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ABSTRACT

We consider the problem of locating devices such as laptops, desk-
tops, smartphones etc. within an office environment, without re-
quiring any special hardware or infrastructure. We consider two
widely-studied approaches to indoor localization: (a) those based
on Radio Frequency (RF) measurements made by devices with WiFi
or cellular interfaces, and (b) those based on Acoustic Ranging
(AR) measurements made by devices equipped with a speaker and a
microphone. A typical office environment today comprises devices
that are amenable to either one or both these approaches to local-
ization. In this paper we ask the question, “How can we combine

RF and AR based approaches in synergy to locate a wide range of

devices, leveraging the benefits of both approaches?” The key con-
tribution of this paper is Centaur, a system that fuses RF and AR
based localization techniques into a single systematic framework
that is based on Bayesian inference. Centaur is agnostic to the spe-
cific RF or AR technique used, giving users the flexibility of choos-
ing their preferred RF or AR schemes. We also make two additional
contributions: making AR more robust in non-line-of-sight set-
tings (EchoBeep) and adapting AR to localize speaker-only devices
(DeafBeep). We evaluate the performance of our AR enhancements
and that of the Centaur framework through microbenchmarks and
deployment in an office environment.

Categories and Subject Descriptors

C.2.m [Computer Systems Organization]: COMPUTER - COM-
MUNICATION NETWORKS—Miscellaneous
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1. INTRODUCTION
Locating mobile devices such as laptops and smartphones in of-

fice environments, can enable several pervasive computing appli-
cations. Furthermore, even locating less portable devices such as
desktop computers and printers can be useful for applications such
as asset tracking.
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A large body of research over the past two decades has been
dedicated to enabling indoor localization. Much of this research
has fallen into one of two categories based on the nature of mea-
surements that participant devices are expected to perform: (a) Ra-

dio Frequency (RF)-based techniques that rely on measuring the
strength of signals from proximate RF sources (such as WiFi access
points or cell towers) [2, 8, 16, 5], and (b) Acoustic Ranging (AR)-
based techniques that rely on range measurements between proxi-
mate devices [15, 12]. Devices with WiFi or cellular interfaces are
amenable to RF-based localization while those with speakers and
microphones can be localized using acoustic ranging.

A modern day office environment has devices with one or both
of WiFi interfaces and speakers/microphones. Devices such as lap-
tops, equipped with both WiFi interfaces, and speakers/microphones,
are amenable to both approaches to localization. Devices such as
desktop computers are typically equipped with speakers and can
participate only in AR-based localization techniques, although the
absence of a microphone in a desktop computer is a key challenge
that needs to be overcome. Further, each of these approaches to
localization is associated with its own set of constraints and error
characteristics. RF-based localization techniques have a wide cov-
erage, given the ubiquity of WiFi in indoor environments. How-
ever, the inherent variability in RF propagation characteristics lim-
its the accuracy of such techniques to the range of a few meters to
a few tens of meters. On the other hand, AR-based trilateration is
typically very accurate and can enable localization to the sub-meter
level. However, these techniques have limited coverage since these
depend on a very high device deployment density, requiring three
or more devices with known locations to be within audible range
(typically 10m) to enable trilateration. In this paper we ask the

question: “How can we combine both these approaches in synergy

and achieve the benefits of both?” The key contribution of this pa-

per is Centaur, a systematic framework that fuses RF and AR based

localization techniques, using Bayesian inference.

The Centaur framework comprises three different categories of
devices. First, there are anchors, which are fixed devices whose
locations are known a priori (e.g., desktop PCs assigned to spe-
cific employees) and which at least have a speaker and so can be
made to emit sound to aid in the localization of other devices. Sec-
ond, there are dual-mode devices, which have WiFi interfaces, as
well as speakers/microphones, and thus are amenable to both meth-
ods of localization (e.g., laptops, smartphones). Finally, there are
speaker-only devices, which can only emit a sound in order to en-
able their localization (e.g., desktop computers whose locations are
not known a priori).

WiFi measurements performed by dual mode devices help obtain
an initial probability distribution of the possible locations of these
devices. Acoustic measurements amongst dual-mode devices and



between these devices and anchors, provide geometric constraints
(e.g. a distance constraint) that relate the locations of these devices.
Centaur, then uses all available initial probability distributions of
dual-mode devices and inter-device geometric constraints to simul-
taneously refine the initial probability distributions of dual-mode
devices and compute the probability distribution of speaker-only
devices.

Acoustic measurements provide two kinds of geometric constraints
in Centaur namely, Inter-device Distance Constraints (IDC) and
Inter-device Distance Difference Constraints (IDDC), and each of
these presents interesting challenges. When two devices within au-
dible proximity each has a microphone and a speaker (e.g., laptops
and smartphones), techniques such as BeepBeep [11] can be used
to estimate the distance between them, providing an IDC for each
such pair. However, one significant challenge we faced in our de-
ployment is that devices are seldom in direct line of sight because
of walls, furniture, and clutter in an office environment. State-of-
the-art acoustic ranging techniques do not perform well in such
a setting because the direct line-of-sight acoustic signal could be
much weaker than a delayed but stronger reflected signal. To ad-
dress this problem, in Section 4 we propose an improved ranging
scheme, EchoBeep, that performs significantly better than existing
ranging schemes when the line-of-sight signal is much weaker than
the reflected “echoes”.

In contrast to laptops and smartphones, devices such as desktops
are typically equipped with only speakers but not microphones, and
so cannot measure distances on their own. To accommodate such
devices, we propose a novel scheme, DeafBeep, that relies on esti-
mating the difference in the distance between a speaker-only “deaf”
device and two other devices equipped with microphones, provid-
ing an IDDC for each such triplet. Centaur then uses all the avail-
able IDC and IDDC constraints, in combination with WiFi mea-
surements, to estimate the most likely locations of all devices in
the office.

Centaur thus combines the ubiquity of RF-based localization with
the lower errors of AR techniques to provide superior localization
overall. Another key attribute of Centaur is that it is agnostic to the
specific RF-localization or acoustic ranging technique used. Thus,
it provides the flexibility to pick and combine any RF-based local-
ization scheme with any AR scheme. In summary, our contribu-
tions are:

• Centaur: a systematic framework based on Bayesian inference
that allows unification of two distinct approaches to localiza-
tion, RF and AR based schemes.

• EchoBeep: an improved acoustic ranging scheme for non-line-
of-sight (NLoS) settings involving a pair of devices, each equipped
with both speakers and microphones.

• DeafBeep: a novel scheme for locating a device that is equipped
with a speaker but no microphone, based on estimating distance
differences.

We present evaluation made through microbenchmarks and deploy-
ment in a large office building. We show the improved robustness
of EchoBeep in NLoS settings and the ability of DeafBeep to es-
timate distances differences with a speaker-only device. We show
that, by combining RF (WiFi) and AR measurements (including
distance difference estimates), Centaur not only improves the local-
ization accuracy over that attainable with any one of the schemes, it
also enables localization of devices, such as speaker-only PCs, that
were hitherto not amenable to either WiFi-based localization or to
acoustic ranging.

2. RELATED WORK
We briefly survey related work, focusing on the WiFi and acous-

tic techniques most closely related to ours.

2.1 Wireless LAN-based Localization
Wireless LAN-based techniques can be broadly classified as fin-

gerprint based and model-based. Fingerprint based techniques em-
ploy a training phase to associate an RF fingerprint (typically RSSI-
based) with each of a set of known locations, where the fingerprint
could either be expressed in a deterministic form (e.g., RADAR [2])
or in a probabilistic form (e.g., as in Horus [16]). To perform lo-
cation lookup, the measured RSSI values are compared with the
fingerprints recorded previously, to find the closest match.

On the other hand, model-based techniques look to avoid the
need for extensive measurements during the training phase by em-
ploying a model for RF propagation and estimating the model pa-
rameters through a limited set of measurements, either made at the
clients (e.g., EZ [6]) or at the APs (e.g., WiGEM [7]).

While wireless LAN-based techniques have been used to local-
ize WiFi-enabled devices such as smartphones and laptops, these
sometimes suffer from localization errors of several meters and are
also inapplicable to devices such as PCs that are not WiFi-enabled.

2.2 Acoustic Ranging and Localization
Acoustic ranging is attractive because the relatively slow speed

of sound (about 332 m/s at sea level) means that the time-of-flight
of an acoustic signal, and hence the distance between the transmit-
ter and the receiver, can be measured precisely. In some systems
(e.g., Active Bat [9], Cricket [12]), localization is based on the
“thunder-and-lightening” principle, wherein a much faster RF sig-
nal is used to first synchronize the transmitter and the receiver, and
thereafter the one-way time-of-flight of the much slower acoustic
signal is measured, to estimate distance. These systems have typ-
ically used special-purpose ultrasound hardware on the clients as
well as in ceiling-mounted units to enable precise distance mea-
surement with a strong, line-of-sight acoustic signal. In contrast,
Centaur focuses on existing devices such as laptops and PCs, typ-
ically in locations (e.g., on desks) where the line-of-sight acoustic
signal could be blocked by obstructions.

Beep-Beep [11] introduced a novel way to do acoustic ranging,
without requiring the devices to be synchronized, which we discuss
further in Section 3. However, Beep-Beep suffers from a couple of
limitations: it is targeted at proximate devices, where the direct
acoustic signal is strong, and it assumes devices that include both
a speaker and a microphone, both of which assumptions might not
hold in an office environment. We address these limitations in Sec-
tions 4 and 5.

Acoustic information has also been used for purposes other than
ranging, e.g., for acoustic fingerprinting of locations [13].

2.3 Graphical Model for Localization
Madigan et al. [10] introduced the idea of using a Bayesian graph-

ical model for indoor localization based on WiFi measurements.
They introduced various models to incorporate prior knowledge of
WiFi signal propagation, thereby reducing the dependence on em-
pirical measurement. Centaur draws inspiration from such prior
work, but the specific Bayesian graphical models it employs incor-
porate the geometric constraints arising from acoustic range mea-
surements, in addition to WiFi constraints. These geometric con-
straints also render the Gibbs sampling technique employed in [10]
impractical, as discussed in Section 9.



2.4 Multimodal Localization
There has also been work on combining wireless and acous-

tic localization. WALRUS [4] provides room-level localization by
having an in-room PC (anchor, in our terminology) emit an ultra-
sound pulse to signal its presence while concurrently transmitting
the identity of the room over wireless. While attractive because of
its simplicity, the room-level focus could break down, either be-
cause of the non-availability of a PC to serve as the beacon (e.g., in
a lecture room) or because the “room” is large (e.g., an open cubi-
cle setting). Centaur avoids these difficulties by using ranging (not
just proximity detection) and doing so with respect to both anchor
and non-anchor devices.

The Berkeley Multimodal Localization project [1] includes a scheme
to combine WiFi-based localization with acoustic localization [14].
This scheme depends on the availability of microphones in devices
to enable distance measurement and also requires each of the two
approaches — WiFi-based and audio-based — to produce its own
location estimate. In contrast, Centaur can accommodate devices
without microphones and also inter-device distance and distance
difference measurements even if these (partial) measurements by
themselves do not permit localization.

3. PRIMER ON LOCALIZATION

3.1 WiFi-based Localization
WiFi-based localization relies on the variation of RF signal strength

with location. There are two phases in a typical WiFi-based local-
ization scheme. First, there is a training phase, wherein data is
collected from various known locations to capture the RSS char-
acteristics of the various APs in the target (indoor) environment.
Second, there is the localization phase in which a device desiring
to locate itself records RSS from various WiFi APs and then uses
this measurement coupled with the RSS characteristics determined
in the training phase to locate itself. We shall now describe two
WiFi-based localization schemes that we make use of in this paper.
HORUS [16]: The basic HORUS system employs an RF finger-
printing based approach to localization. During the training phase,
HORUS captures the RSS characteristics of the indoor space through
a probability distribution, P (rssAPk

= r|x = xi), which is the
probability of seeing an RSS value of r from access point APk at
location xi. During the localization phase of HORUS, a device
obtains a vector of RSS measurements, R = < r1,r2,· · · ,rm >,
where ri is the RSS from APi. The joint probability of observing
R at a location xi is computed as,

P (R|x = xi) =
Y

k

P (rssAP k
= rk|x = xi) (1)

Bayesian inference is then used to compute the posterior, P (x =
xi|R). The final location estimate can then be either the location
with the highest probability (maximum likelihood location) or com-
puted as an expectation over all locations (expected location).
EZ [6]: In contrast, EZ uses an RF modeling based approach to lo-
calization. It avoids the need for extensive manual measurement
using crowdsourcing without requiring active user participation.
Most of these measurements are from unknown locations while a
few are from known locations, e.g., near windows where a GPS
lock can be obtained. EZ processes the RSS measurements from
both known and unknown locations to estimate the locations of
the observed APs and the parameters of the log-distance path loss
(LPDL) model for each such AP. Localization is then performed
using multi-lateration, by converting the RSS measurements to dis-
tances from the corresponding APs.

3.2 Acoustic Ranging based Localization
The basic idea here is to perform localization using acoustic

ranging with respect to multiple landmarks in known locations. A
straightforward way of implementing ranging between two devices
A and B is as follows: device A transmits a sound pulse at time tA

and say device B receives the sound pulse at tB . The time differ-
ence ∆tAB = tB − tA then represents the time required by the
sound pulse to traverse the distance between device A and B. The
distance dAB between the devices is then c∆tAB , c being the speed
of sound.

The above scheme has three key implementation challenges. First,
acoustic signal detection i.e., device B must accurately identify the
precise point where device A’s sound pulse reached B even in the
presence of ambient noise. Second, precise time synchronization

i.e., the clocks of devices A and B must be in precise synchroniza-
tion; each 3 ms error in time-synchronization between A and B’s
clocks results in about 1 m error. Third, software delays, e.g. de-
lays due to OS multi-tasking could be large and highly variable,
so kernel support is typically required to record the exact time of
arrival of the sound pulse.

The first challenge is typically addressed by using sound se-
quences with very sharp auto-correlation properties (e.g.,chirp, Pseudo
Random (PN) sequences) agreed upon a priori by both devices A
and B. Device B, then determines the exact point of reception of
device A’s transmission by correlating it with the known sound
sequence in its received sound samples. While prior work have
addressed the issues of time-synchronization and software delays
through the use of special hardware/software support, BeepBeep [11]
circumvents both these problems altogether by having both devices
A and B transmit sound pulses to each other and then using the
sampling rate of the sound-card to keep the measure of time. Beep-
Beep thus allows acoustic ranging to be implemented as an appli-
cation without requiring any special kernel support or additional
hardware.
BeepBeep [11] : Figure 1 depicts the typical operation of Beep-
Beep. Initially, both devices A and B turn on their microphones
and begin to record ambient sounds. First, device A emits a known
chirp signal. Then, after an arbitrary wait, device B emits another
chirp signal. Both devices correlate the recorded sequence with
the known chirp signal and determine the sample number at which
the chirp was recorded. In Figure 1, NY

X represents the sample
number at which device Y ’s microphone detected the chirp emit-
ted by device X’s speaker. Note that since devices A and B could
have started recording on their respective devices at arbitrary times,
sample counts across the two devices will not be synchronized. The
key idea in BeepBeep is to estimate propagation delay by only us-
ing differences in sample counts at each device instead of absolute
sample counts. Given the sampling frequency F of the sound card,
BeepBeep computes the propagation delay ∆tAB in seconds as,

∆tAB =
∆N

F
=

1

2F

h

(NA
B − N

A
A ) − (NB

B − N
B
A )

i

(2)

Challenges with BeepBeep and our solution: There are two key,
practical challenges that BeepBeep faces. First, we find that the
acoustic signal detection used in BeepBeep performs poorly in non-
line-of-sight (NLoS) scenarios, which is quite common in office
environments. To address this challenge, we devise an enhanced
version called EchoBeep, which uses an improved signal detec-
tion scheme better suited for NLoS scenarios (Section 4). Second,
some devices are only equipped with a speaker but not a micro-
phone (e.g., desktop PCs). To accommodate the participation of
such devices in acoustic localization, we device a novel scheme,
DeafBeep (Section 5), which adapts the ideas in BeepBeep to es-



Figure 1: Beep Beep Ranging
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Figure 2: Correlation in BeepBeep for LoS
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Figure 3: Comparison of EchoBeep and Beep-

Beep for NLoS

timate distance differences rather than absolute distances. These
distance difference measurements are then used for localization.

4. ECHOBEEP: DISTANCE CONSTRAINTS
While BeepBeep provides extremely accurate ranging, to within

a few cm, in LoS environments, we find that it performs poorly in
NLoS environments, often resulting in more than 200% errors. In a
typical office environment, where devices are often placed on desks
within cubicles separated by wooden partitions and obstructed by
other clutter, NLoS is a very common scenario. Our analysis re-
veals that the key reason for the inaccuracy is that the acoustic sig-
nal detection component in BeepBeep performs poorly in multipath
environments, in the absence of LoS. To overcome this problem, we
have developed EchoBeep, an enhanced version of BeepBeep that
uses an improved acoustic signal detection scheme.
Acoustic signal detection in BeepBeep: In BeepBeep, devices
transmit an a priori agreed upon chirp signal (which is a signal
with a linearly increasing frequency) to each other. The receiver
performs a normalized cross-correlation on the received signal with
the known chirp signal in order to detect the arrival of a chirp signal.
Figure 2 shows the result of this cross-correlation in a typical LoS
scenario, where devices were 6m apart. As seen in Figure 2, the
cross-correlation (normalized by maximum) exhibits a very sharp
correlation and is easy to detect.

In contrast, Figure 3 depicts the cross-correlation for two devices
6m apart in an NLoS scenario. As seen from Figure 3, unlike the
LoS scenario, there are several large peaks in the cross-correlation
due to the multiplicity of paths that sound takes to reach the re-
ceiver. Furthermore, the sound signal arriving via the shortest path
is typically weaker than the reflections because the former has to
traverse through obstructions. For example, in Figure 3, the maxi-
mum correlation occurs almost 20ms after the arrival of the shortest
path signal, which leads to a large error (i.e., overestimation) in the
estimation of the time of flight of the acoustic signal. To overcome
this problem, BeepBeep looks for shorter peaks that are within a
100-samples window of the tallest peak and at least 85% as tall
as the tallest peak. However, there are large errors even with this
heuristic.
Acoustic signal detection in EchoBeep : While EchoBeep also
uses a chirp signal and cross-correlation at the receiver just as Beep-
Beep does, it performs additional processing on the normalized
cross-correlation to determine weak correlation peaks reliably. The
intuition is as follows: the receiver goes from (a) receiving noise to
(b) receiving the first, albeit weak, copy of the chirp signal via the
direct path, and finally (c) receiving the strongest copy of the chirp
signal via a reflected path. When cross-correlation is performed,

the difference between the weak signal and noise (i.e., (b) and (a))
would likely be much larger than that between the strongest signal
and the weak signal (i.e., (c) and (b)).

Accordingly, let C(n) be the normalized cross-correlation of the
received signal with the chirp. EchoBeep performs two additional
processing steps on C(n). First, it computes the onset signal O(n)
given by,

O(n) = max (C(k))∀n ≥ k > n − W. (3)

O(n) has the property that it captures sudden increases in the cross-
correlation (e.g., when going from (a) to (b)) while ignoring the
decreases. W is a window that must be larger than twice the dura-
tion of the chirp signal (50ms in our implementation). Then, in the
second step, we compute the first derivative of O(n) given by,

∆O(n) = O(n) − O(n − 1) (4)

This first derivative, makes the transition from noise to the first,
albeit weak, peak (i.e., (a) to (b)) stand out compared to subsequent
transitions to higher peaks (e.g., (b) to (c)). Thus, this procedure
enables the reliable detection of the first peak and hence the shortest
acoustic path.

Figure 3 shows an example of ∆O(n) for the same NLoS set-
ting as in case of BeepBeep. We observe that the first jump in
cross-correlation stands out clearly as a spike in ∆O(n). In or-
der to detect the correct spike, EchoBeep maintains an estimate of
maximum height of spike s seen in the absence of a chirp signal
(i.e., when cross-correlating with noise) and uses 2s as the thresh-
old to eliminate spurious spikes. The earliest non-spurious spike
is then deemed as the point of arrival of the chirp. As described
in Section 6, the ranging errors in EchoBeep are in the order of
50cm-1m in a typical NLoS office setting compared to an error of
3-5m with BeepBeep. The more accurate ranging provides tighter
distance constraints for the Centaur framework.

5. DEAFBEEP: DISTANCE DIFFERENCE

CONSTRAINTS
As described in Section 3.2, to estimate the distance between

two devices A and B, BeepBeep and EchoBeep require both A and
B to be equipped with speaker and microphone each. In a typi-
cal office environment, however, devices such as desktop PCs are
equipped with only a speaker but no microphone. To allow such
speaker-only devices to participate in localization, we have devel-
oped a novel scheme called DeafBeep. Instead of estimating the
distance between two devices, DeafBeep estimates the difference

in distances of a speaker-only device from two devices that have
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both a speaker and a microphone. Centaur then uses these distance
difference constraints to estimate device locations.

Figure 7: Functioning of DeafBeep

The most basic configuration in DeafBeep comprises three de-
vices located within audio range of each other: one speaker-only
device (Desktop C) and two other dual-mode devices equipped with
speaker and microphone each (Laptops A and B) as depicted in Fig-
ure 7. As in BeepBeep, laptops A and B turn on their microphones
and start recording ambient sounds. Then, each of these three de-
vices transmits a chirp sequence at a different point in time. Lap-
tops A and B then analyze the collected sound samples at their re-
spective microphones and detect the reception of each of the three
chirp signals using the acoustic signal detection technique used by
EchoBeep (Section 4).

In Figure 7, Laptop X detects a chirp from device Y at sample
number NX

Y . Note that, since all three devices could have started
recording on their respective microphones at arbitrary times, their
sample counts will not be synchronized in time. Let ∆tXY be the
propagation time for sound to travel from device X to device Y .
Given the sampling rate F of the sound cards, DeafBeep then esti-
mates the difference in propagation delays of Desktop C from the
Laptops A and B as,

∆2
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(5)

This equation follows from applying a BeepBeep-like compu-
tation to two pairs — AC and BC — and then factoring out the
unknowns (i.e., the reception times at C, which are not known be-
cause C does not have a microphone). We present a derivation in
Appendix A.

Figure 8: The large office floor used for evaluations

Each distance difference relationship ∆2
ABC results in a geomet-

ric constraint between the locations of devices A, B and C, which
Centaur then uses to estimate and refine the location estimate of
various devices as described in Section 8.

6. MICROBENCHMARKS
In this section, we evaluate WiFi-based localization, acoustic

ranging, and acoustic distance differencing individually, to set the
stage for Centaur (Section 8), where we apply these techniques in
unison. Our evaluation is performed on a large office floor measur-
ing 65m × 35m (Figure 8).

6.1 WiFi Localization
Our training data set was generated by collecting RSS measure-

ments at 117 grid locations spanning the entire floor, with an ap-
proximate spacing of 3m between locations and about 12000 bea-
cons gathered per AP at each location. For testing, we measured
WiFi RSS at a separate set of 91 test locations within the floor,
with just a few tens of beacons gathered per AP.

We evaluated three different WiFi-based localization schemes:
HORUS, EZ, and EZPerfect. For HORUS, we used the training
data set to create the P (rssAPi

= r|x), i.e., the probability of
seeing a certain RSS value r dBm at a location x within the floor.
For EZ, out of the 117 training locations in all, 24 locations near
the windows were chosen as known locations since we could obtain
a GPS lock there, and the rest were deemed as unknown. Finally,
to determine a best-case bound on the accuracy of EZ, we treat all
117 training locations as known and called this EZPerfect.

Figure 4 depicts the Cumulative Distribution Function (CDF)
of the localization error of these three schemes over the 91 test



points. HORUS and EZPerfect had a median error of 3.3m while
EZ had a median error of about 4.5m. The 80%ile errors for HO-
RUS, EZPerfect, and EZ are 5.3m, 6.4m and 6.9m, respectively.
Around the 90%ile mark, the error shoots up to 15-40m for all
three schemes. As we discuss later, the incorporation of acoustic
ranging constraints in Centaur helps eliminate this long tail in the
distribution of localization error.

6.2 Acoustic Ranging using EchoBeep
We tested BeepBeep and EchoBeep in both LoS and NLoS sce-

narios when devices were placed at 1m to 10m from each other. For
LoS scenarios for each distance, we tested BeepBeep and EchoBeep
at 90 different locations within the office space by keeping two lap-
tops in LoS of each other. As seen from Figure 5, both BeepBeep

and EchoBeep range extremely accurately with error under 10cm

even at a distance of 10m for LoS scenarios.
To evaluate BeepBeep and EchoBeep in NLoS scenarios, we

placed pairs of laptops on tables inside cubicles, separated by var-
ious distances through wooden partitions. For each distance we
repeated the experiment at 90 different location pairs within the
office. As seen from Figure 5, BeepBeep’s accuracy degenerates
significantly in NLoS environments and can result in an error of
over 200% at short distances of 1-3m and errors of up to 100% at
greater distances. On the other hand, EchoBeep performs signifi-
cantly better, yielding an error of 0.5-1m over distances of 1-8m.
Note that, in Figure 5, although the mean distances estimated by
BeepBeep appear to be merely shifted with respect to those es-
timated by EchoBeep, the former estimates have a much higher
variance, reflecting the diversity of NLoS paths measured.

6.3 Acoustic Distance Difference
Figure 6 depicts the distribution of errors in the distance differ-

ence estimated using DeafBeep over 900 different location triplets
corresponding to 3 participating devices in NLoS conditions. The
variance of errors is maximum at about ±1.5m when the true dis-
tance differences are close to zero, but it drops to about ±50cm as
magnitudes of true distance difference increases to 8m. This trend
stems from the fact that a distance difference ∆2

ABC = 0, i.e.,

dAC − dBC = 0 can occur in many more ways (e.g., the permis-
sible values are dAC = dBC ∈ (0, 10)) than ∆2

ABC = 8 (e.g., the
permissible values are dAC ∈ (8, 10) and dBC ∈ (0, 2), or vice
versa). Note that the above ranges are bounded by 10m, which is
the reliable detection range with 50ms chirps.

7. CENTAUR – EXAMPLE SCENARIOS
Centaur accommodates both anchors, whose locations are known

a priori (e.g., desktop PCs assigned to specific employees), and
non-anchors, whose locations need to be estimated (e.g., laptops,
temporarily allocated PCs). Centaur uses probabilistic reasoning to
combine WiFi measurements with geometric constraints (i.e., inter-
device distances and inter-device distance differences) obtained from
applying acoustic techniques with respect to known anchors as well
as amongst non-anchors, to estimate or refine the non-anchor de-
vices’ locations. We present some simple examples to provide an
intuition for how Centaur works.

7.1 Simple Example
Consider two laptops A and B that are located within audible

distance of each other at unknown locations xA and xB . For ease
of exposition in this example, we shall consider locations to be 1D
rather than 2D or 3D. Each of these laptops is equipped with a WiFi
card, a speaker, and a microphone. Consequently, these can each

perform WiFi localization independently and also perform acoustic
ranging to estimate the distance dAB , between them.

Using its WiFi RSS measurements (WiFiA), laptop A com-
putes P (xA = x|WiFiA) – the probability that location of lap-
top A is x based on the RSS measurements WiFiA. Similarly,
laptop B computes P (xB = x|WiFiB). These distributions are
depicted in Figure 9. As depicted in Figure 9, based on WiFiA
alone, laptop A can lie anywhere between 0m to 5m; its location
estimate (maximum likelihood/expected) being around 2.5m. Sim-
ilarly, based on WiFiB alone, laptop B can lie anywhere between
9m to 14m; its location estimate being around 11.5m. By perform-
ing acoustic ranging, the laptops learn that the distance between
them dAB = 5m. This distance constraint further limits the possi-
ble locations of A and B to xA ≥ 4m and xB ≤ 10m. Figure 9
also depicts P (xA = x|WiFiA, WiF iB , dAB) (the probability
distribution of laptop A’s location based on WiFiA and the acous-
tic ranging measurement dAB) and P (xB = x| WiFiB , WiF iA,
dAB). The new location estimates of the laptops A and B are thus,
4.5m and 9.5m respectively. Thus, acoustic ranging information

can help decrease the uncertainty inherent to WiFi localization,

thereby increasing localization accuracy. While in this example
we assumed that dAB was measured exactly, in general dAB would
also have an estimation error, as described in Section 6. In practice,
therefore, Centaur also models dAB as a random variable while per-
forming probabilistic inference.

This basic idea can be easily extended to several laptops on a
large floor as depicted in Figure 10. Pairs of laptops that are within
audible range of each other perform acoustic ranging to obtain a
set of distance constraints shown as arrows between pairs of lap-
tops. These distance constraints are then used by Centaur to refine
the location estimates of laptop locations obtained from WiFi mea-
surements.

7.2 Composite Example
In this example we try to show the various scenarios that arise in

Centaur in a single example.
As depicted in Figure 11 there are two laptops (A and B), and

three desktop PCs (C, D and E). The laptops are each equipped
with WiFi, speaker and a microphone. Desktops C and D belong
to permanent employees and their locations are know a priori and
thus are to be treated as anchors, while Desktop E’s location is not
known a priori. Desktop C has both a speaker and a microphone,
whereas desktops D and E have only a speaker on them. All devices
are within audible range of each other.

As in the simple example above, the laptops can estimate their
locations using WiFi measurements along with the inter-device dis-
tance dAB . In addition, since desktop C is an anchor and has both
a speaker and a microphone, laptops A and B can further measure
distances dAC and dBC . In other words, laptop A must lie on a
circular band (with the width of the band dictated by the ranging
error) of radius dAC around desktop C. Thus, knowing the location
of C, A can further narrow down its location and similarly so can
B. Desktop D only has a speaker and so Centaur uses DeafBeep to
estimate the distance differences ∆2

ABD , ∆2
ACD and ∆2

BCD . Note
that each of these distance difference constraints is associated with
a probability distribution of error. Since the locations of C and D
are known, Centaur uses these constraints to further narrow down
the locations of A and B. Finally, the location of Desktop E is un-
known. Since E is only equipped with a speaker, it can estimate
the distance difference constraints ∆2

ABE , ∆2
ACE and ∆2

BCE . Us-
ing the probability distributions of the locations of A and B and
the exact location of C, E uses these geometric constraints to locate
itself.



Figure 9: Simple example: probabilistic in-

ferencing for two-laptop case
Figure 10: Example with several laptops on

a floor

Figure 11: Composite example with an-

chors, dual-mode, and speaker-only devices
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with a single anchor
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from two anchors

Figure 12: Graphical models for various measurements in Centaur

In summary, as conveyed in these examples, Centaur uses all
manner of WiFi measurements, inter-device distance estimates and
inter-device distance difference estimates in a single probabilistic
inference framework, to estimate the location of devices.

8. BAYESIAN NETWORKS IN CENTAUR
Centaur uses probabilistic inference to locate devices using the

available WiFi measurements, and the inter-device distance and
distance difference estimates obtained from acoustic ranging. To
accomplish this, Centaur first constructs a Bayesian graphical model
to capture all the WiFi measurements and the geometric constraints
arising from acoustic measurements. After constructing the Bayesian
graph, Centaur infers the most likely set of locations for the devices
that satisfies both the geometric constraints and the WiFi measure-
ments. Here we describe Centaur’s construction of the Bayesian
graph, and then discuss its inferencing technique in Section 9.

8.1 Bayesian Graphs
In a Bayesian graph, random variables are modeled as nodes.

In Centaur, all unknown device locations, WiFi measurements, and
distance as well as distance difference measurements represent nodes
in the graph. Random variables that can be measured are called
evidence variables (or nodes). So WiFi, distance, and distance dif-
ference measurements are the evidence variables in Centaur. Each
non-evidence node is also associated with a prior — the proba-
bility distribution of the variable in the absence of any evidence
(i.e., measurements). Finally, directed edges between nodes in the
graph represent the relationships between them in the form of con-
ditional probabilities. In the rest of this section, we describe how
each measurement is modeled in Centaur as a Bayesian sub-graph
and present an example that combines all the sub-graphs together
to form the complete Bayesian graph.

8.2 WiFi RSS Measurements
The graph for a WiFi measurement by device A is depicted in

Figure 12(a). The prior for location of device A, P (XA =xA),

is the probability, in the absence of any evidence, that the location
XA is equal to xA. Centaur uses as prior, a uniform distribution
over the entire indoor space. In other words, in the absence of any
measurements, a device is equally likely to be located anywhere in
the floor. The edge connecting the WiFi measurement node to the
location of device A is characterized by the probability distribution,
P (RA = rA| XA = xA), which is the probability of a certain
RSS vector rA =< rssAP1

, · · · , rssAPn
> (rssAPk

being the
RSS from APk) being measured by device A when it is located at
xA. As described in Section 3.1, this distribution is constructed
using training data.

8.3 Distance Between Non-Anchors
The graph in Figure 12(b) depicts an EchoBeep measurement

dAB between devices A and B. If the locations XA and XB of
devices A and B are xA and xB respectively, then distance dtrue

AB

would be the Euclidean distance between them. EchoBeep however
is not free from errors (Figure 5), so it will measure a distance d

characterized by the probability distribution P (dAB = d|XA =
xA,XB = xB).

8.4 Range to an Anchor
If device B is an anchor then xB is a known constant. Con-

sequently, the graphical model for this measurement is the same
as that for range between non-anchors except with the node cor-
responding to B removed since it is not a random variable. Fig-
ure 12(c) depicts this graph characterized by the probability distri-
bution P (dAB = d|XA).

8.5 Distance Difference between Non-anchors
If devices A, B and C are located at xA,xB and xC , then the dis-

tance difference ∆2true
ABC =dtrue

AB − dtrue
AC . DeafBeep can be used to

estimate this distance difference. The graphical model for this con-
straint is depicted in Figure 12(d) and is characterized by P (∆2

ABC =
δABC |XA = xA,XB = xB ,XC = xC).



8.6 Distance Difference with Anchors
In a distance difference measurement ∆2

ABC , when one or more
devices are anchors, their locations are treated as constants. The
graphical model in such cases, is exactly the same as the graphical
model for the distance difference constraint for non-anchor devices,
but with the anchor devices removed. Figures 12(f) and 12(e) are
examples corresponding to distance difference measurements with
one and two anchors, respectively.

Figure 13: The Bayesian graph for composite example in

Section 7

8.7 Putting it all together
Having constructed all the subgraphs for the measurements, Cen-

taur simply combines these together to obtain the overall graph. As
an example, Figure 13 depicts the Bayesian graphical model for the
composite example described in Section 7.

9. INFERENCE IN CENTAUR
Once the Bayesian graph has been constructed as described in

Section 8, Centaur infers the most likely locations for all the non-
anchor devices given all the measurements. In this section we de-
scribe how Centaur performs this inference on the Bayesian graph.

9.1 Inference in Centaur is NP-Hard
Let G = (X,Φ,E) be a Bayesian graph, where X ={Xi}

i=N

i=1

are all the non-evidence variables (nodes), Φ ={Φi}
i=M

i=1 is the set
of all evidence nodes and E is the set of all edges in the graph. The

inference problem in G is to determine the posterior probability

P (Xi =xi|Φ) , ∀i = 1, · · · , N , – the probability that a non-
evidence variable Xi takes a value xi given all the measured values
for non-evidence variables. This probability can be expressed as,

P (Xk = xk|Φ) ∝
X

∀xi,i6=k

P

„

X1 = x1, · · · ,Xk = xk,

· · · ,XN = xN
|Φ

«

.

(6)
Here, P (X|Φ) = P (X1 = x1, · · · ,XN = xN ) is the joint distri-
bution of the all non-evidence variables given all the measurements.
This joint distribution can then be expressed as,

P (X|Φ) =
Y

∀Xi∈Ch(G)

P (Xi = xi|Ψ(Xi))
Y

∀Xi∈X

P (Xi = xi)

(7)

In Eqn 7, Ch(G) is the set of all variables that have at least one
parent (i.e., are child nodes in the Bayesian graph), and Ψ(Xi) is
the set of all of node Xi’s parents. Further, all evidence variables
in Eqn 7 are set to their measured values.

Inference in Bayesian graphical networks is a well studied area.
When a Bayesian graph can be represented as a Poly-tree (i.e., the
undirected version of the graph has no loops), the Pearl’s mes-
sage passing algorithm [3] solves the inference problem with O(N)
complexity, N being the number of nodes in the graph. For a gen-
eral graph with loops, however, inference has been proven to be

NP-Hard [3]. The graphs generated in Centaur almost always have
several loops as seen in Figure 13, consequently exact inference in
Centaur is an NP-Hard problem.

There are three popular approaches to approximate inference in
Bayesian networks – loopy belief propagation [3], sampling based
techniques [3] and variational methods [3]. We found that using
loopy belief propagation on graphs constructed by Centaur often
neither converged nor yielded correct results. We further discov-
ered that the large number of geometric constraints in a typical
Bayesian graph in Centaur makes it particularly ill-suited to using
sampling techniques such as Gibbs sampling [3] and importance
sampling, and required impractically large running time for conver-
gence. This is because, the large number of geometric constraints
limits the feasible set of device locations to a very narrow region
in the 2N dimensional space of possible device locations that is
hard to draw samples from. Finally, we found that the distribu-
tion of RSS measurements at several locations is non-Gaussian and
not amenable to an analytical form tractable to variational meth-
ods. Consequently, we devised an approximate inference technique
specifically tailored to the graphs generated by Centaur.

9.2 The Maximum log-likelihood approach
An alternative to solving the inference problem is be content with

finding device locations that maximize the log-likelihood of the
joint distribution, log P (X|Φ). This is especially suitable in Cen-
taur since Centaur only attempts to estimate the device locations.
The maximization problem is also NP-Hard and requires searching
over all possible combinations of values of X. Further, the log-
likelihood function in Centaur is a multi-modal function and is not
amenable to iterative schemes such as Newton-Raphson or gradient
decent that rely on finding a local maxima. One approach is to use
a Genetic Algorithm (GA) to search efficiently. However, we found
that the GA took a long time to converge to a solution. This is for
the same reason that sampling-based inference techniques perform
poorly in the context of Centaur, as discussed previously.

9.3 The Centaur Approach
In Centaur, we found that a hybrid, two-step approach of search

and inference performs the best. In the first step, partial inference

step, Centaur performs an exact inference using Pearl’s algorithm,
accommodating as much evidence as possible without having loops
in the graph. The goal of this step is to narrow down the space of
possibilities and make maximum log-likelihood search tractable.
The second step, maximum log-likelihood step, then takes a maxi-
mum log-likelihood approach by searching over space of possibil-
ities given by the first step. In the rest of this section, we describe
this scheme.

9.3.1 Partial Inference Step

The key idea in this step is to partition the entire Bayesian graph
G into a sequence of loop-free subgraphs < G1,G2,· · · ,Gn >.
The key property in the partition is that no two sub-graphs have any
common evidence nodes and the union of all evidence nodes across
all sub-graphs covers the entire set of evidence nodes in G. Let Φi

be set of all evidence nodes in sub-graph Gi. The scheme starts
by performing exact inference on G1. Then for each successive
graph Gk, the results of the inference performed on the preced-
ing sub-graphs, G1, · · · ,Gk−1, is used as the prior to perform
exact inference on Gk. The scheme is algorithmically described
below.

1: PartialInference()
2: < G1, · · · ,Gk >= Partition(G).
3: Set all prior P (Xi) in G1 to the same as G.



4: Compute PG1
(Xi|ΦG1

) ∀i using Pearl’s algorithm.
5: for k = 2 to n do

6: Set all priors P (Xk) in Gk to the same as PGk−1
(Xi|ΦGk−1

).
7: Compute PGk

(Xi|ΦGk
) using Pearl’s algorithm.

8: end for

1: Partition()
2: Grem = G.
3: k = 1
4: repeat

5: Find the set of edges Ek that need to be removed to eliminate
cycles from Grem.

6: Remove all evidence nodes associated with these edges in
Ek to obtain Gk.

7: Remove all evidence nodes considered in Gk from Grem.
8: until Grem has not evidence nodes

The complexity of Partition() is O ((|E| + N)N). The com-
plexity of the loop in PartialInference() is O(|E|). This is be-
cause, at each step in the loop, the complexity of Pearl’s algorithm
is O(|Ei|), |Ei| being the number of edges in Gi. Since sum of
all edges across all the subgraphs is equal to |E|, i.e., the num-
ber of edges in the graph G, the complexity of the loop is O(|E|).
In a practical setting, since the running time of Partition() is in-
significant compared to that of the Pearl’s algorithm, the practical
complexity of PartialInference() is O(|E|).

9.3.2 Maximum log-likelihood Step

In this step we run a GA to determine the set of device locations
that maximize the log-likelihood. In all our settings we found that
the GA typically converges in under a minute (as evaluated in Sec-
tion 10). This is because the partial inference step reduces the space
of possibilities dramatically.

10. RESULTS
Given its goal of combining acoustic and WiFi localization in

synergy to improve localization error, we evaluate Centaur with a
view to answering the following key questions under various de-
ployment scenarios:

• How much can WiFi localization benefit from acoustic distance
and distance difference measurements?

• How much can acoustic distance difference and distance mea-
surement based localization in turn benefit from WiFi measure-
ment?

• How well can we use Centaur to locate speaker-only devices
with no microphone or WiFi?

• What are the typical running times for Centaur?

We implemented and deployed Centaur in a large office floor de-
picted in Figure 8 (Section 6 ). Based on our deployment, we try
and quantitatively answer the above questions.

10.1 Implementation and Deployment
The Centaur software comprises a Centaur server and a client.

The clients were deployed on devices such as laptops and desk-
top PCs. The clients connect to the server whenever the devices
are turned on and report to the server as to whether they have a
WiFi-card, speakers and/or a microphone. In case of anchor nodes,
the anchors additionally report their known locations to the server.
The Centaur server then, depending on the capabilities of the de-
vice, schedules the devices to perform WiFi measurements, trans-
mit Chirp sequences, and record ambient sounds for EchoBeep and
DeafBeep measurements. The clients transmit all recorded data
(WiFi measurements and recorded sound samples) to the server.

Centaur then uses EchoBeep and DeafBeep to convert the recorded
samples to inter-device distance and distance difference estimates.
It then constructs the Bayesian graph (Section 8) and uses the in-
ferencing algorithm described in Section 9.3 to estimate the most
likely locations of all devices.

10.2 Exp I: WiFi localization with acoustic rang-
ing among non-anchors

In this experiment we ask the following question, “In the ab-

sence of any anchors (devices with known locations), can the per-

formance of WiFi localization be improved by using inter-device

distance measurements?” This scenario corresponds to the sim-
ple example (Figures 9 and 10) in Section 7. First, laptops were
placed at various locations within the floor and their locations were
estimated only using WiFi localization (HORUS). Then, pairs of
laptops estimated their inter-device distances using EchoBeep. A
laptop can, however, only estimate distance to another laptop if it is
within audible range. So in successive experiments, we increased
the number of laptops that any given laptop could estimate distance
with using acoustic ranging. When there are N laptops in audible

proximity of each other, there are
N(N−1)

2
distance measurements

among the N laptops to be combined with N WiFi measurements
made at the individual laptops. Figure 14 depicts the CDF of the
localization error, with N increasing from 1 to 5 laptops and com-
pares it to the case where laptops used on WiFi localization.

As seen from Figure 14, even with just one other laptop in au-
dible range, there is an improvement in localization performance
compared to using only WiFi measurements. The 50%ile error de-
creases from 4.2m to 3.4m while the 80%ile error decreases from
7m to 5m. The most significant improvement occurs in the tail
of the localization errors. Errors as large as 20m that occurred in
WiFi are completely eliminated with the help of just one acoustic
distance measurement. This is because, the likelihood that both de-
vices will have a large localization error at the same time is low
and the node with a high WiFi localization error benefits from the
other. As we increase the number of laptops within audible proxim-
ity, the performance further improves. The 50%ile error reduces to
2.4m and the 80%ile error reduces to 4m. However, increasing the
number of proximate laptops beyond 3 does not bring significant
improvements. This experiment demonstrates how WiFi localiza-

tion error can benefit from inter-device distance estimation even

when there are no known locations.

Figure 17: Setup for evaluating fusion of WiFi with speaker-only

anchor devices

10.3 Exp II: WiFi localization with acoustic
ranging to speaker-only anchor devices

In a typical office environment the location of several desktop
PCs can be known a priori and thus these devices can be treated as
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tion with ranging among non-anchors
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Figure 16: Performance of localization with

WiFi and speaker-only anchors

anchors. However, most desktop PCs are typically equipped only
with a speaker but no microphone. These desktop PCs however can
aid in localization by measuring acoustic distance difference mea-
surements using DeafBeep. In this section we first ask the question,
“How much can WiFi localization benefit from distance difference

measurements?”

In order to answer this question, we use the setup depicted in
Figure 17. Since at least two laptops are required to measure dis-
tance difference, our set up comprises of two laptops and N (N =
1,· · · ,5) desktop devices equipped with only speakers. We eval-
uated this set up in 41 different configurations spread across the
entire office floor.

First, we quantify the performance of distance difference local-
ization by itself, by locating the laptops using distance difference
measurements only. The distribution of localization errors for dif-
ferent number of anchors is depicted in Figure 15. As the number
of anchors increases from 1 to 5, the 50%ile and 80%ile errors
localization error decreases from 6m to 1m and 8m to 2m respec-
tively. Next, we use Centaur to combine WiFi measurements at
the laptops with the distance difference measurements. As seen
from Figure 16, using distance difference information from 2 or
more anchors, WiFi localization benefits significantly. While the
50%ile and 80%ile errors for WiFi itself are 3.6m and 4.4m respec-
tively, they decrease to 1m and 2.4m with the help of 4 speaker-only
anchors. Another interesting observation comparing Figures 15
and 16 is the fact that even acoustic localization benefits from WiFi
measurements. The errors of using 1,2 and 3, anchors without aid
of WiFi measurements are higher than those that result from using
WiFi measurements. For example, the 50%ile error for localization
using 3 anchors by themselves is 2.4m and decreases to 1.8m when
combined with WiFi. These experiments indicate that both WiFi

localization and acoustic localization benefit in terms of increased

localization accuracy by combining each other’s information.

10.4 Exp III: WiFi localization with acoustic
ranging to anchors with speaker and mic

In the previous set of experiments anchors were equipped with
only speakers and could be used only in measuring distance differ-
ences. In these experiments we ask the question, “How can WiFi

and acoustic localization gain from each other if acoustic rang-

ing to anchors was possible?” In order to answer this question we
used the configuration depicted in Figure 18 and tested it at several
locations across the office floor.

First, we evaluate the performance of only acoustic localization
without WiFi. Figure 19 depicts the distribution of localization er-
rors with increasing number of anchors. As seen from Figure 19,

Figure 18: Setup for evaluating fusion of WiFi with ranging to

anchor devices

ranging based localization significantly outperforms distance dif-
ference based localization or WiFi based localization, with 50%ile
and 80%ile errors of 60cm and 80cm respectively. This is expected
since acoustic ranging is extremely accurate. Next, we evaluate the
performance of Centaur when WiFi and acoustic ranging informa-
tion are combined. Figure 20 depicts the distribution of localization
errors with increasing number of anchors. As seen from Figure 20,
there is a significant improvement in WiFi performance with the aid
of acoustic ranging even to a single anchor and improves further
with increasing number of anchors. However, the performance of
the combination of WiFi and acoustic ranging is almost the same
as using only acoustic ranging. In fact we found that there was
only a 1% decrease in average error by adding WiFi measurements
to acoustic range measurements. Hence, we conclude that given

acoustic range measurements to anchors, adding WiFi information

does not bring any significant improvement in localization perfor-

mance.

10.5 Exp IV: Locating speaker-only devices with-
out any anchors

In some cases it may be required to locate desktop PCs which
are equipped with only a speaker but no microphone. If there are
laptops equipped with both WiFi cards they can locate themselves
and then use distance difference localization to locate the desktop
PC. Note that these speaker only devices cannot be localized in any
other way without combining WiFi and acoustic measurements. In
these experiments we ask the question, “How accurately can we

locate speaker-only devices using devices that are equipped with

WiFi-cards, speaker and a microphone?” The experimental setup
for these experiments is the same as depicted in Figure 18 except
that, the desktop PC is equipped with a speaker but no microphone
and its location is unknown. Thus, the laptops measure distance dif-
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ization by ranging to anchors.
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Figure 21: Performance of localizing

speaker-only devices without any anchors

Figure 22: Locating 8 dual-mode devices (laptops), using WiFi

only, WiFi coupled with AR with respect to 1-hop neighbors, and

WiFi coupled with all available AR information.

ferences to the desktop, while locating themselves using WiFi and
acoustic ranging to each other. Figure 21 depicts the distribution
of localization errors of the desktop PC with increasing number of
laptops in audible proximity. As seen from Figure 21, the 50%ile
and 80%ile errors are 2m and 4m respective when the speaker only
device has 4 laptops in its audible proximity.

Device Error in m
WiFi Only WiFi + 1 Hop WiFi + All

1 4.5 4.0 0.7

2 6.3 2.1 2.9

3 0.7 4.9 3.5

4 0.7 1.1 2.4

5 0.7 1.2 1.6

6 1.3 3.5 2.4

7 4.1 1.5 2.8

8 13.2 10.7 1.4

Table 1: Location estimation errors seen for Experiment V

10.6 Exp V: Locating several dual-mode de-
vices simultaneously

“How will Centaur perform in a realistic setup, where devices

are typically distributed in various cubicles of an office floor, not

all within acoustic range of each other?” In order to answer this
question we conducted an experiment in a realistic setting com-
prising 8 laptops located across the floor. Figure 22 depicts the
true locations of all the laptops (indicated as solid squares). Lap-

tops that are within acoustic range of each other are connected by
dotted lines in Figure 22 and are able to range to each other.

In order to evaluate Centaur’s performance in this setting, we
consider three different scenarios: (i) WiFi-only, where each node
is localized only using its own WiFi measurements, (ii) WiFi + 1-
hop, where WiFi localization is combined with AR with respect to
1-hop acoustic neighbors, and (iii) WiFi + all, where WiFi local-
ization is combined with all available AR information across the 8
nodes.

Figure 22 depicts the final locations of the devices obtained for
each of the three scenarios, while Table 1 provides the exact val-
ues of the localization error (in meters). We observe that WiFi-
only localization can result in a significant error: 4.5m, 6.3m, and
13.2m, respectively, for nodes 1, 2, and 8. Adding AR constraints,
whether from the 1-hop neighborhood or from the entire network,
helps reign in these outliers.

In the WiFi+1-hop case, we compute a location estimate for each
node separately, by fusing its WiFi location estimate with AR con-
straints relative to neighboring nodes that it is within acoustic range
of. For example, as shown in Figure 22, the 1-hop location estimate
for node 8 is computed by fusing the WiFi-based location estimate
of 8 with the WiFi-based location estimates of, and the acoustic
range relative to, each of its acoustic neighbours: 1, 2, 3, and 7.
As the figure shows, these additional constraints, even from the lo-
cal neighborhood alone, cause the location estimate of node 8 to
be pulled in close to the node’s true location, with its localization
error decreasing from 13.2m in the WiFi-only case to 10.7m in the
WiFi + 1-hop case. However, the grossly incorrect location esti-
mate for node 8 coupled with the AR constraint between it and
node 3 also causes the latter to be pulled away from its true loca-
tion (and towards the incorrect location estimate for 8), with the
localization error for node 3 increasing from 0.7m in the WiFi-only
case to 4.9m in the WiFi + 1-hop case.

When we consider all the WiFi and AR constraints and solve for
the locations of all nodes simultaneously (the WiFi + all case), we
generally obtain the best results. The large error due to outliers
is eliminated (e.g., the localization error for node 8 drops to 1.4m)
and no error is worse than about 3.5m (node 3 at 3.5m has the worst
error across all nodes).

Thus, Centaur’s approach of holistically fusing WiFi and AR in-
formation across a set of nodes is beneficial, even when not all
nodes are within “earshot” (i.e., acoustic range) of each other.

10.7 Running Time of Centaur
Finally, we try and answer the question, “How long does Cen-

taur require to perform localization?”. Table 2 shows the running



times for Centaur for various configurations. As described in Sec-
tion 9, the running time of centaur is o(e) complexity, e being the
number of measurements (acoustic as well as WiFi). Table 2 pro-
vides the times taken by a Intel Xeon CPU E5405 at 2.0 GHz with
2 processors, 8 GB RAM and a 64 bit operating system in run-
ning each experiments I through IV. As seen from Table 2, typical
running times for experiments I through III are within a few sec-
onds. However, the running time of experiment IV is a few minutes.
Analysis indicated that generating the probability distributions for
distance difference constraints in the absence of anchors was the
key computation intensive operation in experiment IV. Each dis-
tance difference constraint without anchors generates a family of
hyperbolae across the floor. Having no analytical means of comput-
ing these distributions required us to generate them using sampling
techniques that lead to the larger computation time. Experiment V,
which corresponds to a realistic scenario, took 15.9s. These are rea-
sonable times to locate devices in an office environment for asset
tracking.

Configuration No Edges No of Nodes
2 3 4 5

Exp I N +
N(N−1)

2
2.8s 5.0s 9.0s 15.1s

Exp II 3 + 2N 1.2s 1.9s 2.6s 3.7s

Exp III 1 + N 2.8s 2.9s 3.4s 5.4s

Exp IV 2N +
N(N−1)

2
45.8s 80.7s 179s 285s

Table 2: Running times for various experiments

11. CONCLUSION
We have presented Centaur, which provides a novel, Bayesian

framework for combining WiFi-based localization with the geo-
metric constraints arising from acoustic ranging. We have also pre-
sented two new acoustic techniques — EchoBeep for ranging in
non-line-of-sight settings, and DeafBeep for locating speaker-only
devices. Through extensive experiments in an office environment,
we have shown the effectiveness of EchoBeep and DeafBeep. Fur-
ther, Centaur was able to eliminate instances of large WiFi based
localization error arising from RSS variation.
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APPENDIX

A. DERIVATION OF DEAFBEEP
Suppose that devices A and B are equipped with a microphone

and a speaker while device C is equipped with only a speaker but no
microphone. As depicted in Figure 23, the microphones of devices
A and B recording samples at times tA

0 and tB
0 respectively. Each

of the three devices now takes turns to transmit an acoustic chirp
signal at times tA

1 , tB
1 and tC

1 respectively. As depicted in Figure 23
device X receives this signal from device Y at time tX

Y (the time of
arrival is determined using EchoBeep described in Section 4). Let
the distance between between devices X and Y be dXY (dXX is the
distance between the speaker and microphone of the same device
X). Further, let the speed of sound be V . Then,

Figure 23: Derivation of DeafBeep

N
X
Y = S

„

t
X
1 − t

X
0 +

dXY

V

«

(8)

In Equation 8, S = 1
F

is the sampling rate of the sound card in
samples/sec and F its sampling frequency in Hertz. From Equa-
tion 8, we obtain,
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From Equation 9 we can deduce that,
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[(dAC − dBC) + (dAA − dBB)]
(10)

Typically, dAA and dBB will each be very small (in the order
of a few centimeters). Further, if device A and B are identical,
dAA = dBB . Consequently, for all practical scenarios, dAA−dBB

will be very small if not almost zero. Equation 5 in Section 5 thus,
directly follows from Equation 10.


