
Composing Model Programs for Analysis

Margus Veanesa, Jonathan Jackyb

aMicrosoft Research, Redmond, WA 98052
bUniversity of Washington, Seattle, WA, 98195

Abstract

Model programs are high-level behavioral specifications used for software testing
and design analysis. Composition of model programs is a versatile technique
that, at one end of the spectrum, enables one to build up larger models from
smaller ones, and at the other end of the spectrum allows one to restrict larger
models to specific scenarios. In this paper we provide a formal foundation for
composition of model programs and investigate its use in various situations that
arise in model program analysis.

Key words: model program, state machine, labeled transition system,
scenario control, model-based testing, model analysis, model validation

1. Introduction

A model program is a kind of executable specification, usually intended as
a test oracle or test case generator. A model program describes a labeled tran-
sition system (LTS), and plays a role similar to other state-based notations
used in model-based testing. An important motivation for model programs has
been acceptance by industrial software developers and test engineers. There-
fore, a key distinguishing feature is that model programs are coded in the test
engineer’s usual programming language, often the same language as in the im-
plementation. Model programs can use a library of familiar data types including
sets, sequences, and maps (that is, dictionaries) to describe program state.

Composition is a useful and versatile operation that combines two or more
model programs to obtain another model program called the product. There
is already extensive industrial experience with composing model programs, in-
cluding a very large project that tested hundreds of protocols [1], and another
that tested a web-based communication product [2].

The contributions of this paper are to consolidate and unify earlier results
about composition in a common formalism, to extend definitions allowing non-
determinism and not assuming that the model programs are explorable, to show
the use of composition in the context of symbolic analysis, and to compare with

Email addresses: margus@microsoft.com (Margus Veanes), jon@washington.edu
(Jonathan Jacky)

Preprint submitted to Elsevier September 7, 2009

1 INTRODUCTION 2

related work by others. This paper is not an industrial case study, but we do
discuss a small example to show how composition is used in an industrial testing
tool.

Model programs represent behavior (ongoing activities). A trace is a sample
of behavior consisting of a sequence of actions. An action is a unit of behavior,
viewed at some level of abstraction. Actions have names and arguments. The
names of all of a system’s actions are its vocabulary. For example, when modeling
a network protocol, the vocabulary comprises all the message types, the actions’
arguments are the fields in the messages, the actions are the individual messages
(including fields), and a trace is a sequence of messages (as might be observed
by a network monitor). Traces are central; the purpose of a model program is to
generate traces. In order to do this, a model program usually must contain some
stored information called its state. The model program state is the source of
values for the action arguments, and also determines which actions are enabled
at any time. When modeling a network protocol, the state might include the
set of open connections and all the messages in flight. A model program has
an initial state where all traces begin, and a set of accepting states which are
the only states where a trace is allowed to end. Usually these states represent
conditions where there is no unfinished work in progress. When modeling a
network protocol, the initial state and the accepting states might be those where
no connections are open and no messages are in flight.

Recall that composition combines two or more model programs to obtain
another model program called the product. The effect of composition is to
synchronize shared actions (that appear in more than one of the composed
model programs) and to interleave unshared actions (that only appear in one).
Composition has several useful applications. For example, it can be used to
validate a model program: to show that it accurately represents the intended
behaviors. Composition can be used to check whether a system can execute a
particular scenario. Any temporal property than can be expressed as a finite
state machine can be checked in this way. For another example, almost any
automatic test generation method will generate too many tests unless there is
something to prevent it. Composition can provide scenario control to focus
on issues of interest and eliminate redundant test cases. Composition can also
assist symbolic analysis of model programs by pruning the search space during
proof search.

The formalization of the parallel composition of model programs builds on
the classical theory of LTSs [3]. Our goal is therefore not to define yet another
notion of composition but to show how the composition of model programs
can be defined in a way that preserves the underlying LTS semantics. It is
important to note here that the composition of model programs is syntactic.
It is effectively a program transformation that is most interesting when it is
formally grounded in an existing semantics and has useful algebraic properties.
This fills an important semantic gap and makes compositional modeling more
practical in tools like Spec Explorer and NModel.

In Section 2 we define the background theory T and we define model pro-
grams formally. In Section 3 we define composition of model programs. In

2 MODEL PROGRAMS 3

Section 4 we discuss some pragmatics of implementing and using composition
in a software analysis and testing tool. In Section 5 we show how to use composi-
tion to check temporal properties. In Section 6 we show how to use composition
for scenario control in model-based testing. In Section 7 we illustrate the use
of composition as a way to reduce symmetries in symbolic analysis. Section 8
discusses related work.

2. Model programs

In this section we define the background theory and define model programs
formally. Model programs are defined here over a fixed background theory T
that includes linear arithmetic, Booleans, tuples, and sets. The universe is
multi-sorted, with all values having a fixed sort. The background is adequate
for the purposes of this paper, although it disallows for example nested sets
(sets of sets) that are sometimes used in high-level models. We impose this
restriction to provide a self-contained axiomatization for a large class of model
programs, that is suitable for both symbolic analysis as well as explicit state
analysis techniques. Many common data types, such as maps, can be defined in
terms of T and we do so when this is needed. Recent advances in Satisfiability
Modulo Theories make it possible to analyze expressive fragments of T .

We use an expression language that we also refer to as T . Well-formed
expressions or terms of T are shown in Figure 1. We do not add explicit sort
annotations to terms but always assume that they are well-sorted.

The background axioms of T includes the axioms of linear arithmetic, the
axioms for tuples, the axioms for the set operations as shown in Figure 1, and
the extensionality axiom for sets. The expression Ite(ϕ, t1, t2) equals t1 if ϕ
is true, and it equals t2, otherwise. For each sort, there is a specific Default

value in the background. In particular, for Booleans the value is false , for set
sorts the value is ∅, for integers the value is 0 and for tuples the value is the
tuple of defaults of the respective tuple elements. The function TheElementOf

maps every singleton set to the element in that set and maps every other set to
Default. A set comprehension term {t[x] |x ϕ[x]} denotes the set of all t[a] such
that ϕ[a] holds. Note that the use of set comprehensions as terms is justified
by the extensionality axiom for sets: ∀v w (∀y(y ∈ v ↔ y ∈ w) → v = w). We
write FV(t) for the set of free variables in t.

There is also a specific action sort A, values of this sort are called actions.
Two actions are equal if and only if they have the same action symbol and their
corresponding arguments are equal. An action with action symbol f is called
an f -action. If the arity n of an action symbol f is positive, we assume that
f is associated with a unique variable fi, for all i, 0 ≤ i < n, called the i-th
parameter variable of f .

An assignment is a pair x := t where x is a variable and t is a term (both
having the same sort). An update rule is a finite set of assignments where all
the assigned variables are distinct.

2 MODEL PROGRAMS 4

T σ ::= xσ | Defaultσ | Ite(T B, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T

σ0×···×σi−1×σ×···×σk)

T σ0×σ1×···×σk ::= 〈T σ0 , T σ1 , . . . , T σk〉

T Z ::= k | T Z + T Z | k ∗ T Z

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B | ∀xT B | ∃xT B |
T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | T Z ≤ T Z

T S(σ) ::= {T σ |x̄ T B} | ∅S(σ) | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) |
T S(σ) \ T S(σ)

TA ::= f (σ0,...,σn−1)(T σ0 , . . . , T σn−1)

Figure 1: Well-formed expressions in T . Sorts are shown explicitly here. An expression of
sort σ is written T σ . The sorts Z and B are for integers and Booleans, respectively, k stands
for any integer constant, xσ is a variable of sort σ. The sorts Z and B are basic, so is the tuple

sort σ0 ×· · ·×σk, provided that each σi is basic. The set sort S(σ) is not basic and requires σ

to be basic. All quantified variables are required to have basic sorts. The sort A is called the
action sort, f(σ0,...,σn−1) stands for an action symbol with fixed arity n and argument sorts
σ0, . . . , σn−1, where each argument sort is a set sort or a basic sort. The sort A is not basic.
The only atomic relation that can be used for T A is equality. DefaultA is a nullary action
symbol. Boolean expressions are also called formulas in the context of T . In the paper, sort
annotations are mostly omitted but are always assumed.

Definition 1. A model program is a tuple P = (Σ,Γ, ϕ0, R), where

• Σ is a finite set of variables called state variables ;

• Γ is a finite set of action symbols called vocabulary;

• ϕ0, FV(ϕ0) ⊆ Σ, is a formula called the initial state condition;

• R is a collection {Rf}f∈Γ of action rules Rf = (γ, U,X), where, let V =
Σ ∪X ∪ {fi}i<arity(f),

– γ is a formula called the guard of f , FV(γ) ⊆ V ;

– U is an update rule {x := tx}x∈Σf
for some Σf ⊆ Σ, FV(tx) ⊆ V ,

– X is a set of variables, disjoint from Σ, called choice variables of f ,
each χ ∈ X is associated with a formula ∃xϕ[x], called the range

condition of χ, denoted by χ∃xϕ[x], FV(∃xϕ[x]) ⊆ V \ {χ}.

We indicate the component of a model program P by adding the subscript
P to it, e.g., ΣP is the set of state variables of P .

We often say action to also mean an action rule or an action symbol, if the
intent is clear from the context. When an action does not use choice variables,
we abbreviate the action rule (γ, U, ∅) by (γ, U), and when the update rule is
also empty we abbreviate it further by its guard γ.

2 MODEL PROGRAMS 5

2.1. Accepting states

A model program P may also be associated with an accepting state condi-

tion ϕacc
P such that FV(ϕacc

P) ⊆ ΣP . In Definition 1 this component has been
omitted, and is instead assumed to be represented by a unique action symbol
acc with arity 0 and the associated action rule ϕacc

P . Intuitively, an accepting
state is “labeled by acc”. One may assume, without loss of generality, that
acc = DefaultA.

2.2. Choice variables

They are “hidden” parameter variables, the range condition of a choice vari-
able determines the valid range for its values. For parameter variables, the range
conditions are typically part of the guard. If the choice variable has a set sort,
it is assumed to be a map (see below), and the range condition must hold for
the elements in the range of that map.

2.3. Maps

We assume here a standard representation of maps as function graphs. A
map m = {ki 7→ vi}i<κ is represented as a set of key-value pairs {〈ki, vi〉}i<κ.
Updating a map m with a key-value pair 〈k, v〉 produces a new map that is the
same as m except that k maps to v.

Update(m, k, v)
def
= {e | e ∈ m ∧ π0(e) 6= k} ∪ Ite(v = Default, ∅, {〈k, v〉})

Given a set u of tuples, we write πi(u) for {πi(x) | x ∈ u}. The definition of
Update(m,u), where u is a set of key-value pairs (where no key occurs twice,
but where some value may be Default) is analogous:

Update(m,u)
def
= {e | e ∈ m ∧ π0(e) 6∈ π0(u)} ∪ {e | e ∈ u ∧ π1(u) 6= Default}

Lookup of a value based on a key is defined as follows.

Lookup(m, k)
def
= TheElementOf ({v | 〈k, v〉 ∈ m})

We also write m(k) as a shorthand for Lookup(m, k). Note that maps are
extensional, since keys that are mapped to Default are removed from the map,
i.e., given two maps m1 and m2:

m1 = m2 ⇔ ∀k(m1(k) = m2(k))

Note that, if the default value is not removed from the range, then, for example
m1 = {〈1,Default〉} 6= ∅ = m2 but ∀k(m1(k) = m2(k)). A map m is finite

if m(k) = Default for all but finitely many k. When maps are used as state
variables they are typically finite.

Example 1. The following model program, called Credits, is written in AsmL.
It specifies how a client and a server need to use message identifiers, based on
a sliding window protocol. Here we illustrate the components of the Credits

model program according to Definition 1.

2 MODEL PROGRAMS 6

var window as Set of Integer = {0}

var maxId as Integer = 0

var requests as Map of Integer to Integer = {->}

[Action]

Req(m as Integer, c as Integer)

require m in window and c > 0

requests := Add(requests,m,c)

window := window difference {m}

[Action]

Res(m as Integer, c as Integer)

require m in requests and requests(m) >= c and c >= 0

window := window union {maxId + i | i in {1..c}}

requests := RemoveAt(requests,m)

maxId := maxId + c

The three state variables are indicated with the keyword var. Note that the
sort of requests is S(Z × Z).

The two actions Req and Res are indicated with the [Action] attribute on
the corresponding method definition. The parameter variables of the Req-action
are Req0 = m and Req1 = c (assuming standard conventions for naming and
scoping of formal parameters of methods), similarly for the Res-action.

The initial state condition is given by the initial assignment of values to the
state variables, i.e., window = {0} ∧ maxId = 0 ∧ requests = ∅.

The Req-action has the following action rule. The guard of the Req-action
is Req0 ∈ window ∧ Req1 > 0, and the update rule is

{requests := Update(requests,Req0,Req1), window := window \ {Req0}}.

Similarly, the guard of the Res-action is

requests(Res0) 6= Default ∧ requests(Res0) ≥ Res1 ∧ Res1 ≥ 0,

and the update rule of the Res-action consists of three assignments:

window := window ∪ {maxId + i | 1 ≤ i ∧ i ≤ Res1}

requests := Update(requests,Res0,Default)

maxId := maxId + Res1

Neither action uses choice variables.1 �

2.4. Representing ASMs as model programs

Standard ASM update rules [4] can be translated into update rules of model
programs. A detailed translation from standard ASMs to model programs is

1In AsmL choice variables are introduced by using the choose-construct.

2 MODEL PROGRAMS 7

given in [5]. We are omitting the details of this translation here and only
provide the high-level intuition.

The translation from an ASM update rule U uses a function u(U, g), defined
by induction over the structure of U , that, for each dynamic function g in a
signature Σdynamic of dynamic ASM functions, creates a term in T that represents
the set of updates applied to g. Typically, this term is a comprehension term. In
the corresponding model program, g is a map-valued state variable. The model
program has an additional Boolean state variable inconsistent, the purpose of
this variable is to represent states resulting from an inconsistent state update.

IsInconsistent(U, g)
def
= ∃x y z(〈x, y〉 ∈ u(U, g) ∧ 〈x, z〉 ∈ u(U, g) ∧ y 6= z)

IsInconsistent(U)
def
=

∨

g∈Σdynamic

IsInconsistent(U, g)

In general, the translation of an ASM update rule U yields the corresponding
model program update rule

inconsistent := IsInconsistent(U)

g := Ite(IsInconsistent(U), g,Update(g,u(U, g))) (g ∈ Σdynamic).

The translation introduces choice variables, in case the ASM update rule U

uses choose-statements. The translation motivates why the background T uses
sets and why dynamic functions are represented as function graphs, namely, to
encode the update semantics of ASMs. A further motivation for this represen-
tation comes from the partial update semantics of AsmL, where total as well
as partial updates [6] are allowed, and where dynamic functions are represented
by maps. Moreover, the representation in T provides a basis for several sym-
bolic analysis techniques, see Section 8. The model program representation of
ASMs also brings action based ASM models closer to Event-B models [7], that
are discussed in Section 8, and may provide some insights into combining both
modeling approaches.

2.5. Semantics of model programs

A model program describes a labeled transition system or LTS, that is a
tuple (S,S0, L,R), where S is a set of states, S0 ⊆ S is a set of initial states, L
is a set of labels and R ⊆ S× L× S is a transition relation.

A (Σ-)state is a mapping of variables (in Σ) to values. Given a state S and
an expression E, ES is the evaluation of E in S. Given a state S and a formula
ϕ, S |= ϕ means that ϕ is true in S. Since T is assumed to be the background

we usually omit it, and assume that each state also has an implicit part that

satisfies T , e.g. that + means addition and ∪ means set union. In the following
definitions we assume a fixed model program P = (Σ,Γ, ϕ0, R). We assume here
that all actions of P have assignments for all state variables (by adding trivial
assignments x := x for all state variables x that are not assigned).

2 MODEL PROGRAMS 8

Definition 2. Let a = f(b0, . . . , bn−1) be an action with rule (γ, U, {x∃xϕi

i }i<m);
a is enabled in a state S if there exists a state

S1 = S ∪ {fi 7→ bi}i<n ∪ {xi 7→ ci}i<m (for some ci),

such that S1 |= γ and S1 |= (∃xϕi[x]) ⇒ ϕi[xi] (for all i < m), in which case a
causes a transition from S to S2 = {x 7→ tS1}x:=t∈U .

Note that if a range condition ∃xϕi is false then any value for xi is valid. The
rationale behind this is that range conditions may reflect conditions in nested
contexts, which may be false. In case of a top-level choice, the range condition
is typically part of the guard γ.

Example 2. Consider the following model program in AsmL.

var z as Integer

[Action]

f (k as Integer)

require true

if k > 3

choose y | y in {4..k}

z := y

The guard of f is true, so the action is enabled in all states. The translation in
Section 2.4 yields the update rule z := Ite(f0 > 3, y, z) for f , where y is a choice
variable with the range condition ∃x 4 ≤ x ≤ f0. Note that the range condition
is false for the action f(2). �

Given a finite sequence of transitions (τi)i<k, where τi = (Si, ai, Si+1) and

ai causes a transition from Si to Si+1 for i < k, we write S0
α

−→ Sk, where

α = (ai)i<k, and we write S0
τ

−→ Sk, where τ = (τi)i<k.

Definition 3. [[P]] is the LTS (S,S0, L,R), where S0 is the set of Σ-states where
ϕ0 is true, L, R and S are the least sets such that, S0 ⊆ S, and if S ∈ S and a
is an action such that S

a
−→ S′ then a ∈ L, S′ ∈ S and (S, a, S′) ∈ R.

We say that a state is reachable in P if it belongs to the set of states of [[P]].

Definition 4. A run of P is a sequence of transitions (Si, ai, Si+1)i<κ in [[P]],
for some κ ≤ ω, where S0 is an initial state of [[P]]. The sequence (ai)i<κ is
called an (action) trace of P . The set of runs and traces of P is denoted by
R(P) and L(P), respectively.

Intuitively, an action trace is an abstraction of a run. For most parts of
the paper we are interested in traces. Runs are important in the context of
symbolic reasoning about model programs. When a model program has a unique
initial state and is deterministic (for each state S and action a, there is at most

one transition S
a

−→ S′) then runs and traces are obviously in a one-to-one
correspondence and can be treated synonymously. This is the case in the context
of NModel [8].

3 MODEL PROGRAM COMPOSITION 9

3. Model program composition

Under composition, model programs with the same action signature synchro-
nize their steps for the actions. The guards of the actions in the composition
are the conjunctions of the guards of the component model programs. The
update rules are compositions of the update rules of the component model pro-
grams. Given two update rules U1 and U2 with assigned variables V1 and V2,
respectively, let

U1 ⊗ U2
def
= {v := t | v := t ∈ U1, v ∈ V1 \ V2} ∪

{v := t | v := t ∈ U2, v ∈ V2 \ V1} ∪

{v := Ite(t1 = t2, t1,Default) | v := t1 ∈ U1, v := t2 ∈ U2,

v ∈ V1 ∩ V2}

In the case when a shared state variable is assigned two distinct values we
resort to the default value. A more general approach is to combine the values
in a consistent manner, or if no such combination is possible, to enter an error
state in the style discussed in Section 2.4. For our primary applications such
extensions are not relevant. Let P and Q be fixed model programs.

P = (ΣP ,ΓP , ϕ
0
P , (γf,P , Uf,P , Xf,P)f∈Γ)

Q = (ΣQ,ΓQ, ϕ
0
Q, (γf,Q, Uf,Q, Xf,Q)f∈Γ)

Definition 5. Assume Γ = ΓP = ΓQ, the product P ⊗Q is the following model
program where Uf = Uf,P ⊗ Uf,Q, and Xf = Xf,P ∪Xf,Q.

P ⊗Q
def
= (ΣP ∪ ΣQ,Γ, ϕ

0
P ∧ ϕ0

Q, (γf,P ∧ γf,Q, Uf , Xf)f∈Γ).

The following facts follow immediately.

[[P ⊗Q]] = [[Q⊗ P]]

[[(P ⊗Q) ⊗ P ′]] = [[P ⊗ (Q⊗ P ′)]]

Note that a state of the product P ⊗Q is accepting iff it is accepting in both
P and Q, i.e., if acc ∈ Γ then ϕacc

P⊗Q is ϕacc
P ∧ ϕacc

Q .

3.1. Unshared actions

The enabling (disabling) extension of P for a set of action symbols F not in
ΓP is denoted by P+F (P−F). If f ∈ F , then in P+F (P−F) the action rule of
f is true (false). We extend the definition of product to the case where P and
Q may have unshared actions symbols as follows.

P ⊗Q
def
= [[P+ΓQ\ΓP ⊗Q+ΓP \ΓQ]]

Intuitively, unshared actions are interleaved. Note the following consequence of
this definition in relation to accepting states. If for example P has no accepting
state condition, i.e., acc ∈ ΓQ \ ΓP , then by default all states of P are treated
as accepting states in the product. If there is a need to consider all states of P
as non-accepting states then one can use the model program P−{acc}.

3 MODEL PROGRAM COMPOSITION 10

3.2. Avoiding emergent behavior

When product composition is used in an unrestricted manner then the prod-
uct is a new model program which may have traces that occur in neither of the
components of the product. In the context of complex systems this is in general
referred to as emergent behavior [9]. In the context of model program composi-
tion, emergent behavior may occur when the components share state variables.
The following theorem characterizes the composition of model programs with
disjoint state variables. We define parallel composition

P ‖ Q
def
= P ⊗Q (assuming ΓP = ΓQ and ΣP ∩ ΣQ = ∅)

Given an action sequence (ai)i<κ for some κ ≤ ω, and a runs

τM = (Si,M , ai, Si+1,M)i<κ of M , for M = P,Q,

let
τP ‖ τQ

def

= (Si,P ∪ Si,Q, ai, Si+1,P ∪ Si+1,Q)i<κ.

This definition is lifted to sets of runs in the usual way, let α(τ) stand for the
action trace of a run τ :

R(P) ‖ R(Q)
def
= {τP ‖ τQ | τP ∈ R(P), τQ ∈ R(Q), α(τP) = α(τQ)}

Theorem 1. R(P ‖ Q) = R(P) ‖ R(Q).

Proof. Assume Γ = ΓP = ΓQ and ΣP ∩ΣQ = ∅. Since ΣP ∩ΣQ = ∅, we know
that for all f ∈ Γ, the action rule of f in P ⊗Q is

(γf,P ∧ γf,Q, Uf,P ∪ Uf,Q, Xf,P ∪Xf,Q)

It follows easily from the above definitions that (Si, ai, Si+1)i<κ is a run of P⊗Q
if and only if (Si,M , ai, Si+1,M)i<κ is a run of M , for M = P and M = Q, where
Si = Si,P ∪ Si,Q. The statement follows. �

Corollary 1. L(P ‖ Q) = L(P) ∩ L(Q).

The main reason why the corollary is relevant is that it makes it possible
to apply compositional reasoning over the traces in the following sense. If all
traces of P satisfy a property ϕ and all traces of Q satisfy a property ψ then all
traces of P ‖ Q satisfy both properties ϕ and ψ.

Example 3. A typical use of composition is for scenario control. Suppose we
want to consider all the traces of actions of the Credits model program where the
Req-action and the Res-action alternate. In other words, we want to restrict
L(Credits) with the regular expression (Req Res)∗. Composing Credits with
following model program FSM ((Req Res)∗) will do the trick.

({s}, {Req,Res, acc}, s = 0, {(s = 0, s := 1)Req , (s = 1, s := 0)Res, (s = 0)acc}

3 MODEL PROGRAM COMPOSITION 11

FSM ((Req Res)∗) is essentially the finite automaton:

0 1
Req

Res

Note that in the product Credits ⊗ FSM ((Req Res)∗) a state is accepting when
no Res-action is enabled. In a testing scenario this could mean that there is no
pending response in the system under test, so the system is stable and can be
reset, and a new test case can be started, where a test case is a trace of Req

and Res-actions in the product that ends in an accepting state. �

The construct shown in Example 3 is an example of a frequently used technique
to restrict behaviors of a model program P in the context of testing. In general,
given a regular expression ρ over Γ, the corresponding model program FSM (ρ)
is composed with P .

3.3. Trace restriction

For scenario control, it is sometimes useful to refer to the state variables of
a model program in order to write a scenario for it. In other words, there is a
contract model program P and there is a scenario model program Q that may
read the state variables of P but it may not change the values of those variables.
Let WriteSet(Q) be the set of all state variables of Q that are assigned by some
action of Q. We define restriction composition

P � Q
def
= P ⊗Q (assuming ΓQ ⊆ ΓP and WriteSet(Q) ∩ ΣP = ∅)

Theorem 2. L(P � Q) ⊆ L(P).

Proof. Let F = ΓP \ ΓQ. We know that P ⊗Q = P ⊗Q+F . For all f ∈ ΓP ,
the action rule of f in P ⊗Q is

(γf,P ∧ γf,Q, Uf,P ∪ Uf,Q, Xf,P ∪Xf,Q),

since f does not assign to shared state variables. We may assume that each
state variable x ∈ ΣP is assigned in Uf,P . Assume (Si, ai, Si+1)i<κ is a run of
P ⊗Q. Let Si,P be the restriction of Si to the variables ΣP , for all i. There are
two cases.

1. If ai is an f -action for some f ∈ F then γf,Q = true, Uf,Q = ∅ and
Xf,Q = ∅, so (Si,P , ai, Si+1,P) is a transition in [[P]], provided Si,P is
reachable.

2. If ai is an f -action for some f ∈ ΓQ, then there is an extension S′
i of Si

such that S′
i |= γf,P ∧γf,Q and Si+1 = {x 7→ tS

′

i}x:=t∈Uf,P∪Uf,Q
. Note that

S′
i is also an extension of Si,P and Si+1,P = {x 7→ tS

′

i}x:=t∈Uf,P
, because

no x ∈ ΣP is assigned in Uf,Q. So (Si,P , ai, Si+1,P) is a transition in [[P]],
provided Si,P is reachable.

Since S0,P is an initial state of P , it follows that (Si,P , ai, Si+1,P)i<κ is a run of
P . �

4 IMPLEMENTATION AND USE 12

In this case composition of P and Q does not introduce traces that were not
traces of P . A typical use of restriction composition is for guard strengthening

that is illustrated in Example 4. It is not possible to achieve the same effect
easily with parallel composition, without duplicating state variables.

Example 4. Consider the following model program, called MinReq.

MinReq = ({window}, {Req}, true, {(Req0 = Min(window))Req})

The definition of Min , in terms of T , is

Min(X)
def

= TheElementOf ({y | y ∈ X ∧ ∀ z(z ∈ X ⇒ y ≤ z)}).

MinReq requires the first argument of Req-action to be the minimal element
in window . In MinReq+{Res} the action rule of Res is true. The restriction
composition Credits � MinReq (with Credits from Example 1) strengthens the
guard of the Req-action with the condition Req0 = Min(window). �

4. Implementation and use

In this section we discuss some pragmatics of implementing and using com-
position in a tool for software analysis and testing. In particular, we discuss the
NModel toolkit [8, 10].

In NModel we distinguish two kinds of model programs: contract model

programs and scenario machines.
A contract model program is a complete specification (the “contract”) of the

system it models. It can generate every trace that the system is allowed to
execute, and cannot generate any trace that the system is forbidden to execute.

In NModel, a contract model program is usually written in C#. Its state
variables are the variables of the C# program; its initial state is their initial
values. Some of its methods are the actions of the model program: the methods
labeled with the [Action] attribute, similar to Example 1. For each action
method, there is an enabling condition: a Boolean method that returns true
in states where the action is enabled (the enabling condition also depends on
the action arguments), similar to the require statements in Example 1. The
accepting states are defined by another Boolean method.

A scenario machine is a model program that does not comprise a complete
specification, but only describes a collection of related traces — perhaps just
one. A scenario machine might describe the test cases (traces) in a test suite de-
signed to cover a particular slice of functionality. Test engineers create scenario
machines to express the use cases they intend to test. Usually some scenario
machines can be transcribed directly from examples in specifications or require-
ments documents. Others are suggested by the test engineers’ judgments. In the
NModel framework, scenario machines are usually finite state machines (FSMs),
expressed in a simple text format that describes the graph of the FSM, similar
to Example 3.

4 IMPLEMENTATION AND USE 13

Exploration. In NModel, the primary technique for visualizing and analyzing
model programs is called exploration. Exploration generates a finite state ma-
chine (FSM) from a model program. Exploration is, in effect, finite state model
checking [11]. The states (nodes) of the FSM are model program states and the
transitions (edges) of the FSM are labeled by actions.

Starting at the initial state, the exploration algorithm executes enabled ac-
tions, adding actions and states to the FSM as it goes. Exploration terminates
when all states have been explored or (more typically) some other stopping con-
dition has been reached. We say that a model program P is infinite if [[P]] is
infinite. In general, P is infinite (or too large to generate or store), so explo-
ration can be configured to stop after a given number of transitions have been
executed. It is also possible to define a Boolean function on state variables called
a state filter to exclude states from exploration, for example if a data structure
exceeds a given size. The exploration algorithm is lazy; it generates each state
and transition only when needed. Exploration can be stopped at any time; the
generated FSM may be incomplete, but it is correct (in the sense of being a
reachable subset or under-approximation of [[P]]) as far as it goes.

Composition. Recall that composition is an operation that combines two (or
more) model programs to obtain another model program called their product.
Recall also that the effect of composition is to synchronize shared actions (that
appear in the vocabularies of more than one of the composed model programs)
and to interleave unshared actions (that only appear in one).

The composition algorithm is, in effect, parallel exploration of all the com-
posed programs. Starting from the initial states in all programs, synchronize on
shared actions: at each state add to the product only those shared actions that
are enabled in the corresponding states in all programs. Interleave unshared
actions: at each state add to the product any unshared actions that are enabled
in the corresponding states of any program (recall also Section 3.1). A state is
an accepting state in the product if it corresponds to an accepting state in all
of the programs.

If all actions are shared, the product is usually smaller than the composed
machines, because the product can only contain synchronized actions. If there
are unshared actions, the product might be larger, due to interleaving.

Like exploration, the composition algorithm is lazy. This enables a finite
scenario machine Q to be explored in parallel with an infinite contract model
program P . Their product can be readily computed. It is typical to compose
a contract model program with a scenario machine, as illustrated in Exam-
ple 3. Note also that P � Q is not necessarily finite, but may require further
restrictions, e.g., by providing finite ranges for the action parameters with an
additional scenario machine.

The following sections discuss an example, a simple client/server that uses
TCP/IP sockets. This is not an industrial case study (as in [1] and [2]), but
a small working example created for purposes of exposition. The actions in
the model program represent calls to the socket API to open and close sockets,
make connections, and send and receive messages. A single model program

4 IMPLEMENTATION AND USE 14

0

1

ClientSocket()

2

ServerSocket()

27

4

ServerSocket()

5

ServerBind() ClientSocket()

3

ServerClose()

7

ClientSocket()

6

ServerListen()

ServerClose()

ServerBind()

9

ServerClose()

8

ServerListen()

ServerClose()

10

ClientConnect() ServerClose()

12

ServerAccept()

11

ServerClose()

16

ServerSend(99.9)

13

ServerCloseConnection()14

ClientClose()

15

ClientSend()

17

ServerSend(100)) ClientReceive()/99.9

18

ServerCloseConnection()

26

ServerClose()

20

ClientClose()

28

ClientSend()

ServerCloseConnection()

ServerReceive()

ServerCloseConnection()

ClientReceive()/100

21

ServerCloseConnection()

ClientReceive()/100

23

ServerClose()

ClientReceive()/100

ClientClose()

29

ClientSend()ServerClose()

ClientReceive()/99.9

30

ServerClose()

ClientReceive()/99.9

ClientSocket()ServerClose()

ClientSocket()

ServerClose()

Figure 2: FSM generated by exploring client/server contract model program

5 PROPERTY CHECKING 15

represents the client, the server, and the network including messages in flight.
This example has been made finite by allowing only one open socket connection,
and by limiting message contents to only a few values. Figure 2 shows the FSM
generated by exploring this model program. The initial state is gray (top); the
accepting state has a double border (bottom). We shall compare the size of this
graph (the number of nodes and transitions) and its shape to figures 4 and 5
(below). For our purposes in this paper, the node and transition labels in this
figure are not important. (The full contract model program itself is too large to
include in the paper; it is included with the NModel software.)

5. Property checking

It is necessary to validate a model program: to show that it accurately
represents the intended behaviors. Validation usually includes checking whether
the model program can execute some traces that are known to be allowed, and
cannot execute others that are known to be forbidden.

We can use composition to check whether a model program can execute
a particular trace: express the trace as a scenario machine, and compose the
two. If the product of the composition reaches an accepting state, the model
program can execute that trace; otherwise, it cannot. In effect, the contract
model program here acts as an oracle that judges whether the behavior of the
scenario machine is allowed.

The left side of figure 3 shows the graph of a scenario machine to be checked
by the client/server model program. In this scenario the client and server ex-
change messages before executing an Accept action. This behavior is forbidden.
The right side of the figure shows the product of that forbidden scenario with
the contract model program (fig. 2). Each node in the product is labeled by a
pair of numbers, the numbers of corresponding states in the scenario machine
(left) and the contract model program (compare to fig. 2). The product is a
single trace that does not reach an accepting state. The trace stops in a non-
accepting state after the client Connect action, which is the last action that is
enabled in the corresponding states in both machines. This shows that the con-
tract model program cannot execute this scenario. That is because the scenario
describes a forbidden behavior here. In general, when composition reveals that
a contract model program cannot execute a plausible scenario, it is advisable to
also investigate whether it is the contract model program which is at fault (fails
to express the intended behaviors).

This method can be generalized to check any temporal property than can
be expressed by a finite state machine.

6. Scenario control

Model programs are often intended as test case generators for model-based

testing. Almost any automatic test generation method will generate too many
tests unless there is something to prevent it. Composition can provide scenario

control to focus on issues of interest and eliminate redundant test cases.

6 SCENARIO CONTROL 16

0

1

ServerSocket()

0, 0

1, 2

ServerSocket()

11

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerSend(99.9)

8

ClientReceive()/99.9

9

ClientClose()

10

ServerCloseConnection()

ServerClose()

2, 5

ServerBind()

3, 6

ServerListen()

4, 8

ClientSocket()

5, 10

ClientConnect()

Figure 3: Left: scenario machine, forbidden scenario. Right: product of forbidden scenario
machine with contract model program.

One way to generate test cases from a model program is to generate its FSM
by exploration, then traverse the FSM. Each path through the FSM from the
initial state to an accepting state is a test case. A Postman Tour covers all
of the edges in the graph of the FSM, visiting every state and executing every
action. Usually several, or many, paths (test cases) are needed to complete the
Postman Tour. Figure 4 shows the test suite generated by a Postman Tour of
the FSM of the client/server model program shown in Figure 2.

This test suite contains many similar (redundant) test cases because there
are many different (but uninteresting) paths through the setup and shutdown
portions of the graph, where the client and server are opening and closing their
sockets. Each path describes a different interleaving of these client and server
actions. The Postman Tour covers all possible interleaving orders. Some of
these actions occur during those parts of protocol execution when the client
and server are not even connected, so the order of these actions cannot matter;

6 SCENARIO CONTROL 17

0

3

Test(0)

6

Test(5)

5

Test(3)

4

Test(2)

1

Test(4)

2

Test(1)

41475980

70

63

13

ServerSocket()

7

ServerSocket()

9

ClientSocket()

48

ClientSocket()

23

ServerSocket()

11

ClientSocket()

12

ServerSocket()

32

ServerBind()

33

ServerListen()

34

ClientConnect()

35

ServerAccept()

36

ServerSend(100)

37

ServerCloseConnection()

38

ServerClose()

40

ClientReceive()/100

ClientClose()

24

ServerBind()

25

ClientSocket()

26

ServerListen()

27

ClientConnect()

28

ServerAccept()

42

ServerSend(99.9)

44

ClientReceive()/99.9

45

ClientClose()

46

ServerCloseConnection()

ServerClose()

49

ServerSocket()

50

ServerBind()

51

ServerListen()

52

ClientConnect()

53

ServerAccept()

54

ServerSend(100)

55

ServerCloseConnection()

57

ClientReceive()/100

58

ClientClose()

ServerClose()

10

ServerSocket()

71

ServerBind()

72

ServerListen()

73

ClientConnect()

74

ServerAccept()

75

ServerSend(99.9)

76

ServerCloseConnection()

78

ClientReceive()/99.9

79

ServerClose()

ClientClose()

8

ServerBind()

19

ServerListen()

20

ClientSocket()

21

ClientConnect()

22

ServerAccept()

29

ClientSend()

64

ServerReceive()

65

ServerSend(100)

67

ClientReceive()/100

68

ServerCloseConnection()

69

ServerClose()

ClientClose()

14

ClientSocket()

15

ServerBind()

16

ServerListen()

17

ClientConnect()

18

ServerAccept()

30

ServerSend(99.9)

31

ServerCloseConnection()

60

ServerClose()

62

ClientReceive()/99.9

ClientClose()

Figure 4: Test suite obtained by traversing the FSM of the contract model program

6 SCENARIO CONTROL 18

0

1

ServerSocket()

13

2

ServerBind()

3

ServerListen()

4

ClientSocket()

5

ClientConnect()

6

ServerAccept()

7

ClientSend()

8

ClientClose()

9

ServerSend(99.9)

10

ServerSend(100)ServerReceive()

12

ServerCloseConnection()

ClientReceive()/99.9 ClientReceive()/100

ServerClose()

Figure 5: FSM of client/server contract model program composed with test case machine

7 SYMBOLIC REACHABILITY CHECKING 19

any single path would provide adequate coverage. In fact, these startup and
shutdown portions are executed only in order to reach the interesting part of
the graph, where client and server exchange messages.

We compose the contract model program with a test scenario machine to
eliminate redundant paths through startup and shutdown. The test scenario
machine (not shown here) describes a single path through startup and shut-
down. The startup and shutdown actions are shared so the contract model
program must synchronize with them. Therefore, only the single path from the
scenario machine appears in the product. However, the client and server send

and receive-actions are not present in the scenario machine. They are unshared,
so they may interleave freely in the product, limited only by the enabling con-
ditions in the contract model program.

The graph of the product of the composition of the contract model program
with the test scenario machine appears in Figure 5 (compare to figs. 2 and 4).
There is just one path through startup and shutdown, but several loops through
the interesting part of graph where client and server exchange messages. This
product machine can be traversed by a single path, because the paths through
the several send and receive actions all loop back to the same state. This path
corresponds to a single test case.

7. Symbolic reachability checking

Correctness assumptions about a model program can also be expressed
through state invariants. A state where an invariant is violated is unsafe. A
part of the model validation process is safety analysis, which aims at identi-
fying unsafe states that are reachable from some initial state. The techniques
discussed above can also be used for safety analysis. Here we look at a different
approach that uses theorem proving. The main advantage of this approach is
that the model program does not have to be explorable in the way discussed
in Section 4, but may for example include unbounded ranges for action param-
eters or an initial state condition that allows an unbounded number of initial
states. The main disadvantage is that the theorem prover needs to support a
rich background theory that may cause the proof search to be very expensive.
We show how composition can be used to assist the proof search.

Bounded reachability checking. Bounding the number of steps from the initial
state leads to the bounded reachability checking problem of model programs:
given a model program, a step bound k, and a condition ϕ, is ϕ reachable in P
from some initial state of P within k steps?

One can construct a formula BRC (P, ϕ, k) in T from given P , k, and ϕ such
that BRC (P, ϕ, k) is satisfiable in T if an only if ϕ is reachable in P from some
initial state of P within k steps [5]. Moreover, given S |= BRC (P, ϕ, k), one can
extract an initial state S0 and an action trace α of length l ≤ k from S, such
that S0

α
−→ S′ where S′ |= ϕ. The formula BRC (P, ϕ, k) can be analyzed using

the satisfiability modulo theories approach [5, 12, 13] that has been implemented
using the SMT solver Z3 [14].

7 SYMBOLIC REACHABILITY CHECKING 20

Using composition. In some cases, checking satisfiability of BRC (P, ϕ, k) can be
very expensive. One of the core problems is detecting symmetries that arise in
proof search due to similarities in the structure of formulas. The below Bag(n)
model program is a distilled example that illustrates the symmetry detection
problem, that came up as a subproblem in the context of a scheduling problem.
There are a number of indexed counters that can be decremented using the
action D that takes the index of the counter as an argument and decrements
the corresponding counter. In this particular case there are two counters C(0)
and C(1), where C is a map, both having the initial value n > 0, or one can
view C as a bag (multi-set) containing n 0’s and n 1’s. D deletes one element
from the bag.

Bag(n) = ({CS(Z×Z)}, {D}, C = {〈0, n〉, 〈1, n〉},

{(C(D0) > 0, C := Update(C,D0, C(D0) − 1))D})

An equivalent AsmL version of the model programs looks like:

var C as Bag of Integer = {0 -> n, 1 -> n}

[Action]

D(x as Integer)

require x in C

remove x from C

We are interested in finding a sequence of actions that exhausts all the
counters (empties the bag), i.e., the reachability condition ϕ is C = ∅ (recall
the definition of Update and recall that DefaultZ = 0). The order of applying
the actions D(0) and D(1) is clearly immaterial.

If the step bound k is smaller than 2n then BRC (Bag(n), ϕ, k) is clearly
unsatisfiable. The execution time of the theorem prover grows exponentially
in k in this case (see Table 1). We can use the knowledge that the order
of decrementing the different counters is irrelevant and fix such an order by
composing Bag(n) with Order .

Order = ({xZ}, {D}, true, (x ≤ D0, x := D0)D)

The model program Order imposes a linear order on the actions where action
D(a) has to precede action D(b) if a < b. Thus, if a < b < c then traces of
Order must match the pattern D(a)∗D(b)∗D(c)∗.

This use of composition is directly related to partial order reduction [15],
that can be achieved by strengthening of the guards of the transitions in the
context of symbolic model checking [11]. Note that in the Bag example, the
actions {a, b} = {D(0), D(1)} are independent in the following sense [16, 17]: 1)

for all states S, if a is enabled in S and S
a

−→ S1, then b is enabled in S iff b is
enabled in S1, and 2) if a and b are both enabled in S then there is a unique state

S1 such that S
a,b
−→ S1 and S

b,a
−→ S1. Independent actions can neither disable

nor enable each other, and commute when enabled. This notion of independence

8 RELATED WORK 21

Table 1: Satisfiability checking of BRC (M, C = ∅, k) with Z3 (version 0.1) for various M and
k. Execution time is shown in seconds.

Model programM Step boundk Verdict Time

Bag(5) 10 Sat 0.14
Bag(5) ‖ Order 10 Sat 0.14
Bag(5) 9 Unsat 1.5
Bag(5) ‖ Order 9 Unsat 0.16
Bag(8) 16 Sat 2.2
Bag(8) ‖ Order 16 Sat 1.4
Bag(8) 15 Unsat 152
Bag(8) ‖ Order 15 Unsat 1

provides the starting point for various partial order reduction techniques and,
combined with Theorem 1, justifies the use of composition in this particular
case. An interesting open problem is how to automate the technique in the
context of SMT.

8. Related work

This paper is based on and unifies earlier work related to composition from [8,
12, 18, 19]. In particular, Corollary 1 was originally stated in [18], for a vari-
ation of the definition of model programs. The Credits example used here is
studied in [8, 19] in the context of facet oriented protocol modeling. The use
of composition of model programs is the cornerstone of many additional anal-
ysis techniques based on explicit state model checking, that are discussed from
a practical perspective in [8] and are implemented in the NModel toolkit [10]
(also discussed in Sections 4 – 6 here). NModel supports arbitrarily nested data
structures, e.g., sets containing maps containing sets, etc, that goes beyond T .
During exploration, NModel supports explicit state based symmetry reduction
techniques that use graph isomorphism checking [20, 21]. In NModel a model
program is scoped by a namespace. Within that namespace, classes can be
given a [Feature] attribute that declares that class as a feature or submodel
program of the full model program. This mechanism can be used to construct
separate facet model programs that share state variables, for restriction compo-
sition. The main composition operator in NModel is parallel composition, that
assumes that the composed model programs do not share state variables. The
FSM construct is supported in NModel by entering a textual representation of
a nondeterministic finite automaton or NFA (e.g. in a text file), that is con-
verted to a finite state model program representing a lazy determinization of
the NFA based on the Rabin-Scott algorithm, see e.g. [22, Theorem 2.1]. The
FSM construct is related to a more general coordination language approach for
scenario control [23].

8 RELATED WORK 22

Model programs have a long history in the context of model-based testing
with Spec Explorer [24, 25, 26], where composition was supported in a limited
form through scenario actions that came to exist due to a popular demand. The
new version of Spec Explorer is owned by the Windows organization, and is used
for model-based testing of protocols [1]. Model programs are similar to action
machines [27], the main difference is how composition is handled, composition
of action machines is based on inference rules and symbolic computation that
incorporates the notion of computable approximations of subsumption check-
ing between symbolic states, using three-valued logic. Model programs and
their compositionality properties also are related to parameterized extended
finite state machines [28], symbolic transition systems [29], and attributed au-
tomata [30]. Some of those relationships are discussed in [18]. More about
model-based testing applications and further motivation for the composition of
model programs can be found in [31, 32, 25].

Model programs are similar to Event-B models [7]. Much like model pro-
grams being an extension of ASMs with actions, Event-B is an extension of
the B-method [33] with events (corresponding to actions in model programs)
that describe atomic behaviors. Each event is associated with a guard and an
assignment, that causes a state transition when the guard is true is a given
state. Unlike Event-B that is a whole specification language, model programs
are language agnostic, in particular there is a mapping from AsmL as well as
C# into model programs, and models from different modeling languages may
be mixed, e.g. by composing textually represented FSM model programs with
C# model programs in NModel [8]. When translating from AsmL or ASMs that
use choose-statements, the resulting model programs are nondeterministic (use
choice variables), in Event-B there is a similar any-statement for expressing non-
determinism. It is unclear as to what extent Event-B supports forall -statements
that are commonly used in AsmL and are in model programs translated into
comprehensions in the background T . Choose-statements may also be nested
within forall-statements in ASMs which translate into non-basic choice functions
or Skolem functions in model programs [5]. Composition of Event-B models was
introduced in [34] and is further discussed in [35]. Event composition and event
fusion, introduced in [34], are similar to composition of model programs, where
event composition assumes disjoint state variables, whereas event fusion allows
shared state variables. It is unclear from the presentation in [34], how events
can be parameterized, and how the parameter values are combined during com-
position. Note that in the context of model programs, the action parameters are
unified through the action parameter variables that are essentially shared read-
only variables in the composed model program. The primary motivation for
composition of model programs has been testing and scenario control, whereas
in Event-B the primary motivation for composition is to support feature ori-
ented system refinement during modeling. B-models can be analyzed with the
ProB tool [36], in form of model animation and model checking. In particular,
ProB has built-in LTL model checking support. In NModel, LTL is not directly
supported, the user would need to write an explicit automaton corresponding
to the LTL formula and compose it with the contract model. In addition to

8 RELATED WORK 23

B, in the most recent version of ProB, there is also support for CSP-M and Z,
see [36]. A useful extension to ProB would be to support model programs in a
way that would allow for example ASM-style models to be composed with B-
style models, that would also help to close the gap between the two communities.
Recent work in the context of model programs has investigated various symbolic
methods for analysis, that depend on the formalization of model programs with
respect to the background theory T , such as symbolic model checking [12, 13],
symbolic conformance checking [37] and symbolic ioco or alternating refinement
checking [38]. In these contexts, composition of model programs can be used for
scenario oriented analysis, as illustrated in Section 7. Due to the close relation
between model programs and Event-B models, some of the complexity results
and techniques might also be relevant to the B-community as well as other mod-
eling formalisms that rely on sets and maps and where refinement relations are
used, such as RAISE, Z, TLA+, see [39].

In general, model programs over T are a non-trivial extension of explicit
LTSs. They also differ from formalisms that use symbolic or standard program-
matic descriptions of LTSs through extended finite state machines, by support-
ing unbounded comprehensions. In particular, the bounded model checking
problem is highly undecidable, Σ1

1-complete, for general model programs [5]
(even for a single step) whereas the problem is decidable for standard sequential
programs.

The main application of model programs has been for analysis and testing
of software systems. In particular, for passive testing or runtime monitoring, a
model program can be used as an oracle that observes the traces of a system
under test and reports a failure when an action occurs that is not enabled in the
model. In the context of testing of reactive systems with model programs [32],
the action symbols are separated into controllable and observable ones, e.g., in
Example 1, Req could be controllable and Res observable. In that context the
semantics of a model program as an input-output LTS [3, 40] is fundamental in
order to use ioco [41, 42], or alternating refinement [43, 44], as a foundation of
the conformance relation.

Symbolic analysis of model programs is recent and ongoing work. The use of
composition as a way to reduce symmetries in proof search is first noted in [12] in
the context of symbolic reachability checking of model programs. The symbolic
bounded reachability problem of model programs is studied in [5, 12, 13]. The
problem is a generalization of symbolic bounded model checking [45, 46] to
model programs. Theorem proving modulo T can also be used to check whether
the traces of one model program form a subset of the traces of another model
program [37]. We use the state of the art SMT solver Z3 [14] for our experiments
on satisfiability problems in T . The reduction to Z3 takes advantage of built-in
support for Ite terms, sets, tuples, and an extensional theory of arrays that
supports a direct encoding of maps.

REFERENCES 24

Acknowledgments

We thank the anonymous referees whose comments considerably helped to
improve this paper.

References

[1] W. Grieskamp, D. MacDonald, N. Kicillof, A. Nandan, K. Stobie, F. Wur-
den., Model-based quality assurance of Windows protocol documentation,
in: First International Conference on Software Testing, Verification and
Validation, ICST, Lillehammer, Norway, 2008.

[2] J. Ernits, R. Roo, J. Jacky, M. Veanes, Model-based testing of web ap-
plications using NModel, in: TESTCOM/FATES 2009, LNCS, Springer,
2009.

[3] R. Keller, Formal verification of parallel programs, Communications of the
ACM (1976) 371–384.

[4] Y. Gurevich, Specification and Validation Methods, Oxford University
Press, 1995, Ch. Evolving Algebras 1993: Lipari Guide, pp. 9–36.

[5] M. Veanes, N. Bjørner, Y. Gurevich, W. Schulte, Symbolic bounded model
checking of abstract state machines, Int J Software Informatics 3 (2–3)
(2009) 1–22.

[6] Y. Gurevich, N. Tillmann, Partial updates, Theoretical Computer Science
336 (2–3) (2005) 311–342.

[7] J.-R. Abrial, S. Hallerstede, Refinement, decomposition and instantiation of
discrete models: Application to Event-B, Fundamenta Informaticae 77 (1-
2) (2007) 1–28.

[8] J. Jacky, M. Veanes, C. Campbell, W. Schulte, Model-based Software Test-
ing and Analysis with C#, Cambridge University Press, 2008.

[9] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds, MIT Press, 1997.

[10] NModel, http://www.codeplex.com/NModel, public version released May
2008.

[11] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999.

[12] M. Veanes, N. Bjørner, A. Raschke, An SMT approach to bounded reach-
ability analysis of model programs, in: K. Suzuki, T. Higashino, K. Ya-
sumoto, K. El-Kakih (Eds.), FORTE 2008, Vol. 5048 of LNCS, Springer,
2008, pp. 53–68.

REFERENCES 25

[13] M. Veanes, A. Saabas, On bounded reachability of programs with set com-
prehensions, in: LPAR’08, Vol. 5330 of LNAI, Springer, 2008, pp. 305–317.

[14] L. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: C. R. Ramakr-
ishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, (TACAS’08), Vol. 4963 of LNCS, Springer, 2008, pp.
337–340.

[15] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems – An Approach to the State-Explosion Problem, Vol. 1032 of LNCS,
Springer, 1996.

[16] S. Katz, D. Peled, Defining conditional independence using collapses, The-
oretical Computer Science 101 (1992) 337–359.

[17] C. Flanagan, P. Godefroid, Dynamic partial-order reduction for model
checking software, in: J. Palsberg, M. Abadi (Eds.), POPL 2005, ACM,
2005, pp. 110–121.

[18] M. Veanes, C. Campbell, W. Schulte, Composition of model programs, in:
J. Derrick, J. Vain (Eds.), FORTE 2007, Vol. 4574 of LNCS, Springer,
2007, pp. 128–142.

[19] M. Veanes, W. Schulte, Protocol modeling with model program compo-
sition, in: K. Suzuki, T. Higashino, K. Yasumoto, K. El-Kakih (Eds.),
FORTE 2008, Vol. 5048 of LNCS, Springer, 2008, pp. 324–339.

[20] M. Veanes, J. Ernits, C. Campbell, State isomorphism in model programs
with abstract data structures, in: J. Derrick, J. Vain (Eds.), FORTE 2007,
Vol. 4574 of LNCS, Springer, 2007, pp. 112–127.

[21] J. Ernits, Two state space reduction techniques for explicit state model
checking, Ph.D. thesis, Tallinn University of Technology (2007).

[22] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison Wesley, 1979.

[23] W. Grieskamp, N. Kicillof, A schema language for coordinating construc-
tion and composition of partial behavior descriptions, in: SCESM ’06: Pro-
ceedings of the 2006 International Workshop on Scenarios and State Ma-
chines: Models, Algorithms, and Tools, Shanghai, China, May 27, 2006,
ACM, 2006, pp. 59–66.

[24] W. Grieskamp, Y. Gurevich, W. Schulte, M. Veanes, Generating finite state
machines from abstract state machines, SIGSOFT Softw. Eng. Notes 27 (4)
(2002) 112–122.

[25] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, L. Nach-
manson, Model-based testing of object-oriented reactive systems with Spec
Explorer, in: R. Hierons, J. Bowen, M. Harman (Eds.), Formal Methods
and Testing, Vol. 4949 of LNCS, Springer, 2008, pp. 39–76.

REFERENCES 26

[26] M. Utting, B. Legeard, Practical Model-Based Testing - A tools approach,
Elsevier Science, 2006.

[27] W. Grieskamp, N. Kicillof, N. Tillmann, Action machines: a framework for
encoding and composing partial behaviors, IJSEKE 16 (5) (2006) 705–726.

[28] D. Lee, M. Yannakakis, Principles and methods of testing finite state ma-
chines – a survey, Proceedings of the IEEE 84 (8) (1996) 1090–1123.

[29] L. Frantzen, J. Tretmans, T. Willemse, A symbolic framework for model-
based testing, in: K. Havelund, M. Núñez, G. Rosu, B. Wolff (Eds.),
FATES/RV 2006, no. 4262 in LNCS, Springer, 2006, pp. 40–54.

[30] M. Meriste, J. Penjam, Attributed models of executable specifications,
in: M. V. Hermenegildo, S. D. Swierstra (Eds.), PLILP’95, Vol. 982 of
LNCS, Springer, 1995, pp. 459–460, full version available as Research Re-
port CS80/95, Department of Computer Science, Institute of Cybernetics,
Tallinn 1995.

[31] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann,
M. Veanes, Testing concurrent object-oriented systems with Spec Explorer,
in: J. Fitzgerald, I. J. Hayes, A. Tarlecki (Eds.), FM 2005: Formal Methods,
Vol. 3582 of LNCS, Springer, 2005, pp. 542–547.

[32] M. Veanes, C. Campbell, W. Schulte, N. Tillmann, Online testing with
model programs, in: ESEC/FSE-13, ACM, 2005, pp. 273–282.

[33] J.-R. Abrial, The B-Book: Assigning programs to meanings, Cambridge
University Press, 1996.

[34] M. Poppleton, The composition of Event-B models, in: E. Börger, M. J.
Butler, J. P. Bowen, P. Boca (Eds.), Int. Conference on ASM, B and Z
(ABZ’08), Vol. 5238 of LNCS, Springer, 2008, pp. 209–222.

[35] M. Butler, Decomposition structures for Event-B, in: M. Leuschel,
H. Wehrheim (Eds.), Integrated Formal Methods (IFM’09), Vol. 5423 of
LNCS, Springer, 2009, pp. 20–38.

[36] ProB, http://www.stups.uni-duesseldorf.de/prob/.

[37] M. Veanes, N. Bjørner, Symbolic bounded conformance checking of model
programs, in: A. Pnueli, I. Virbitskaite, A. Voronkov (Eds.), Perspectives
of System Informatics (PSI’09), LNCS, Springer, 2009.

[38] M. Veanes, N. Bjørner, Input-output model programs, in: M. Leucker,
C. Morgan (Eds.), ICTAC 2009, Vol. 5684 of LNCS, Springer, 2009, pp.
322–335.

[39] D. Bjørner, M. Henson (Eds.), Logics of Specification Languages, Springer,
2008.

REFERENCES 27

[40] N. Lynch, M. Tuttle, Hierarchical correctness proofs for distributed al-
gorithms, in: 6th annual ACM Symposium on Principles of distributed
computing, ACM, 1987, pp. 137–151.

[41] E. Brinksma, J. Tretmans, Testing Transition Systems: An Annotated
Bibliography, in: Summer School MOVEP’2k, Vol. 2067 of LNCS, Springer,
2001, pp. 187–193.

[42] J. Tretmans, Model based testing with labelled transition systems, in:
R. Hierons, J. Bowen, M. Harman (Eds.), Formal Methods and Testing,
Vol. 4949 of LNCS, Springer, 2008, pp. 1–38.

[43] R. Alur, T. A. Henzinger, O. Kupferman, M. Vardi, Alternating refinement
relations, in: D. Sangiorgi, R. de Simone (Eds.), CONCUR 1998, Vol. 1466
of LNCS, Springer, 1998, pp. 163–178.

[44] L. de Alfaro, Game models for open systems, in: Verification: Theory and
Practice, Vol. 2772 of LNCS, Springer, 2004, pp. 269 – 289.

[45] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without
BDDs, in: R. Cleaveland (Ed.), Tools and Algorithms for the Construction
and Analysis of Systems, (TACAS’99), Vol. 1579 of LNCS, Springer, 1999,
pp. 193–207.

[46] L. de Moura, H. Rueß, M. Sorea, Lazy theorem proving for bounded model
checking over infinite domains, in: A. Voronkov (Ed.), CADE 2002, Vol.
2392 of LNCS, Springer, 2002, pp. 438–455.

