter the chute before spawning
thread, to ensure ordering. */

int token = c->Enter();
if(*) {
assume((curfsm == null) || (curfsm == c));
read_and_send_block(fp,i,token,c);
ThreadDone();
assume(false);

} else {
assume((curfsm == null) || (curfsm != c));

}
}

}

Figure 12: Sequential analysis for code in Figure 6

thread obeys the protocol speci�ed by the coord and use a
concurrency-aware model checker to check if the implemen-
tation of the coord works correctly under these assumptions.
We automatically convert the protocol speci�cation of the

coord to generate a nondeterministic thread that exercises
the coord implementation in ways that are allowed by the
protocol. Then, we launch a number of these threads in
parallel and check the implementation for errors using our
concurrency-aware model checker zing. Failures here may
manifest as assertion violations in the implementation of the
coord or as deadlocks.
The checks we describe here prove that the implemen-

tation of the coord is correct only with a �xed number of
threads. A more general proof is possible, e.g., using the
techniques of parameterized veri�cation [5].

5.3 Guarantees and limitations
Our analysis o�ers the following guarantee.

Theorem 1. Consider any clarity program P with one
coord c. Let ϕ denote the protocol for c. Suppose each of
the threads in the transformed program C(P ) satis�es the
property ϕ using sequential analysis (as described in Section
5.1) and the implementation of the coord c satis�es the con-
currency analysis check (as described in Section 5.2). Then,
during execution of the concurrent program P , there are
guaranteed to be no assertion violations in the implementa-
tion of c and if a thread in P waits for an event e associated
with the coord c, then some thread is guaranteed to send e
before exiting.

Proof. (Sketch) Suppose both the sequential analysis
and the concurrency analysis pass, and still the program
P either fails an assertion inside coord c, or deadlocks on an
event in c. Consider the run r that leads to the assertion fail-
ure or deadlock. Suppose there is some thread that violates
the coord protocol in r. This contradicts the assumption
that the sequential analysis has certi�ed all threads as indi-
vidually obeying the coord protocol. Thus, all threads have
to obey the coord protocol for c in r. Now consider the calls
made to the coord by all the threads in r. Since every thread
satis�es the protocol, such a test should have been exercised
by the concurrency analysis, contradicting the assumption
that the concurrency analysis passes.

Our static analysis has two main limitations. The �rst
limitation is that it can detect deadlocks only in programs
that use coords for synchronization, and then only for co-
ords used independently. If the programmer uses low-level
synchronization primitives or multiple coords in the same
block of code, the order in which each thread does block-
ing waitfor operations can result in deadlocks that we will
not detect. The second limitation is that we only check
safety properties. Thus, if a thread t1 is waiting for an
event through a coord and thread t2 is obligated to send the
event, we can say only that along all code paths, before t2
exits, the event is indeed sent. We cannot guarantee that t2
exits�this is exactly the termination problem�and, thus,
we cannot guarantee that the event will be sent.

6. IMPLEMENTATION
We wish to demonstrate the viability of our approach in

building asynchronous system components with realistic lev-
els of complexity using clarity. Along these lines, we have
implemented a prototype clarity compiler, static analy-
sis tools, and runtime and a clarity driver for a simple
network card, which we have tested in an emulated environ-
ment.
Compiler and runtime. The clarity compiler trans-
forms a clarity source program into C target code. The
send, sendall, and fork primitives can be implemented as
calls into a clarity coordination library. However, transla-
tion of the waitfor primitive requires more extensive com-
piler support�if a thread blocks, the clarity runtime must
be able to restart the thread at a later time, perhaps in the
context of a di�erent physical thread, with all of its local
state preserved. The compilation uses continuation passing
style (CPS) transformations. More details can be found in
in Appendix C.
Device driver implementation. We have written a net-
work device driver in clarity for a device we call tinynic,
comprising about 1,300 lines of code. The target C code
produced by the clarity compiler is about 2,500 lines.
tinynic is closely modeled after hardware such as the

Intel E100 network card. We have preserved many of
the sources of concurrency and asynchrony, as well as
some de�ning features and idiosyncrasies of network hard-
ware, such as maskable interrupts, a memory mapped Con-
trol/Status Register (CSR) and reads and writes via shared
memory bu�ers. We have eliminated most other features
that are irrelevant with respect to concurrent and asyn-
chronous behavior (e.g., tinynic does not support multicast
address �lters). We have a software implementation of the
tinynic hardware speci�cation that supports the concurrent
behavior.
Static analysis. We were able to establish properties of
the tinynic driver by transforming it as described in Sec-
tion 5.1, and doing sequential analysis on the transformed
program.
Note that our methodology allows programmers to write

their own coords. As long as the coords come with a protocol
speci�cation, we can use our analysis methodology to check
both the clarity code that uses the coord (using sequen-
tial analysis) and the implementation of the coord (using
concurrency analysis). Our tinynic driver uses a gchute
coord that combines the properties of both the gate and the



chute�as in Figure 2, we support the asynchronous run-
down of sending packets, but we also use the chute protocol
to ensure that packets are transmitted in the same order
they were submitted. All packets call Enter and Exit on
the gchute. The pause code closes the gate and waits for
all pending sends to complete. The sendpacket code uses
waitfor to wait until the hardware to becomes available and
uses the gchute to enforce packet ordering.
The results for two properties are shown in Table 1. The

�rst property is the protocol for the gchute, which is a mix-
ture of both the gate and chute protocols. slam was able to
check the property on the the transformed clarity program
in 17.77 seconds, after 9 iterations of iterative re�nement, in-
troducing 25 predicates. The second property �packet com-
pletion� states that for every packet passed to sendpacket,
the code gets the size of the packet, transmits at least one
fragment of the packet, and �completes� the packet by call-
ing a completion function. (Note that this is weaker than
the full packet completion property.) slam was able to check
this property on the transformed clarity program in 6.82
seconds, after 2 iterations of iterative re�nement, introduc-
ing 5 predicates.

clarity driver
Property Time(s) Iters Preds Result

gchute protocol 17.77 9 25 PASS
packet completion 6.82 2 5 PASS

C driver
Time(s) Iters Preds Result

gchute protocol * * * *
packet completion * * * *

Table 1: Sequential checking results

For both properties, slam could not �nish checking these
directly on the event driven C driver. The C driver put pack-
ets that cannot complete immediately into a queue, imple-
mented as a linked heap structure, making analysis di�cult.
However, the clarity code for the tinynic driver does not
use any queues (though the clarity target code and run-
time do). It simply keeps the packet as a local variable in
the logical thread, and uses waitfor to block in case the
packet cannot be processed. Thus, using an interprocedu-
ral analysis (and without reasoning about heap structures),
slam is able to prove the two properties on the clarity
code, but it is unable to prove those directly on the event
driven C code.
To better illustrate this di�culty, consider the two simpli-

�ed code fragments shown in Figures 13 and 14. We want to
check that for every packet p, �rst A(p) is called, and then
B(p) is called. The code in Figure 13 illustrates the analysis
problem for the clarity code. Here the analysis problem
presented to slam is much simpler�the queue has been ab-
stracted away and the operation can be veri�ed by analyzing
sequential control-�ow. The code in Figure 14 illustrates the
analysis problem for existing event driven code written in C.
Here, slam needs to analyze the heap, since the packets are
queued in a list if the hardware is not available.
Concurrency analysis. We were able to verify the imple-
mentations of gate, chute and gchute on small number of
threads as shown in Table 2. The coord protocols were used
to automatically derive a nondeterministic thread that uses
the coord. We ran the concurrency-aware model checker

STATUS sendpacket(Packet *p){
A(p);
waitfor(STATUS_PENDING,cond,[]);
B(p);
return STATUS_SUCCESS;

}

Figure 13: An analysis problem for clarity code.

List *list;
STATUS sendpacket(Packet *p) {
A(p);
if(cond) {
B(p);
return STATUS_SUCCESS;

} else {
ListAddEnd( list, p);
return STATUS_PENDING;}

}
STATUS HandlePendingSendsInList() {
if(ListHasElements(list) {
Packet *p = ListRemoveHead(list );
B(p);}

return STATUS_SUCCESS;
}

Figure 14: An analysis problem for C code

zing using partial order reduction. For the gate implemen-
tation, the model checker found the following bug: if the
gate is closed (by calling Close) when there are no pending
client threads that have entered, but not exited, then the
subsequent call to waitfor(IsEmpty(),e) deadlocks since
there is no client thread to send the event e. We were able
to �x this bug and verify the modi�ed implementation.

coord Result num threads States explored Time(s)
gate PASS 3 9133 1
gate PASS 5 1165393 74
chute PASS 3 775 0.4
chute PASS 5 26431 2
chute PASS 7 1241923 103
gchute PASS 3 11458 1
gchute PASS 5 1827952 119

Table 2: Concurrency checking results

Table 2 shows the number of states explored by the model
checker and time taken by the model checker in each case.
For the gate and gchute, the numbers in the table were ob-
tained after �xing the bug mentioned above.
Runtime testing. We have built a virtual test environ-
ment to provide thorough runtime testing of code gener-
ated by the compiler and the clarity runtime. Our test
environment consists of a virtual network hardware imple-
mentation, tinynic, and a runtime execution environment,
tinynetapi, that serves as a host for the device driver. The
environment, implemented with over 10,000 lines of C and
C++ code. A block diagram can be found in Figure 15.
tinynetapi, the execution environment, implements a

subset of the kernel mode network driver interface in our
target operating system. As with tinynic, most sources
of concurrency are preserved�concurrent and asynchronous
sending and receiving of packets, interrupt and DPC/tasklet



Figure 15: clarity simulation environment

handling; support for pausing, halting and unloading the
driver; and so on. In addition, numerous dynamic checks
have been put in place to validate proper driver behavior.
For example, the uses of spinlocks and memory allocations
are individually tracked. The environment includes utili-
ties that make it easy to write simple test programs which
can, for example, submit concurrent streams of packets and
pause the driver midstream.
The clarity-generated driver processes 15,000 packets

per second on a 2GHz single processor Pentium machine.
The driver passes the following tests:

1. Ability to initialize and shutdown, including appropri-
ately initializing and resetting the hardware.

2. Ability to handle concurrent sends, pausing the driver
midstream.

3. Ability to handle concurrent sends and receives.

We have kept track of the bug �xes we have needed to
make in order pass all tests. It is encouraging to note that
none of the errors have been issues of concurrency or asyn-
chrony, but rather logical errors with respect to the hardware
speci�cation. We have of course had to �x concurrency-
related errors in the runtime as it was under development,
but none in the clarity driver code�we appear to have
made some progress toward our goal of simplifying the driver
development in the areas of concurrency and asynchrony.

7. CONCLUSIONS
We have presented clarity, a language that allows the

development of event-driven programs that can be e�ciently
checked for violations of safety properties. This analyzabil-
ity is achieved by a careful combination of three language
features �nonblocking calls, coords with protocol speci�ca-
tions, and linearity annotations to delegate protocol obliga-
tions to exactly one thread at each asynchronous call. Our
emphasis has been on the proper functioning of the driver;
our future work will be to focus on the performance of gen-
erated code and of the runtime.
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APPENDIX
A. OPERATIONAL SEMANTICS
Let A be a set. We use 2A to denote the powerset of

A and A∗ to denote the set of multisets (or bags) of ele-
ments from A. We use ∪ for set union, ] for multiset sum,
and {{a1, . . . , an}} for a multiset of elements a1, . . . , an. We
elide braces from singleton sets and multisets, when the
meaning is clear.
Let Var, Expr, Stmt, Lab be sets of, respectively, vari-

ables, expressions, statements, and wait labels appearing
in the program. Stmt includes compound statements, i.e.,
statements of the form S1; S2 where S1, S2 ∈ Stmt.
Let Locs be a set of locations, Vals ⊆ Expr a set of

values, and Evts a set of events. Let false and true be el-
ements of Vals such that false 6= true. Let M = Locs →
Vals be a set of memory states, functions from locations to
values. Let M : Expr → Vals be a function from expres-
sions to values in memory state M ∈ M. We require that
M(v) = v for all v ∈ Vals.
Let C be a set of continuations. A continuation is either

blk x.S (a blocking continuation) or nbl x.S (a non-blocking
continuation), where x ∈ Var and S ∈ Stmt. Let K be a
set of continuation stacks. A continuation stack is either •
(the empty stack) or k; K, where k is a continuation and K
is a continuation stack.
Let W = Lab×Expr× 2Evts be a set of wait conditions.

Each 〈`, b, E〉 ∈ W represents a wait condition with label `,
wait predicate b, and wait events E.
Let B = 2W×Stmt×K×2Evts be the set of blocked thread

descriptors. Each 〈W, S, K, L〉 ∈ B represents a thread that
has blocked at a waitfor statement with wait conditions W ,
next statement S, continuation stack K, and local events L.
Let R = Stmt × K × 2Evts be a set of running thread

descriptors. Each 〈S, K, L〉 ∈ R represents a thread that
is currently executing with next statement S, continuation
stack K, and local events L.
Let S = M×2Evts×B∗×R∗ be the set of system con�g-

urations. Each 〈M, E, Q, P 〉 ∈ S represents a system con�g-
uration with state M , global events E, multiset of blocked
thread descriptors Q (the blocked thread list), and multiset
of running thread descriptors P (the active thread list).
We make several simplifying assumptions in our seman-

tics. First, we treat functions as if they have no arguments.
Function arguments can be handled as assignments from
actuals to formals; we assume that rules not shown have
evaluated these assignments, leaving only the function in-
vocation. We also assume that rules not shown reduce the
arguments to return, send, and waitfor from syntactic ex-
pressions to values, as necessary: we write return v where
v ∈ Vals; send e where e ∈ Evts; and waitfor r W where
r ∈ Vals and W ⊆ W.
The semantic rules for clarity are given in Figure 16.

1: if * then

2: assume ((curfsm = null) ∨
∨

1≤i≤n(curfsm = ci))

3: x = foo(args);
4: ThreadDone();
5: assume (false);
6: else
7: x = nondet(v1, v2, . . . , vm);
8: assume ((curfsm = null) ∨

∧
1≤i≤n(curfsm 6= ci))

9: end if

Figure 17: Transformation for a nonblock call x =
nonblock foo(args).

Rules for C language statements not given are as in standard
C.

B. SEQUENTIAL ANALYSIS TRANSFOR-
MATION

The transformation for a nonblocking call is similar to the
transformation for the fork call. However, a nonblock call
can return a value, and the return value needs to be handled
appropriately.
We transform a call

x = nonblock foo(args)@c1, . . . , cn

to the program segment shown in Figure 17. In the �gure,
the list v1, v2, . . . , vm is an over-approximation of the list of
values that can be returned by foo. This can be computed
by doing a �ow-insensitive analysis over the body of foo.

C. COMPILER AND RUNTIME
Waiting Functions. We will use the following de�nitions:
a waiting function is any function that contains a waitfor
statement or (transitively) calls a function that contains a
waitor statement; a waiting call is any call to a waiting
function. We will treat waitfor as a waiting function that
returns void.
At a waiting call site, it is possible for execution to be sus-

pended and resume later in a di�erent context. Therefore,
at each waiting call site, it is necessary for the clarity run-
time to collect enough information about the current context
to resume execution: in particular, we need to preserve the
values of function-local variables and the next statement to
execute when the waiting call returns. These values are typ-
ically stored in an activation record on the call stack�since
execution may resume in another physical thread, we can-
not assume that the call stack will continue to be available
unmodi�ed.
Moving local variables to the heap. In event-driven
programs, state is commonly managed using heap-allocated
control blocks. These blocks are typically pre-allocated,
�xed-size structures containing all of the information needed
to resume execution at a later time. The programmer must
design and manage these structures himself.
clarity provides the programmer similar functionality

in an automatated fashion. The compiler transforms each
waiting function to declare a locals structure containing
its local variables. All references to local variables are trans-
formed to refer to the locals structure, e.g., the assignment
�p = &x� (where p and x are local variables) is transformed
to �locals->p = &(locals->x)�. Each waiting call is aug-
mented with a locals parameter; the structures are chained



Call-Fork
〈M, E, Q, P ] 〈fork f(); S, K, L〉〉

〈M, E, Q, P ] {{〈S, K, L〉, 〈f(), •, ∅〉}}〉
Call-Blk

〈M, E, Q, P ] 〈x = block f(); S, K, L〉〉
〈M, E, Q, P ] 〈f(), (blk x.S); K, L〉〉

Call-Nbl
〈M, E, Q, P ] 〈x = nonblock f(); S, K, L〉〉

〈M, E, Q, P ] 〈f(), (nbl x.S); K, L〉〉
Call

〈M, E, Q, P ] 〈f(), K, L〉〉 S is the body of f

〈M, E, Q, P ] 〈S, K, L〉〉

Return-Blk
〈M, E, Q, P ] 〈return v, (blk x.S); K, L〉〉

〈M, E, Q, P ] 〈x = v; S, K, L〉〉
Return-Nbl

〈M, E, Q, P ] 〈return v, (nbl x.S); K, L〉〉
〈M, E, Q, P ] 〈x = v; S, K, L〉〉

Return-Empty
〈M, E, Q, P ] 〈return v, •, L〉〉

〈M, E, Q, P 〉
Send

〈M, E, Q, P ] 〈send e; S, K, L〉〉
〈M, E ∪ {e}, Q, P ] 〈S, K, L〉〉

SendAll
〈M, E, Q, P ] 〈sendall e; S, K, L〉〉
〈M, E, Q′, P ′ ] 〈S, K, L ∪ {e}〉〉 where 〈b1, E1, S1, K1, L1 ∪ {e}〉 ∈ Q′ ⇐⇒ 〈b1, E1, S1, K1, L1〉 ∈ Q

and 〈S2, K2, L2 ∪ {e}〉 ∈ P ′ ⇐⇒ 〈S2, K2, L2〉 ∈ P

WaitFor-Sat
〈M, E1 ∪ E2, Q, P ] 〈waitfor r (W ∪ (`, b, L1 ∪ E1)); S, K, L1 ∪ L2〉〉 M(b) 6= false

〈M, E2, Q, P ] 〈waitevent = `; S, K, L2〉〉

WaitFor-Blk

〈M, E1, Q, P ] 〈waitfor r W ; S, k1; . . . ; kn; •, L〉〉
ki = blk xi.S

′
i, 1 ≤ i ≤ n ∀〈`, b, E〉 ∈ W : M(b) = false ∨ E 6⊆ E1 ∪ L

〈M, E1, Q ] 〈W, S, k1; . . . ; kk; •, L\E2〉, P 〉

WaitFor-Nbl

〈M, E1, Q, P ] 〈waitfor r W ; S1, k1; . . . ; kn; (nbl x.S2); K, L〉〉
ki = blk xi.S

′
i, 1 ≤ i ≤ n ∀〈`, b, E〉 ∈ W : M(b) = false ∨ E 6⊆ E1 ∪ L

〈M, E1, Q ] 〈W, S1, k1; . . . ; kn; •, ∅〉, P ] 〈x = r; S2, K, L〉〉

Unblock
〈M, E1 ∪ E2, Q ] 〈W ∪ 〈`, b, L1 ∪ E1〉, S, K, L1 ∪ L2〉, P 〉 M(b) 6= false

〈M, E2, Q, P ] 〈waitevent = `; S, K, L2〉〉

Figure 16: Semantic rules for clarity programs.



in a list, creating a shadow image of the call stack. When a
thread blocks, a pointer to the current locals structure is
saved on the wait queue. (Note that the locals structure
does not contain the return address of the waiting call, be-
cause the address is not explicitly available at the C source
code level.) This transformation is similar to the compila-
tion strategy advocated by Appel and Zhao [4].
Continuation-passing transformation. The clarity

compiler augments each waiting call with a continuation
parameter, representing the next statement to be executed
when control returns from the call. The continuation argu-
ment from the caller becomes part of the local environment
for the waiting function. Since C does not directly sup-
port continuations, we modify the procedural structure of
the source program by splitting a waiting function at each
waiting call. E.g., a function f with a waiting call to g,
�f() { A; g(); B }�, will be translated into two functions
f0 and f1 (we elide the locals structure argument, which
is necessary to maintain the function-local state):

f0() { A; g(f1); }
f1() { B }

In addition, any return statement in a waiting function
must be transformed to instead invoke a continuation on
the caller's locals structure. This transformation is applied
recursively to each waiting call in a function. The precise
details of the transformation, including the handling of lo-
cal and inter-procedural control �ow, are standard (see, e.g.,
Appel [3]) and beyond the scope of this paper.
Taken together, the local variable and continuation-

passing transformations automate the translation from a
threaded execution model to event-driven code�they allow
a blocked thread to be resumed at any time, from any call-
ing context, by simply invoking the thread's continuation on
the thread's locals structure.
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