
On Unification Problems

in Restricted Second-Order Languages
(Extended Abstract)

Jordi Levy1 and Margus Veanes2

1 Institut d’Investigació en Intel·ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas

2 Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken, Germany

Abstract. We review known results and improve known boundaries be-
tween the decidable and the undecidable cases of second-order unifica-
tion with various restrictions on second-order variables. As a key tool we
prove an undecidability result that provides a partial solution to an open
problem about simultaneous rigid E-unification.

Corresponding author:

Margus Veanes

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken
Germany

email:veanes@mpi-sb.mpg.de

phone: +49-681-9325 218

fax:+49-681-9325 299

NB We have added an appendix, that is not part of the extended abstract, to
provide direct access to a complete proof of Theorem 7.

On Unification Problems in Restricted Second-Order Languages 1

1 Introduction

Second-order unification and restricted forms of it play a fundamental role in
several areas of computer science. Context unification [1, 20] and linear second-
order unification [14] (a generalization of the former) are restricted forms of
second-order unification that generalize the word unification problem [17]. Con-
text unification appears as a subproblem in constraint solving with membership
constraints [1], distributive unification [21] and completion of bi-rewriting sys-
tems [13]. The decidability of context unification is a difficult open problem,
there has been some progress though, towards a decidability result [22].

Recently, a natural reduction from simultaneous rigid E-unification was found
to second-order unification [15, 26], complementing the previously known con-
verse reduction [4], and implying that the problems are in principal the same.
Due to the fundamental role of simultaneous rigid E-unification in logic with
equality [9, 28], second-order unification turns out to have close connections to
Herbrand’s theorem [28] and to intuitionistic logic with equality [27]. These re-
lations shed a new light on the foundational aspects of automated reasoning in
logic with equality.

The undecidability result of second-order unification [10], has led to investi-
gations where certain decidable [1, 6, 14, 15, 18, 20] and undecidable [7, 15, 23, 26]
subcases of second-order unification have been classified. Some recent progress
in this matter has been made by using the connection to simultaneous rigid E-
unification [15, 26]. The aim of this paper is to review the known results and to
solve some open problems posed in [15, 26] in order to provide precise boundaries
between the decidable and the undecidable cases of second-order unification with
restrictions on the number, the number of occurrences, and the arity of second-
order variables.

The rest of the paper is organized as follows. In Section 4 we prove that
second-order unification reduces to second-order unification with one second-
order variable, obtaining the following result:

– Second-order unification is undecidable with one unary second-order variable.

In Section 5 we obtain further undecidability results of some very restricted frag-
ments of second-order unification, by using the following statement and results
in [15, 26]. (A complete proof is given in the appendix.)

– There are two ground rewrite systems R1 and R2 such that R1 is canonical,
R2 is noetherian, and the following decision problem is undecidable.
• Given: first-order terms s1, t1, s2, t2, where s1 is ground and all variables

in s2 or t2 occur in t1.
• Question: does there exist a substitution θ that is grounding for the

terms such that t1θ
∗

−→R1 s1 and t2θ
∗

−→R2 s2θ?

We believe that this result is of independent interest. It provides a partial answer
to the open problem regarding decidability of simultaneous rigid E-unification
with two rigid equations [11, 24, 28]. We then show that the following restricted
cases of second-order unification are undecidable:

2 Levy and Veanes

– There are two second-order variables, each occurring twice.
– There is one second-order variable that occurs four times.
– There is one second-order variable that occurs five times and each occurrence

has ground arguments.

Hence, we obtain a precise bound between the undecidable and the decidable
cases of second-order unification where each second-order variable is allowed
to occur at most twice, since the problem is decidable with one second-order
variable [15]. In Section 6 we review the main results known about second-order
unification and mention some open problems and directions for future research.

2 Preliminaries

We assume that the reader is familiar with the notions of (first-order) terms,
equations, substitutions, and standard notions related to first-order logic. We
define the corresponding second-order notions without using an explicit variable
binding operator like λ, following Farmer [7] or Goldfarb [10].

A signature Σ is a collection of function symbols with fixed arities ≥ 0 and,
unless otherwise stated, Σ is assumed to contain at least one constant or function
symbol with arity 0. We use a, b, c, d, a1, . . . for constants and f, g, f1, . . . for
function symbols in general. A designated constant in Σ is denoted by cΣ .

A term language or simply language is a triple L = (ΣL,XL,FL) of pairwise
disjoint sets of symbols, where

– ΣL is a signature,
– XL (x, y, x1, y1, . . .) is a collection of first-order variables, and
– FL (F, G, F1, F

′, . . .) is a collection of symbols with fixed arities ≥ 1, called
second-order variables.

Let L be a language. L is first-order, if FL is empty; L is second-order, otherwise.
L is monadic if all function symbols in ΣL have arity ≤ 1.

The set of all terms in a language L, or L-terms, is denoted by TL and is
defined as the set of all terms in the first-order language (ΣL ∪FL,XL). We use
s, t, l, r, s1, . . . for terms. We usually omit mentioning L when it is clear from the
context. A ground term is one that contains no variables. The set of all ground
terms in a language L is denoted by TΣL

. Given a term F (t), where F is a
second-order variable with arity m and t is a sequence of m terms, the elements
of t are called the arguments of F . A (second-order) term is called simple if all
occurrences of second-order variables have ground arguments.

An equation in L is an unordered pair of L-terms, denoted by s ≈ t. Equations
are denoted by e, e1, A rule in L is an ordered pair of L-terms, denoted by
s → t.1 An equation or a rule is ground (simple) if the terms in it are ground
(simple). A system of rules or equations is a finite set of rules or equations. Let R
be a system of ground rules, and s and t two ground terms. Then s rewrites (in

1 By rules we understand thus directed equations. Only ground instantiations of rules
are considered as rewrite rules.

On Unification Problems in Restricted Second-Order Languages 3

R) to t, denoted by s −→R t, if t is obtained from s by replacing an occurrence
of a term l in s by a term r for some rule l → r in R. The term s reduces (in R)

to t, denoted by s
∗

−→R t, if either s = t or s rewrites to a term that reduces to
t. We assume that the the reader is familiar with the basic concepts in ground
rewriting [5].

2.1 Second-Order Unification

Given a language L, we need expressions representing functions that produce
instances of terms in L. For that purpose we introduce an expansion L∗ of L.
We follow Goldfarb [10] and Farmer [7]. Let {zi}i≥1 be an infinite collection
of new symbols not in L. The language L∗ differs from L by having {zi}i≥1

as additional first-order variables, called bound variables. The rank of a term t
in L∗, is either 0 if t contains no bound variables (i.e., t ∈ TL), or the largest
n such that zn occurs in t. Given terms t and t1, t2, . . . , tn in L∗, we write
t[t1, t2, . . . , tn] for the term that results from t by simultaneously replacing zi in
it by ti for 1 ≤ i ≤ n. An L∗-term is called closed if it contains no variables other
than bound variables. Note that closed L∗-terms of rank 0 are ground L-terms.

A substitution in L is a function θ with finite domain dom(θ) ⊆ XL ∪ FL

that maps first-order variables to L-terms, and n-ary second-order variables to
L∗-terms of rank ≤ n. The result of applying a substitution θ to an L-term s,
denoted by sθ, is defined by induction on s:

1. If s = x and x ∈ dom(θ) then sθ = θ(x).
2. If s = x and x /∈ dom(θ) then sθ = x.
3. If s = F (t1, . . . , tn) and F ∈ dom(θ) then sθ = θ(F)[t1θ, . . . , tnθ].
4. If s = F (t1, . . . , tn) and F /∈ dom(θ) then sθ = F (t1θ, . . . , tnθ).
5. If s = f(t1, . . . , tn) then sθ = f(t1θ, . . . , tnθ).

We write also Fθ for θ(F), where F is a second-order variable. A substitution is
called closed, if its range is a set of closed terms. Given a term t, a substitution
θ is said to be grounding for t if tθ is ground, similarly for other L-expressions.
Given a sequence t = t1, . . . , tn of terms, we write tθ for t1θ, . . . , tnθ.

Let E be a system of equations in L. The degree of E (or L) is the maximum
arity of the second-order variables in E (or L). A unifier of E is a substitution
θ (in L) such that sθ = tθ for all equations s ≈ t in E. E is unifiable if there
exists a unifier of E. Note that if E is unifiable then it has a closed unifier that
is grounding for E, since TΣL

is nonempty. The unification problem for L is
the problem of deciding whether a given equation system in L is unifiable. In
general, the second-order unification problem or SOU is the unification problem
for arbitrary second-order languages. Monadic SOU is SOU for monadic second-
order languages. By SOU with one second-order variable we mean the unification
problem for second-order languages L such that |FL| = 1.

2.2 Context Unification and Linear SOU

Linear SOU [14] is SOU where substitutions are required to map second-order
variables of arity n to closed terms with exactly one occurrence of each bound

4 Levy and Veanes

variable zi for i ≤ n. Context Unification[1, 20, 22] is Linear SOU for languages
of degree 1.

2.3 Simultaneous Rigid E-Unification

Let L be a first-order language. A rigid equation in L is a pair (E, e), where
E is a system of equations in L and e is an equation in L. Simultaneous Rigid
E-Unification [9], or SREU, for L is the following decision problem:

– Given: a system { (Ei, ei) | 1 ≤ i ≤ n } of rigid equations.
– Question: Does there exist a substitution θ that is grounding for each Ei

and ei such that Eiθ |= eiθ for 1 ≤ i ≤ n?

By SREU we mean SREU for arbitrary first-order languages.

3 A Relation Between Rewriting and SOU

We use the following lemma to relate certain rewriting problems to second-order
unification. The key construction in the lemma is due to Levy. A proof is given
in Levy [15] (of a similar statement), and in Veanes [26]. The basic techniques
involved in the construction have their roots in Goldfarb [10] and Farmer [7].

Given a set of rules R, with a fixed enumeration { li → ri | 1 ≤ i ≤ m } of the
rules, we write lR for the sequence l1, . . . , lm and rR for the sequence r1, . . . , rm.

Lemma 1. Let s, t, R, c, f, F be as follows:

– s and t are terms and R is a system of rules in a language L;
– c is a constant and f is a binary function symbol such that c, f /∈ ΣL;
– F is a second-order variable with arity |R| + 1 such that F /∈ FL;

The following statements are equivalent for all θ such that F /∈ dom(θ), and sθ
and Rθ are ground and in L.

(i) Some extension of θ with F solves F (lR, f(s, c)) ≈ f(t, F (rR, c)).

(ii) tθ
∗

−→Rθ sθ.

Note that, if R is ground then the condition that Rθ is a set of ground rules
in L is trivially satisfied for all θ. Similarly for s.

4 One Second-Order Variable is Enough

The principal result of this section is that the number of different second-order
variables in second-order unification plays a minor role compared to the total
number of occurrences of variables. We present a straightforward reduction of
arbitrary systems of second-order equations to systems of second-order equations
using just one second-order variable and additional first-order variables. The
encoding technique that we use is similar to the technique used in Farmer [7].

On Unification Problems in Restricted Second-Order Languages 5

Several important properties are preserved by that reduction: degree, number of
occurrences of second-order variables and simplicity.

An interpolation equation is a second-order equation of the form F (t) ≈ s,
where F is a second-order variable, t is a sequence of first-order terms, and s is
a first-order term. A system S of second-order equations is said to be in reduced
form if each equation in S is either first-order or an interpolation equation.

Given a system S of second-order equations, let deg(S) denote the degree
of S and occ(S) the total number of occurrences of second-order variables in S.
The following fact is well-known and easy to prove.

Lemma 2. Let S be a system of second-order equations. There is a system Sred

in reduced form that is solvable if and only if S is solvable. Moreover, deg(Sred) =
deg(S), occ(Sred) = occ(S), and if S is simple then so is Sred.

We now define a reduction from a system of interpolation equations to a
system of interpolation equations that uses just one second-order variable with
arity equal to the degree of the original system. Let S be a system of interpolation
equations:

⋃

1≤i≤m

⋃

1≤j≤ki

Fi(sij) ≈ tij ,

where {F1, . . . , Fm} are the different second-order variables in S, and for each
Fi there are ki interpolation equations. Assume without loss of generality that
the arities of the Fi’s are equal. (If some Fi has arity < deg(S) then increase
the arity of Fi to deg(S) and replace each Fi(sij) by Fi(sij , s, . . . , s), where s is
the last term in the sequence sij . Clearly, this neither affects the solvability of
S, nor the other properties we are interested in, like simplicity.)

Let G be a second-order variable with arity deg(S), let g be a new m-ary
function symbol, and let Sone denote the system of second-order equations con-
sisting of

⋃

1≤i≤m

⋃

1≤j≤ki

G(s ���) ≈ g(, . . . ,
︸ ︷︷ ︸

i−1

, tij , , . . . ,
︸ ︷︷ ︸

m−i

)

and, unless all elements of some sequence sij are nonvariables2, the equation

G(c, c, . . . , c) ≈ g(, , . . . ,),

where c is a constant and each occurrence of ‘ ’ denotes a new first-order vari-
able. By combining Lemma 2 with the latter reduction we can prove the following
result.

Theorem 3. Let S be a system of second-order equations. There is a reduced
system Sone, with at most one second-order variable, such that Sone is solvable if
and only if S is solvable. Moreover, deg(Sone) = deg(S), occ(S) ≤ occ(Sone) ≤
occ(S) + 1, and if S is simple then so is Sone.

2 This condition can be considerably weakened.

6 Levy and Veanes

Proof. Assume, without loss of generality, that S consists solely of interpolation
equations. Clearly, the additional conditions are satisfied. We prove that S is
solvable if and only if Sone is solvable. We just consider a special case. The proof
of the general case is analogous. Let S be the following system:

F1(s1) ≈ t1

F2(s2) ≈ t2

F3(s3) ≈ t3

Then Sone is the following system:

G(s1) ≈ g(t1, x12, x13)

G(s2) ≈ g(x21, t2, x23)

G(s3) ≈ g(x31, x32, t3)

(G(c) ≈ g(x1, x2, x3))

(⇒) Assume θ solves S. Define θ′ as follows. For all first-order variables in
S, θ′ agrees with θ. For G, Gθ′ = g(F1θ, F2θ, F3θ). For the new first-order
variables {x12, x13, x21, x23, x31, x32}, let θ′(xij) = Fjθ[siθ]. For {x1, x2, x3}, let
θ′(xj) = Fjθ[c]. Consider the first equation of Sone. We have that

G(s1)θ
′ = Gθ′[s1θ

′]

= g(F1θ, F2θ, F3θ)[s1θ]

= g(F1θ[s1θ], F2θ[s1θ], F3θ[s1θ])

= g(t1θ, x12θ
′, x13θ

′)

= g(t1, x12, x13)θ
′.

Hence θ′ solves G(s1) ≈ g(t1, x12, x13). The other cases are similar.

(⇐) Assume that θ′ solves Sone, we construct a substitution θ that solves S.
So Gθ′ = g(s′1, s

′
2, s

′
3) for some closed terms s′1, s′2 and s′3 of rank ≤ deg(S),

or else θ′ wouldn’t solve either an equation in Sone where all arguments of G
are nonvariables (note that g does not occur in those arguments), or the last
equation G(c) ≈ g(x1, x2, x3).

Define θ so that it agrees with θ′ on first-order variables in S and θ(Fi) = s′i
for 1 ≤ i ≤ 3. By applying θ′ to the left-hand side of the first equation of Sone

we have that

Gθ′[s1θ
′] = g(s′1[s1θ

′], s′2[s1θ
′], s′3[s1θ

′]) = g(F1θ[s1θ], s
′
2[s1θ], s

′
3[s1θ]),

and by applying θ′ to the right-hand side of the same equation we have that

g(t1, x12, x13)θ
′ = g(t1θ, x12θ

′, x13θ
′)

But θ′ solves Sone, and thus F1θ[s1θ] = t1θ. Hence θ solves F1(s1) ≈ t1. The
other cases are similar. �

On Unification Problems in Restricted Second-Order Languages 7

The above reduction implies, by using Goldfarb’s result [10], the undecidabil-
ity of SOU with one second-order variable. Moreover, by using Farmer’s main
result [7] (that implies the undecidability of SOU already if all second-order
variables are unary), the following corollary is immediate.

Corollary 4. SOU is undecidable already with one unary second-order variable.

5 New Undecidable Cases of SOU

In this section we show that SOU is undecidable with two second-order variables
each occurring twice. We show also that SOU with one second-order variable is
undecidable under the following additional restrictions:

1. The equations are simple and the second-order variable occurs 5 times.

2. The second-order variable occurs 4 times.

The above two results (that are incomparable) should be contrasted with the
following subcases of SOU with one second-order variable, that have recently
either been proved or claimed to be decidable:

1*. The equations are simple and there are no first-order variables. In particular,
Comon [2] claims that solvability of simple equations of the form F (s) ≈ t,
where F may occur in t and there are no other variables in the equation,
can be proved to be decidable by using finite tree automata techniques.

2*. The case when the second-order variable occurs at most 2 times is proved
decidable in Levy [15].

When more than one second-order variables are allowed, then undecidability
arises already if there are two second-order variables, one of them occurs twice,
the other one occurs three times, and there are no other variables [26] (see
Lemma 5 below). In comparison with Statements 1 and 1*, it is interesting to
note that the decidability of simultaneous rigid E-unification with one variable
was recently settled by using finite tree automata techniques [3].

5.1 Simple Equations

We use the following result from Veanes [26] and apply Theorem 3 to prove
Statement 1 above.

Lemma 5. There is a system Su(x, F1, F2) of simple second-order equations:

{F1(s1) ≈ f1(x, F1(s2)), F2(s4) ≈ f2(F1(s3), F2(s5))}

such that the problem of determining whether Su(t, F1, F2) is solvable for a given
ground term t, is undecidable.

8 Levy and Veanes

Observe that the system Su(t, F1, F2) is solvable if and only if the following
system of interpolation equations is solvable:

F1(s1) ≈ f1(t, x1)

F1(s2) ≈ x1

F1(s3) ≈ x2

F2(s4) ≈ f2(x2, x3)

F2(s5) ≈ x3

where {x1, x2, x3} are new first-order variables.

Theorem 6. SOU with one second-order variable is undecidable already when
restricted to systems S of simple equations such that occ(S) ≤ 5.

Proof. By Theorem 3 and Lemma 5. �

5.2 2 Occurrences of 2 Second-Order Variables

We first prove the undecidability of a decision problem that is closely related
to simultaneous rigid E-unification with ground left-hand sides and two rigid
equations (Theorem 7). We then apply Lemma 1 and Theorem 3. The proof
of Theorem 7 uses a powerful technique that is used in a similar context in
Plaisted [19], Gurevich and Veanes [11] and Veanes [24–26].

Theorem 7. There are two ground rewrite systems R1 and R2 such that R1 is
canonical, R2 is noetherian, and the following decision problem is undecidable.

– Given: first-order terms s1, t1, s2, t2, where s1 is ground and all variables in
s2 or t2 occur in t1.

– Question: does there exist a substitution θ that is grounding for the terms
such that t1θ

∗
−→R1 s1 and t2θ

∗
−→R2 s2θ?

Proof. The main idea is as follows. We consider a fixed universal Turing machine
M and construct the systems R1 and R2 with the following properties.

1. The system R1 is such that, roughly, given appropriate terms t1 and s, where
y is a variable in t1 and s is ground, t1θ

∗
−→R1 s if and only if yθ represents

a sequence of moves of M :

((v1, v
+
1), (v2, v

+
2), . . . , (vk, v+

k)),

i.e., v+
i is the successor of vi according to the transition function of M .

2. The system R2 is such that, roughly, given appropriate terms t2 and s2

(including the variable y), t2θ
∗

−→R2 s2θ if and only if yθ is a shifted pairing
of its first projection. (See Figure 1.)

Both cases together imply that yθ represents a valid sequence of moves of M if
and only if M accepts the given input string (encoded in the terms). �

On Unification Problems in Restricted Second-Order Languages 9

v1 v2 v3 vk−1 vk

v1 v2 vk−2 vk−1 vk

(v1, v2) (v2, v3) (vk−2 , vk−1) (vk−1, vk) (vk, ε)

Fig. 1. ((v1, v2), (v2, v3), . . . , (vk, ε)) is a shifted pairing of (v1, v2, . . . , vk).

Theorem 7 provides a partial answer to the open problem of whether SREU
with two rigid equations is decidable or not [11, 24, 28]. The problem stated in
Theorem 7 with the additional condition that R2 is confluent (and thus canon-
ical), corresponds to a very strong subcase of this problem. We now turn to the
main result of this section.

Theorem 8. SOU is undecidable with 2 second-order variables each occurring
2 times.

Proof. Let R1 and R2 be the rewrite systems in Theorem 7, in language L say.
Let s1, t1, s2, t2 be first-order terms in L, such that s1 is ground and all variables
in the terms occur in t1. Let f be a new binary function symbol and c a new
constant, and let Fi be a second-order variable with arity |Ri| + 1 for i = 1, 2.
Let S be the following system of second-order equations:

Fi(lRi
, f(si, c)) ≈ f(ti, Fi(rRi

, c)) i = 1, 2.

We prove that S is solvable if and only if there exists a grounding substitution
θ such that tiθ

∗
−→Ri

siθ for i = 1, 2, and apply Theorem 7 to complete this
proof.

(⇐) Assume there exists a substitution θ such that tiθ
∗

−→Ri
siθ for i = 1, 2.

Then t1θ
∗

−→R1 s1, and thus t1θ ∈ TΣL
. Hence s2θ ∈ TΣL

, since all variables in
s2 occur in t1. Now apply Lemma 1.

(⇒) Assume that θ∪{F1 7→ t′1, F2 7→ t′2} solves S. Since R1 and s1 are ground,

by Lemma 1, t1θ
∗

−→R1 s1. This implies that s2θ ∈ TΣL
, and thus, again by

Lemma 1, t2θ
∗

−→R2 s2θ. �

By using Theorem 3 we get the following corollary of Theorem 8.

Corollary 9. SOU is undecidable with 1 second-order variable that occurs 4
times.

6 Current Status of SOU and Open Problems

In the following we give a (roughly) chronological list of the main results known
about SOU, including the new results proved in this paper. At the end of the
section we mention some open problems. The undecidability of higher-order uni-
fication in general, in fact third-order unification, is proved (independently) in
Huet [12] and in Lucchesi [16].

10 Levy and Veanes

1. In 1981 Goldfarb shows that SOU is undecidable [10], by reduction from
Hilbert’s tenth problem.

2. In 1988 Farmer shows that Monadic SOU is decidable [6], by reduction to
word equations (Makanin 1977 [17]).

3. In 1991 Farmer shows that there is an integer n such that the undecidability
of SOU holds for all nonmonadic languages with more than n second-order
variables. In particular, SOU is undecidable even if all second-order variables
are unary.

4. Some (incomparable) cases of context unification are proved to be decidable
in Comon [1] and Schmidt-Schauß [20]. Recent developments towards a more
general decidability result are discussed in Schmidt-Schauß and Schulz [22].

5. Some cases of linear SOU are proved to be decidable in Levy [14], in partic-
ular when each variable occurs at most twice.

6. Schubert claims that SOU is undecidable for systems of simple equations
and provides a very complicated argument to support this claim [23].

7. A natural reduction of SOU to SREU is given in Degtyarev and Voronkov [4].
Converse reductions are given in Levy [15] and in Veanes [26], implying that
SOU and SREU are in fact polynomial time (even logspace) equivalent.

8. SOU where each second-order variable occurs at most twice is proved un-
decidable in Levy [15]. Here we have improved this result, implying the
following clear boundary:

– The case is undecidable with 2 second-order variables (Theorem 8).
– The case is decidable with 1 second-order variable [15].

9. Veanes proves that there is an integer n such that SOU is undecidable for all
nonmonadic languages with at least two second-order variables with arities ≥
n, already for systems of simple equations [26].

10. SOU with one second-order variable is decidable if the second-order variable
occurs ≤ 2 times [15], and undecidable if the second-order variable occurs
4 times (Corollary 9). Also, SOU with one unary second-order variable is
undecidable (Corollary 4).

11. SOU with one second-order variable and simple equations, is claimed to be
decidable if first-order variables are disallowed [2], otherwise it is undecidable
already if the second-order variable occurs 5 times (Theorem 6).

The above list of results is not exhaustive. Due to the strong connection between
SOU and SREU, several results concerning SREU, in particular its relation to
intuitionistic logic and to several fundamental classical decision problems related
to Herbrand’s theorem, carry over to SOU. The most recent survey discussing
such relations is given in Voronkov [28].

Currently, we are working on a decidability proof of SOU where each (first
or second-order) variable occurs at most twice. This case is polynomial time
equivalent to SREU with exactly the same restriction. We note that this case is
at least as hard as (nonsimultaneous) rigid E-unification, and thus NP-hard [8],
because there is a straightforward reduction from an arbitrary rigid equation to
an equivalent system of two rigid equations where each variable occurs at most
twice.

On Unification Problems in Restricted Second-Order Languages 11

The decidability of context unification, or the more general linear SOU, is
a difficult open problem. In all undecidability proofs of the restricted cases of
SOU that we have considered, a common key feature is the unboundedness of the
number of occurrences of bound variables in solutions (in particular, nonlinear-
ity). It might be worthwhile to study the relation between SOU and SREU more
carefully and to identify the restrictions on SREU corresponding to linearity.

References

1. H. Comon. Completion of rewrite systems with membership constraints Part I:
Deduction rules. Preliminary version of a paper to appear in J. Symbolic Compu-
tation, 1997.

2. H. Comon, March 1998. Personal communication.
3. A. Degtyarev, Yu. Gurevich, P. Narendran, M. Veanes, and A. Voronkov. The

decidability of simultaneous rigid E-unification with one variable. In T. Nipkow,
editor, Rewriting Techniques and Applications, volume 1379 of Lecture Notes in
Computer Science, pages 181–195. Springer Verlag, 1998.

4. A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid E-
unification. Theoretical Computer Science, 166(1–2):291–300, 1996.

5. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. Van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Methods and
Semantics, chapter 6, pages 243–309. North Holland, Amsterdam, 1990.

6. W.M. Farmer. A unification algorithm for second-order monadic terms. Annals of
Pure and Applied Logic, 39:131–174, 1988.

7. W.M. Farmer. Simple second-order languages for which unification is undecidable.
Theoretical Computer Science, 87:25–41, 1991.

8. J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification is
NP-complete. In Proc. IEEE Conference on Logic in Computer Science (LICS),
pages 338–346. IEEE Computer Society Press, July 1988.

9. J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification:
Equational matings. In Proc. IEEE Conference on Logic in Computer Science
(LICS), pages 338–346. IEEE Computer Society Press, 1987.

10. W.D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13:225–230, 1981.

11. Y. Gurevich and M. Veanes. Some undecidable problems related to the Herbrand
theorem. UPMAIL Technical Report 138, Uppsala University, Computing Science
Department, March 1997. Submitted to Information and Computation.

12. G. Huet. The undecidability of unification in third order logic. Information and
Control, 22:257–267, 1973.

13. J. Levy and J. Agust́ı. Bi-rewrite systems. J. of Symbolic Computation, 22:279–314,
1996.

14. J. Levy. Linear second-order unification. In Rewriting Techniques and Applications,
volume 1103 of Lecture Notes in Computer Science, pages 332–346. Springer Verlag,
1996.

15. J. Levy. Decidable and undecidable second-order unification problems. In T. Nip-
kow, editor, Rewriting Techniques and Applications, volume 1379 of Lecture Notes
in Computer Science, pages 47–60. Springer Verlag, 1998.

16. C.L. Lucchesi. The undecidability of the unification problem for third order lan-
guages. Report CSRR 2059, Department of Applied Analysis and Computer Sci-
ence, University of Waterloo, 1972.

12 Levy and Veanes

17. G.S. Makanin. The problem of solvability of equations in free semigroups. Mat.
Sbornik (in Russian), 103(2):147–236, 1977. English Translation in American
Mathematical Soc. Translations (2), vol. 117, 1981.

18. D. Miller. Unification of simply typed lambda-terms as logic programming. In
K. Furukawa, editor, Proceedings of the Eighth International Conference on Logic
Programming, pages 255–269, Paris, France, June 1991. MIT Press.

19. D.A. Plaisted. Special cases and substitutes for rigid E-unification. Technical
Report MPI-I-95-2-010, Max-Planck-Institut für Informatik, November 1995.

20. M. Schmidt-Schauß. Unification of stratified second-order terms. Technical Report
12/94, Johan Wolfgang-Göthe-Universität, Frankfurt, 1995.

21. M. Schmidt-Schauß. An algorithm for distributive unification. In Rewriting Tech-
niques and Applications, volume 1103 of Lecture Notes in Computer Science, pages
287–301. Springer Verlag, 1996.

22. M. Schmidt-Schauß and Klaus U. Schulz. On the exponent of periodicity of minimal
solutions of context equations. In T. Nipkow, editor, Rewriting Techniques and
Applications, volume 1379 of Lecture Notes in Computer Science, pages 61–75.
Springer Verlag, 1998.

23. A. Schubert. Second-order unification and type inference for Church-style polymor-
phism. In Conference Record of POPL’98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 279–288, San Diego,
California, January 1998. ACM Press.

24. M. Veanes. On Simultaneous Rigid E-Unification. PhD thesis, Computing Science
Department, Uppsala University, 1997.

25. M. Veanes. The undecidability of simultaneous rigid E-unification with two vari-
ables. In Proc. Kurt Gödel Colloquium KGC’97, volume 1289 of Lecture Notes in
Computer Science, pages 305–318. Springer Verlag, 1997.

26. M. Veanes. The relation between second-order unification and simultaneous rigid
E-unification. Research Report MPI-I-98-2-005, Max-Planck-Institut für Infor-
matik, Im Stadtwald, D-66123 Saarbrücken, Germany, February 1998. The short
version of this paper appears in Proc. LICS’98.

27. A. Voronkov. Proof search in intuitionistic logic with equality, or back to simulta-
neous rigid E-unification. In M.A. McRobbie and J.K. Slaney, editors, Automated
Deduction — CADE-13, volume 1104 of Lecture Notes in Computer Science, pages
32–46, New Brunswick, NJ, USA, 1996.

28. A. Voronkov. Simultaneous rigid E-unification and other decision problems related
to the Herbrand theorem. UPMAIL Technical Report 152, Uppsala University,
Computing Science Department, February 1998. Submitted to TCS.

On Unification Problems in Restricted Second-Order Languages 13

A Proof of Theorem 7

We consider a fixed deterministic Turing machine M with initial state q0, final
state qf , a blank character b̄, and an input alphabet that does not include the
blank. By ΣM we denote the set of all the symbols in M , i.e., the states, the
input characters and the blank. All elements of ΣM are assigned arity 0, i.e., are
treated as constants. M is allowed to write blanks, however, M is only allowed to
write a blank when it erases the last nonblank symbol on the tape. We assume,
without loss of generality, that when M enters the final state then its tape is
empty.

An ID of M is any string vqw where vw is a string over the input alphabet
of M and q is a state of M . In particular, the initial ID of M for input string v
has the form q0v, and the final ID is simply the one character string qf . A move
of M is any pair of strings (v, v+) where v is an ID and v+ is the successor of v
according to the transition function of M , if v is nonfinal; v+ is the empty string
(ε), otherwise (i.e., q+

f = ε).

A.1 Encoding sequences of moves

We introduce a family of new constants {cab}a,b∈ΣM
and use them to encode

moves of M in the following manner. Let v = a1a2 · · · am be any ID of M and
let v+ = b1b2 · · · bn. (Note that m − 1 ≤ n ≤ m + 1.) We let 〈v, v+〉 denote the
following string:

〈v, v+〉 =







ca1b1ca2b2 · · · cambm
cb̄bn

, if n = m + 1;
ca1b1ca2b2 · · · canbn

camb̄, if n = m − 1;
ca1b1ca2b2 · · · cambn

, if n = m.

we call such a string a move also. (Note that 〈qf , ε〉 = cqf b̄.) Intuitively, a blank is
added at the end of the shorter of the two strings (in case they differ in length)
and the pair of the resulting strings is encoded character by character.

We fix two new constants cw and ct and two new binary function symbols
fw and ft, and let Σid and Σmv be the following signatures:

Σid = ΣM ∪ {cw, fw},

Σmv =

{ cab | (a, b) ∈ ΣM × ΣM } ∪ {cw, fw, ct, ft}.

A term s is a called a word if either s = cw (the empty word), or s = fw(c, s′)
for some constant c that is distinct from cw and word s′. Whenever convenient,
we write a word as the corresponding string surrounded by double quotes:

fw(a1, fw(a2, . . . , fw(an, cw) · · ·)) = “a1a2 · · ·an”,

and say that the word represents the string. A term t is called a train, if either
t = ct (the empty train), or t = ft(s, t

′) for some word s and train t′. So trains

14 Levy and Veanes

are simply representations of string sequences. Conceptually we identify words
with strings and trains with sequences of strings.

A train that represents a sequence of moves is called a move-train. The fol-
lowing lemma follows from [11, 24, Train Theorem]. A signature Σ ′ is a constant-
expansion of a signature Σ if Σ ⊆ Σ ′ and Σ′ \Σ is a set of constants.

Lemma 10. There is a canonical system Rmv of ground rules over a constant-
expansion of Σmv, such that for all ground terms t over Σmv, t is a move-train
if and only if t

∗
−→Rmv ct.

A.2 First component: move-trains

For terms t1, . . . , tk we write 〈t1, . . . , tk〉 for a tuple. For any signature Σ that
we consider below, ground rewrite system R over Σ, and terms si, ti ∈ TΣ for
1 ≤ i ≤ k, it is assumed that

〈t1, . . . , tk〉
∗

−→R 〈s1, . . . , sk〉 ⇔
∧

1≤i≤k

ti
∗

−→R si.

We make use of the following basic property of ground rewrite systems. Two
signatures or sets of rules are constant-disjoint if they do not share any constants.

Lemma 11. Let Ri, for 1 ≤ i ≤ k, be ground rewrite systems over corresponding
constant-disjoint signatures Σi, for 1 ≤ i ≤ k. Let s be a ground term over some
Σj , where 1 ≤ j ≤ k, and t a ground term. Then

t
∗

−→ �
1≤i≤k

Ri
s ⇔ t

∗
−→Rj

s.

By using Lemma 10, let Rmv be a set of ground rules over a constant-expansion
Σ′

mv of Σmv such that for all t ∈ TΣmv ,

t
∗

−→Rmv ct ⇔ t is a move-train.

For a natural number l and a signature Σ we write Σ(l) for the constant-disjoint
copy of Σ where each constant c has been replaced with a new constant c(l), we
say that c(l) has label l. For t ∈ TΣ and a set of ground rules R over Σ, we define
t(l) ∈ TΣ(l) and R(l) over Σ(l) accordingly.

Let R1 be the following system of ground rewrite rules:

R1 = Gr(Σ′
id) ∪ R(0)

mv ∪ R(1)
mv ∪ R(2)

mv.

The following lemma is an easy corollary of the above definitions and Lemma 11.

Lemma 12. For all ground terms s, t0, t1, and t2,

〈s, t0, t1, t2〉
∗

−→R1 〈ct, c
(0)
t , c

(1)
t , c

(2)
t 〉

if and only if s ∈ TΣ′
id

and tl
∗

−→
R

(l)
mv

c
(l)
t for l ∈ {0, 1, 2}.

On Unification Problems in Restricted Second-Order Languages 15

A.3 Second component: shifted pairing

Let A1, and A2 be the following sets of ground rules:

A1 = { c(1) → c(0) | c a constant in Σmv }

A2 = { c(2) → c(0) | c a constant in Σmv }

The following lemma is easy to prove.

Lemma 13. For all t0, t1, t2 ∈ Σ′
mv,

t
(1)
1

∗
−→A1 t

(0)
0 , t

(2)
2

∗
−→A2 t

(0)
0 ⇔ t0 = t1 = t2 ∈ TΣmv .

Given a move-train t that represents a nonempty move sequence, say

t = “(〈v1, v
+
1 〉, 〈v2, v

+
2 〉, . . . , 〈vk , v+

k 〉)”,

define the first projection of t as the following train

π1(t) = “(v1, v2, . . . , vk)”,

and the second projection of t as the following train

π2(t) =

{
“(v+

1 , v+
2 , . . . , v+

k−1)”, if v+
k = ε;

“(v+
1 , v+

2 , . . . , v+
k)”, otherwise.

We say that t is the shifted pairing of its first projection if π1(t) = ft(“v1”, π2(t))
and we refer to v1 as the first ID of t. The next lemma follows from the fact that
if a move-train is a shifted pairing of its first projection then the first projection
represents a valid computation of M . Recall that q0 is the initial state of M .

Lemma 14. Let v be an input string for M . Then M accepts v if and only if
there exists a move-train t with first ID q0v such that t is the shifted pairing of
its first projection.

The following system of ground rules is used for obtaining the first projection of
a move-train.

Π1 = { c
(1)
ab → a | a, b ∈ ΣM , a 6= b̄ } ∪

{ “cb̄b”
(1) → cw | b ∈ ΣM } ∪

{c(1)
w → cw, c

(1)
t → ct}

The correctness of the following lemma is easily seen from the definitions.

Lemma 15. For all move-trains t and s ∈ TΣ′
id
,

t(1)
∗

−→Π1 s ⇔ s = π1(t).

16 Levy and Veanes

The following rule system is used for obtaining the second projection.

Π2 = { c
(2)
ab → b | a, b ∈ ΣM , b 6= b̄ } ∪

{ “cab̄”
(2) → cw | a ∈ ΣM } ∪

{ft(“〈qf , ε〉”
(2)

, c
(2)
t) → ct} ∪

{c(2)
w → cw, c

(2)
t → ct}

Lemma 16. For all move-trains t and IDs v,

ft(“v”, t(2))
∗

−→Π2 π1(t) ⇔ π1(t) = ft(“v”, π2(t)).

Proof. Let t = “(〈v1, v
+
1 〉, . . . , 〈vk , v+

k 〉)”, s = π1(t), and v an ID.

(⇒) Assume that ft(“v”, t(2))
∗

−→Π2 s. Thus t(2)
∗

−→Π2 “(v2, . . . , vk)” and
v = v1. So 〈vk , v+

k 〉 must be 〈qf , ε〉 because the only way to reduce the length of
t(2) in Π2 is by using the rule ft(“〈qf , ε〉”, ct)

(2) → ct. Moreover, it follows that

“〈vi, v
+
i 〉”

(2) ∗
−→Π2 “vi+1”, and thus v+

i = vi+1 for 1 ≤ i < k.

(⇐) Assume π1(t) = ft(“v”, π2(t)). Then v+
k = ε and hence vk = qf , and thus

ft(“〈vk, v+
k 〉”, ct)

(2) −→Π2 ct. Moreover, v+
i = vi+1 for 1 ≤ i < k. The rest is

obvious from the fact that “〈vi, v
+
i 〉”

(2) ∗
−→Π2 “v+

i ” for 1 ≤ i < k. �

We use the following lemma for shifted pairing.

Lemma 17. Let t be a move-train, s ∈ TΣ′
id
, and v an ID. Then t(1)

∗
−→Π1 s

and ft(“v”, t(2))
∗

−→Π2 s if and only if t is the shifted pairing of s with first ID
v.

Proof. By Lemma 15 and Lemma 16, s = π1(t) = ft(“v”, π2(t)). �

We now combine the above rule systems into one system

R2 = A1 ∪ A2 ∪ Π1 ∪ Π2

and use the following lemma to extract the respective subsystems from R2.

Lemma 18. For all s ∈ TΣ′
id
, tl ∈ T

Σ
′(l)
mv

for l ∈ {0, 1, 2}, and IDs v,

〈t1, t2, t1, ft(“v”, t2)〉
∗

−→R2 〈t0, t0, s, s〉

if and only if

tl
∗

−→Al
t0, (l ∈ {1, 2})

t1
∗

−→Π1 s,

ft(“v”, t2)
∗

−→Π2 s.

Proof. The only nontrivial direction is (⇒). Consider t1
∗

−→R2 t0. This reduction
cannot use A2 ∪ Π2 since t1 doesn’t include constants with label 2 and no rule
in R2 has a constant with label 2 on the right-hand side. Furthermore, this
reduction cannot use Π1, or else a constant from ΣM appears in t0, contradicting
that all constants in t0 have label 0. Hence t1

∗
−→A1 t0. An analogous statement

shows the other cases. �

On Unification Problems in Restricted Second-Order Languages 17

A.4 Combined construction

The following is the main lemma.

Lemma 19. For any input string v for M , M accepts v if and only if there
exists a substitution θ grounding for x, y0, y1, and y2 such that

〈x, y0, y1, y2〉θ
∗

−→R1 〈ct, c
(0)
t , c

(1)
t , c

(2)
t 〉,

〈y1, y2, y1, ft(“q0v”, y2)〉θ
∗

−→R2 〈y0, y0, x, x〉θ.

Proof. Let v be given. By Lemma 12 and Lemma 18 it is enough to prove that
M accepts v if and only if there exists a θ such that xθ ∈ TΣ′

id
and

ylθ
∗

−→
R

(l)
mv

c
(l)
t , (l ∈ {0, 1, 2}), (1)

ylθ
∗

−→Al
y0θ, (l ∈ {1, 2}), (2)

y1θ
∗

−→Π1 xθ, (3)

ft(“q0v”, y2θ)
∗

−→Π2 xθ. (4)

Note that (1) implies that ylθ is a ground term over Σ
′(l)
mv for l ∈ {0, 1, 2}.

(⇐) Let θ satisfying (1–4) be given. It follows from (2) and Lemma 13 that
there is a term t ∈ TΣmv such that ylθ = t(l) for l ∈ {0, 1, 2}. Hence, (1) implies
that t is a move-train. Now (3–4) and Lemma 17 imply that t is a shifted pairing
of xθ with first ID q0v, and thus M accepts v by Lemma 14.

(⇒) Assume that there is a valid computation of M with initial ID v. Let
s represent it and let t be the shifted pairing of s. Let θ = {x 7→ s, y0 7→
t(0), y1 7→ t(1), y2 7→ t(2)}. Then (1) holds since t is a move-train, (2) follows
from Lemma 13, and (3–4) follow from Lemma 17. �

Theorem 7 follows from Lemma 19 by noting that R1 is indeed canonical and
R2 noetherian, and letting M be a universal Turing machine.

