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Abstract. Speedups of coupled processor-FPGA systems over tradi-
tional microprocessor systems are limited by the cost of hardware recon-
figuration. In this paper we compare several new configuration caching
algorithms that reduce the latency of reconfiguration. We also present a
cache replacement strategy for a 3-level hierarchy. Using the techniques
we present, total latency for loading the configurations is reduced, low-
ering the configurable overhead.

1 Introduction

Configurable computing systems can exhibit significant performance benefits
over conventional microprocessors by mapping portions of executable code to
a reconfigurable function unit (RFU). In such a system, native code sequences
are replaced with configurations, which are loaded into the RFU using new
instructions (rfuOps). In order to achieve speedups two requirements must be
satisfied. First, a significant portion of the program must be mapped to the
RFU and must execute significantly faster on the RFU as compared to native
execution on the core. Second, the cost of loading the configurations onto the
RFU must be small enough not to obviate the advantage of running on the RFU.
In this paper we address the latter problem.

Some of the independent techniques researchers have proposed for reduc-
ing configuration overhead include configuration prefetching [14] , configuration
compression [9] and configuration caching [7]. In this paper we describe an im-
proved algorithm for RFU configuration caching and a new strategy for multi-
level caching.

We divide configuration-caching algorithms into two classes, penalty based
and history-based algorithms. Penalty-based algorithms evict configurations in
the cache based on their size, distance of last occurrence and frequency of oc-
currence. The simple Least-Recently Used [7] algorithm, for example, evicts the
configuration that was accessed furthest in the past. History-based algorithms
evict rfuOps1 based not only on their individual properties, but also their order
of execution. In short, the one that is predicted to occur farthest in future is
evicted.

1 We use ’rfuOp’ to refer to either the instruction that loads the configuration to be
executed or the configuration itself
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class size cost optional

virtual memory fixed fixed no
web caching variable variable yes

VM w/ superpages multiple fixed no
ideal config caching variable fixed yes

required config caching variable fixed no

Table 1. Comparison between different caching problems

In this paper, we propose an effective cache replacement algorithm and de-
scribe the performance of a realistic 3-level configuration-caching model. Our
contributions are:
• We characterize the cache replacement problem in the context of recon-
figurable computing systems and point out the theoretical complexity of
achieving the optimal performance.

• We propose a lightweight history-based online algorithm that, based on sim-
ulation results, outperforms previous cache replacement algorithms.

• We extend the caching model to a three-level cache model and show how
performance varies with defragmentation and the exclusion property.
The rest of the paper is organized as follows. In section 2, we describe the

configuration caching problem. In section 3, we describe different FPGA models.
paper. We describe our own cache replacement algorithms in section 4. In section
5, we present and analyze performance results obtained from our configuration
caching algorithms in different models.

2 Configuration Caching

There are significant differences between configuration caching and other caching
problems (see Table 1) making previously developed techniques unsuitable to the
configuration caching problem. Configuration caching is variable-size caching:
The total latency depends not only on the number of times a configuration is
loaded but also on its size. It is therefore possible that few loads of a very large
configuration will be costlier than many loads of a smaller configuration. Thus,
it might make more sense to keep larger configurations in cache longer and to
consider both size and frequency when making eviction decisions.

While there are various systems that support variable-size pages, such as the
superpage-based virtual memory systems in HP PA-RISC, Compaq Alpha and
others [2], they only permit page sizes that are in multiples of a unit size. We
call this multiple page-sizes, rather than variable page-sizes. Figure 1 shows how
latency increases and is less predictable when page sizes are constrained to be a
power of two.

Another variable but optional caching problem is web caching. Web caching
is optional because the replacement algorithm may choose not to cache a page.
This is called the Variable-size Variable-cost Optional Paging Problem [6,13].
A reconfigurable system that optionally loads rfuOps is an ideal reconfigurable
system. We call this problem an optional caching problem. In this paper we
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Fig. 1. Comparison of the multiple-page size scheme which only allows page sizes
that are a power of two, and the variable-page size scheme which allows pages
of any size. On the left, gsm d shows little difference in latency, whereas on the
right, jpeg e shows how latency can fluctuate for multiple page sizes.

restrict ourselves to required configuration caching, i.e., all the rfuOps in the
program must be loaded and executed.

In this paper we utilize a number of algorithms and conclusions developed for
web caching. Besides the above differences between the two problems there are
two more differences that affect the way techniques for web caching are extended
to configuration caching. First, a web cache is much larger and can generally hold
more pages making thrashing more likely in a configuration cache. Second, con-
figuration cache replacement decisions must be made far more quickly than web
cache replacement decisions. Thus, the configuration cache replacement algo-
rithm needs to be implemented in hardware.

We begin our analysis with modified web caching algorithms LRU and Greedy-
Dual as described in [4]. Both of these are penalty-based algorithms, i.e., they use
past execution data in an order independent fashion to select a victim. We then
propose a history-based technique which tracks the sequence in which rfuOps
were executed to decide which rfuOp to evict at a given point of time.

3 FPGA Models

Different FPGA programming models have been proposed in literature. The
three basic types are Single Context FPGAs, Multi-Context [10] FPGAs, and
Partial Run-Time Reconfigurable (PRTR). According to [7] the PRTR FPGA
has been found to be the best model and achieves speedups of more than 10 times
that of single context FPGA models. However, even the basic PRTR model
can suffer from thrashing caused by multiple configurations that are required
frequently and must be loaded at the same address on the FPGA.

We describe our work in the context of two models based on the PRTRmodel,
the Location-independent and the Defragmentation models1. In the Location-
1 First proposed in [7], the Location-independent model is called the Relocation model

and the Defragmentation model is called the Relocation+Defragmentation model
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procedure SelectVictim( required size)
(min cost, min set)← (∞, nil)
prefix ← nil
last ← 1
for i ← 1 to rfu count

if (last > rfu count – and required size < size(prefix)) then
break

while (size(prefix) < required size)
if (defrag mode and rfuOplast is not

contiguous to rfuOp last−1) then
break

prefix ← prefix
⋃

rfuOplast

last ← last +1
endwhile
if (cost(prefix) < min cost) then

min cost = cost(prefix)
min set = prefix
prefix ← prefix - rfuOpi

endif
endfor
return min set

end procedure

Fig. 2. SelectVictim algorithm to pick contiguous rfuOps. This algorithm returns
the minimal set of contiguous rfuOps whose total size ≥ required size.

independent model, a configuration can be dynamically allocated to any location
of the chip at run time. However, once an rfuOp has been loaded it cannot be
relocated. The Defragmentation model further improves chip area utilization by
using a defragmenter to compact configurations on the fabric. It also permits
rfuOps to be moved after being loaded. Including a defragmenter increases uti-
lization of the fabric space, however, it also increases the total latency by adding
the defragmentation cost.

4 Replacement Algorithms

In this section we describe cache replacement algorithms for different FPGA
models. We break down the replacement algorithm into two phases. In the first
phase a cost is computed for each configuration in the cache which is then used by
phase two to determine which configurations to evict from the cache. All of the
algorithms we present use the same phase two mechanism which we describe in
Section 4.1. We then describe different cost computing algorithms in Section 4.2.

4.1 Victim Selection

The eviction policies for the Location-independent and the Defragmentation
models are similar except that victims selected in the former must be physically
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contiguous on the fabric. Both models require that the set of rfuOps selected
for eviction (MINSET) must have the minimum total eviction cost among all
the rfuOps on the fabric. In the Location-independent model we call the set
of evicted rfuOps the contiguous MINSET, where two rfuOps are contiguous if
no other rfuOps lie physically between them in the fabric (though there may
be a hole between them in which case it will just become part of the total
freed space). Figure 2 shows the linear time procedure to find the MINSET. It
maintains a sliding window of rfuOps, called prefix, from which it selects the
victim. The operation size(prefix) and cost(prefix) are the total size and cost of
all the rfuOps in the set prefix.

The complexity of this procedure is critical to the performance of the overall
configuration caching algorithm. While an O(log n) hardware implementation
based on parallel-prefix can be implemented, we use an alternate technique with
O(1) complexity which is competitive with the actual SelectVictim algorithm.
The minimum cost victim with enough space after it is selected even if there
are rfuOps occupying that space. Using the simplified SelectVictim strategy
increases the latency, on average, by 3%.

Victim Eviction Strategies When one or more victims need to be evicted, two
possible strategies may be used. The first strategy, which we call full eviction is
to evict entire rfuOps. The second strategy, partial eviction, evicts only as much
of the victim(s) as necessary.

Partial eviction performs well when a partially evicted rfuOp is needed again
before it has been fully evicted by subsequent SelectVictim operations. Since
part of the rfuOp is already on fabric, the load latency is reduced because only
the remainder of the rfuOp needs to be loaded.

It can be shown that the partial eviction algorithm is the same as the general
fixed-size virtual-memory caching problem where the smallest unit of configura-
tion is analogous to a page in a fixed-page size virtual-memory system. In the
full eviction model, on the other hand, the problem of variable-sized pages means
that optimality cannot be assured by a polynomial time algorithm.

While partial eviction appears to reduce the amount of excess eviction it is
not very helpful because the excess space on fabric will likely be used up by some
other rfuOp that is loaded in future. Furthermore, tracking the partially loaded
rfuOps is complex.

4.2 Replacement Algorithms for PRTR FPGAs

Here we present both history- and penalty-based algorithms to compute the cost
of the resident rfuOps. This cost is used by SelectVictim, described above, to
make room for a new rfuOp.

History-Based Algorithms This algorithm tries to predict the future se-
quence of rfuOps based on recent history. It maintains a Next table where Next[i]
is the rfuOp that last followed i. The evicted rfuOp is determined by following
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procedure
HistoryBasedDecision(rfuOp to load)

R ← rfuOp to load
Next[prev rfuOp] ← rfuOp to load
if rfuOp to load is on fabric then

return
if there is enough space on fabric
to load rfuOp to load then

load rfuOp to load
return

Make the chain R, Next[R],
Next[Next[R]],. . .

for each configuration C on fabric do
C.cost ← -(distance of C on chain)

endfor
Si ← SelectVictim(size(rfuOp to load))
Load rfuOp to load overwriting

the configurations in Si

end procedure

procedure
PenaltyBasedDecision(rfuOp to load)

if rfuOp to load is on fabric then
goto L1

if there is enough space on fabric
to load rfuOp to load then

load rfuOp to load
goto L1

Si ← SelectVictim(size( rfuOp to load))
Load rfuOp to load overwriting the
configurations in Si

L1:
for each configuration C on fabric do

C.cost ← C.cost–(FABRIC SIZE
–C.Size)

endfor
rfuOp.cost ← LARGE CONSTANT
end procedure

Fig. 3. History-based Algorithm Fig. 4. Penalty-based Algorithm

the Next pointers starting with the rfuOp being loaded, j, i.e., j → Next[j] →
Next[Next[j]] . . . The rfuOp on the fabric that occurs furthest in this chain is
predicted to occur furthest in future and will therefore be evicted.

Each rfuOp is assigned a cost which is negative of the smallest distance from
j in the chain of next pointers. The rfuOp with the smallest cost is evicted. While
the size of the rfuOp is not considered here, it is taken into account during phase
two. As shown later, this algorithm works well despite the fact that it ignores
the sizes of rfuOps in the chain. This agrees with [6].

Implementation of the algorithm in hardware requires a means to handle the
chaining procedure. While a pointer jumping procedure would be expensive in
hardware, it would execute with a complexity of O(log n). Here we describe an
algorithm that predicts which rfuOp will occur furthest in the future without
having to maintain or walk down a series of next links. The key idea is to keep
information only about the RfuOps that are currently in the fabric. It maintains
for each rfuOp, r,:

– FI(r) the first rfuOp to follow r that is in the fabric.
– FA(r) the last rfuOp to follow r that is in the fabric. FA(r) is only valid if

r is resident in the fabric.

Using this information we can determine the rfuOp predicted to be needed far-
thest away in time when r is being loaded as: FA(FI(r)). For example, if the
fabric currently holds rfuOps 1, 2, and 4 and we are about to load rfuOp 5,
and the sequence of rfuOps upto this point is: ...,5,3,1,2,6,4, then FI(5) = 1 and
FA(1) = 4.
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To calculate FI and FA, we use two auxiliary items for each rfuOp: S(r), a
virtual sequence number, and P(r), the rfuOp executed before r that is in the
fabric. We also maintain a register, LastRfu, which holds the last rfuOp executed.

Before program execution, each rfuOp in the program is assigned a virtual
sequence number such that S(r) = r. When an attempt is made to execute rfuOp
R, one of three possibilities exists:

R hits in the fabric: We execute R and update the tables.
R misses in the fabric and there is room for R: We load R, execute R,

and update the tables.
R misses and we need to evict something: We select FA(FI(R)) as the vic-

tim and invoke SelectVictim until there is room in the fabric. We load R,
execute R, and update the tables.

Updating the tables requires that we update FI() for all the rfuOps in the
program, FA() and P() for the rfuOps in the fabric, and S() for R.

FI: In parallel, for each rfuOp, i, in the program and i �= R, if (S(i) < S(R) and
S(R) < S(FI(i))), then set FI(i) = R. Finally, set FI(LastRfu) = R. In other
words, if R occurs before FI(i) in the virtual sequence, make FI(R) = i.

FA: In parallel, for each rfuOp, i, in the fabric and i �= R, if (S(i) < S(FA(i))
and S(FA(i)) < S(R)), then set FA(i) = R. Finally, set FA(R) = LastRfu. In
other words, if R occurs after FA(i) in the virtual sequence, make FA(i) = R.

S: set S(R) = S(LastRfu) + 1 modulo some large number, e.g., 216.
P: If v is a victim, then in parallel, for each rfuOp, i, in the fabric and P(i) = v,

P(i) = P(P(i)). This ensures that P(i) points to an rfuuOp still in the fabric.

If multiple victims need to be selected, they are found using the P entries.
The update step can be done efficiently and is not on the critical path.

In all benchmarks, a significant portion of the rfuOp execution sequence
constitutes a periodic pattern. This is because most of the speedup is achieved
by implementing portions of a loop. In these cases the sequence information is as
accurate as the algorithm in Figure 3. However, when the sequence is aperiodic
the constant-time algorithm may differ from the algorithm in Figure 3. In some
cases the simulation of the constant-time implementation proved to be better
than that in Figure 3, in other cases the reverse was true. In all cases, the two
are within 10% of each other and on average they are less than 2% of each other.

The strategy used by the history-based algorithm is not the same as most-
recently used (MRU) unless the most recently accessed rfuOp is always the one
that is accessed furthest in future. Consider the sequence of rfuOps 1 2 3 4 3
4 3 4. . . 1 2 3 4 3 4. . . , with all rfuOps of size 1, and a fabric size of 3. The
MRU algorithm will register evict 3 in order to load 4 and vice versa each time.
On the other hand, the history-based algorithm does the following: the first
time it loads 4 it will evict 3. Now FA(4) = 2, since FA(i) = P(LastRfu) when
LastRfu is the victim. Also, FI(3) is 4. So when 3 is next loaded it will evict
FA(FI(3)) = 2, avoiding the thrashing that happens with MRU. Furthermore,
it can be seen that 2 really is the furthest in the sequence at this point, so the
history-based algorithm makes a correct prediction, unlike the MRU, which on
average increases latency by more than 160%.
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Fig. 5. Effect of cache size for dif-
ferent benchmarks using the history-
based algorithm

Fig. 6. Effect of cache size for different
benchmarks using the penalty-based
algorithm

Penalty Based Algorithm Existing solutions to the variable page-size replace-
ment problem, as described in Section 2, fall under the category of penalty-based
algorithms. The algorithm we chose to implement for comparison is a modified
form of the Greedy-Dual Size algorithm in [4]. It is used in web cache re-
placement and is shown to outperform other widely used web cache replacement
algorithms.

Our penalty-based algorithm assigns costs to each rfuOp currently in the
fabric. Whenever a configuration is accessed, its cost is set to some large con-
stant and the cost of the other rfuOps on fabric are reduced by (fabric size -
configuration size). Intuitively this penalizes smaller configurations more than
the larger configurations. During replacement, we look for a configuration that
has the smallest cost (that has been penalized most).

5 Performance Results

5.1 Experimental Setup

We used the SUIF [12] compiler with custom passes to automatically extract
rfuOps from the program. We instrument the rfuOp-enabled code to generate
traces which are then simulated on an extension of SimpleScalar [3] to obtain
our results. We ran two benchmark applications from the SPECInt95 [5] and ten
from the MediaBench [8] suites.

5.2 Experimental Results

In this section we present and analyze the experimental results for the algorithms
proposed in Section 4. We found that in most benchmarks the latency decreased
in a roughly linear fashion with increasing fabric size. This was truer for the
history-based algorithm than the penalty-based algorithm. Figure 5 shows how
the cache size affects the performance for a representative sample of the bench-
marks, using the history-based algorithm. The history-based algorithm scales
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Fig. 7. Performance of Replacement
Algorithms

Fig. 8. Effect of Defragmentation

well with changing cache size. On the other hand, as Figure 6 shows, the penalty-
based algorithm scales poorly with cache size. To eliminate the effect of differing
working sets we simulate each benchmark with an RFU that can hold half of all
the rfuOps for that particular benchmark.

Performance of Replacement Algorithms To see how well our online al-
gorithms perform, we compared their performance to that of the best of two
offline algorithms: Belady’s algorithm [1] or an approximation algorithm pre-
sented in [7]. The results for a location-independent FPGA are shown in Fig-
ure 7. History-Algo and History-Impl refer respectively to the theoretical model
(using next-chains) and our implemented version of the history based algorithm.
We also implemented the basic LRU algorithm. However, its performance was
found to be vastly inferior to even the penalty-based algorithm.

Simulation results show that the history-based algorithm is more effective
than the penalty-based one, and is consistently competitive with offline algo-
rithms. The main reason for this is that the penalty-based algorithm evicts the
rfuOp that occurred furthest before the current point, while the history-based
algorithm replaces the one that it estimates to occur furthest after the current
point. In fact, we find that the history-based algorithm tends to make choices
similar to that of Belady’s offline algorithm.

Effect of Defragmentation In Figure 8 we compare the history-based algo-
rithm on a location-independent fabric with partial and full eviction on a fabric
which implements defragmentation. Since the defragmentation cost is small, it
has been ignored in simulation. The results are ambiguous as sometimes the
extra power of defragmentation leads to worse behavior.

Partial eviction performs slightly better than the full eviction model, except
for cases like jpeg d and pegwit d where an rfuOp is not required soon after
its eviction. However, the implementation cost of partial eviction outweighs its
small advantage.
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Fig. 10. Comparison of different
caching models

Performance of Three-Level Model Here we show the effect of introducing
a configuration cache for the RFU.2 To model the latency we used a 20:1 ratio
for loading the cache from memory as compared to loading the fabric from cache.

Figure 9 shows that making the fabric and configuration cache exclusive
always improves performance. This comes at the cost of an additional buffer
to hold rfuOps that are evicted from fabric before they are loaded into the
configuration cache. This buffer is necessary to maintain proper serialization of
the operation. The Defragmentation model performs better than the Location
independent model.

Comparison of the Effect of Different Models Figure 10 shows how per-
formance improves significantly when we utilize the best three-level model, i.e.,
the one with the exclusion property, compared to the best two-level model. Most
benchmarks showed a significant improvement in performance.

6 Conclusion

In this paper we have described algorithms for reducing reconfiguration over-
head through effective replacement algorithms and configuration caching. We
present an effective history-based algorithm with an efficient hardware imple-
mentation. We show that the added complexity of partial eviction does not yield
significant performance improvement. Likewise, defragmentation increases the
implementation complexity, but does not always improve performance.

There are still many avenues for further research. Our history-based algo-
rithm considers only one preceding rfuOp, similar to a one bit prediction model
in branch prediction. The algorithm can be extended to remember more than

2 Space precludes describing our algorithms here, but a more complete description can
be found in [11].



202 Suraj Sudhir, Suman Nath, and Seth Copen Goldstein

one preceding rfuOps, perhaps as a tree rather than a chain, and consider dif-
ferent possibilities before taking a replacement decision. Finally, we have not
considered the case where the loading of the rfuOp into the fabric is optional.
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