
Cypress: Managing Massive Time Series Streams with
Multi-Scale Compressed Trickles

Galen Reeves
Dept. of EECS

University of California
Berkeley, CA, USA

greeves@eecs.berkeley.edu

Jie Liu, Suman Nath, Feng Zhao
Microsoft Research
One Microsoft Way

Redmond, WA, USA

{liuj,sumann,zhao}@microsoft.com

ABSTRACT
We present Cypress, a novel framework to archive and query
massive time series streams such as those generated by sen-
sor networks, data centers, and scientific computing. Cy-
press applies multi-scale analysis to decompose time series
and to obtain sparse representations in various domains (e.g.
frequency domain and time domain). Relying on the spar-
sity, the time series streams can be archived with reduced
storage space. We then show that many statistical queries
such as trend, histogram and correlations can be answered
directly from compressed data rather than from reconstructed
raw data. Our evaluation with server utilization data col-
lected from real data centers shows significant benefit of our
framework.

1. INTRODUCTION
Increasing instrumentation of physical and computing pro-

cesses has given us unprecedented capabilities to collect data.
Applications for data center management, environmental
monitoring, scientific experiments, and mobile asset track-
ing produce massive time series streams from various sen-
sors. Typical data stream systems [1, 22] can process such
signals in real time for interesting queries. Such systems,
however, are inadequate for many applications as the in-
tended queries to run on a stream may not be known when
the data is produced. Therefore, such applications require
a stream archiving and analysis system (SAAS) that can
archive data for a long period of time and efficiently sup-
port various statistical and data mining queries on historic
data.

Both archiving and query processing in a SAAS can be
extremely challenging. For example, consider a data center
monitoring application. Since data centers are large capi-
tal investments for online service providers, they are closely
monitored for operating conditions and utilizations. A data
center may contain tens of thousands of servers. Assume
that 100 performance counters are collected from each server
to monitor its utilization. In addition, for each server, 10

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

physical sensors are used to monitor its power consump-
tion and operation environment (e.g. temperature around
it, etc.). Then, a data center with 50,000 servers yields 55
million concurrent data streams and, with a mere 30-second
sampling rate, more than 15 billion records (or about 1TB
data) a day. While the most recent data are used in real-
time monitoring and control, the historical archived data are
used for tasks such as capacity planning, workload place-
ment, pattern discovery, and fault diagnostics. As we will
discuss in Section 2, many of these tasks require queries for
computing pair-wise correlation, histogram, and first-order
trend of time series data over last several months. Due to
the sheer volume of the data, archiving it in its raw form
for several months may consume prohibitively large storage
space, while querying it may be impractically slow.

In this paper, we consider the problem of space-efficient
archival of a large number of massive time series and fast
processing of several statistical and data mining queries on
that archived data. Traditional database systems address
space-efficient archival and query processing separately. For
example, many database systems compress data for space-
efficiency; however, queries are run on uncompressed data
and hence data must be uncompressed before a query is
processed. Such an approach is not feasible for our tar-
get applications since the decompression overhead would
make query latency even worse. We therefore incorporate
compression and query processing in the same framework;
i.e., our queries run directly on compressed data. This,
in addition to avoiding expensive decompression before a
query, enables fast query processing since a query runs on a
much smaller amount of data. Several existing systems sup-
port efficient queries on compressed data; however, they are
not general enough for our target applications. For exam-
ple, StatStream computes correlation directly from compact
Fourier representation of streams (via FFT); however, the
technique is not effective for correlating noisy data or for
preserving important spikes in data. Systems that compress
data using polynomial approximation [11, 25] can preserve
spikes, but do not efficiently support correlation queries.

Our framework, called Cypress, preprocesses and decom-
poses each data stream into a small number of substreams,
which we call trickles, and answers common queries directly
from a set of the trickles rather than reconstructing the orig-
inal streams. The multi-scale lossy compression of Cypress
is motivated by two important observations. First, typi-
cal sensor streams are not just sequences of random data.
Many of them are numerical values that reflect underlying
physical or computing processes. Although noisy, the infor-

mation they contain is usually sparse, as we will elaborate
in section 2. Such data can be effectively compressed with
data reduction techniques such as FFT, random projections,
etc. Moreover, as we will show later in this paper, our core
queries of interest, e.g., correlation, histograms, trends, etc.,
can be efficiently answered directly from such compressed
data.

Second, a sensor stream can be decomposed into differ-
ent components that have different compressibility and use-
fulness in query processing. Thus, compressing an entire
signal with one generic data reduction technique may be
suboptimal. For example, Figure 1(a) shows CPU utiliza-
tion of a server (more details in Section 2), which consists of
some noise, occasional spikes, and a high-level trend. Space-
efficient compression of the entire signal with techniques
such as FFT will capture the high-level trend of a signal,
but will fail to capture spikes and noises, both of which are
important for several important queries we consider. On
the other hand, answering a query from the raw signal or its
high-level trend may sometimes be incorrect. For example,
pair-wise correlation of two raw signals may be dominated
by their high level trends, possibly answering queries relying
on correlation of noisy components of two signals incorrectly.
We elaborate these in Section 2.

To address the above limitations of systems that do not
consider different frequency components of a signal sepa-
rately, Cypress preprocesses sensor data streams using mul-
tiple filters. For ease of discussion, we focus on 1-dimensional
numerical data streams (or signals) in this paper, although
the framework can be extended to multi-dimension and mul-
timedia data streams as well. Many real sensor data streams
are oversampled to avoid missing abnormal events. Thus,
the “energy” of the signals are usually concentrated at low
frequency bands. FFT is a common way to identify what
frequency bands have significant presence in the signal. The
high-level trends of such signals can be efficiently repre-
sented by filtering and downsampling the signals. We call
these filtered and downsampled signals the LoF trickles.
Downsampled signals can lose abrupt events, or spikes, in
the signals. For this reason, we tease out spikes and store
them separately as spike trickles. Notice that LoF signals
are sparse in the frequency domain and spikes are sparse
in the time domain. So, the storage space requirement for
archiving them is small.

After removing LoF and spikes, the residuals’ values, as
well as their Fourier coefficients, are small. Although less
significant in either domains, they may still contain useful
information, especially when comparing across signals. For
example, the similarity in residuals may reinforce or com-
plement the similarity in other trickles. For these residual
signals, we apply Johnson-Lindenstrauss style random pro-
jections [2, 19] (or sketches) for further dimensionality re-
ductions. We call these sketches HiF trickles. We show that
random projections preserve correlations among signals, and
analyze the accuracy of correlation coefficients and projec-
tion length. Random projections are also universal, in the
sense that if, in the future, transformations are discovered
such that the residuals have a sparse representation in a
new domain, the signals can be fully recovered from the
projections, according to recent results from the theory of
compressive sensing [2, 8, 14, 17].

Apart from the multi-scale compression framework, we
study how common queries can be answered directly from

trickles. We show that LoF + Spikes can approximate his-
tograms well. We further analyze the relationship between
the accuracy of correlation of two signals directly from their
sketches and sketch lengths. We give an accuracy upper
bound for using Gaussian random projections. We also show
that random projections are more robust than other com-
pression techniques, such as downsampling, when dealing
with wideband, nonstationary noise-like data.

Although the multi-scale analysis of the Cypress frame-
work is related to previous methods based on Wavelet de-
compositions [12, 13], the different types of compression
techniques used at different scales in the Cypress framework
provide stronger guarantees for various queries of interest.
For instance, Wavelet methods could fail to capture all the
spikes. The scheme presented in the paper [12] makes only
probabilistic guarantees on preserving all spikes, and hence
is not suitable for applications that do not want to lose any
spikes. Furthermore, although high frequency wavelet coeffi-
cients can capture noise, retaining all such coefficients does
not provide any compression benefit. In contrast, sketch-
ing provides a robust solution to extract, from noisy data,
small number of features useful for answering correlation-
type queries.

Also, although the Cypress framework uses some of the
same principals (such as sparsity and random projections)
as in compressed sensing and random sketching [2, 8, 14,
17] there are several key differences. First, it is known in
advance where the sparsity in the data is located, and thus
we use direct methods (e.g. filtering followed by threshold-
ing) to efficiently take advantage of the sparsity in both the
time and frequency domains. Using random projections on
the raw data streams would be overly expensive (in terms
of reconstructing the signals) and also be unreliable because
the non-sparse “noise” components are sufficiently large to
render reconstructions highly inaccurate. A second differ-
ence is that when we apply random projections to the high
frequency components, the goal is not compression with re-
spect to a sparse basis (no such basis is known), but rather
a robust “sufficient statistic” for measuring correlations.

The contributions of the paper are the following:

• We present the design of Cypress, a multi-scale fil-
tering and compression framework for massive data
streams.

• We show that statistics such as trends, histograms,
and correlations can be answered from trickles without
reconstructing raw data.

• We provide theoretical analysis on the relationship be-
tween the accuracies of correlation analysis and the
sketch lengths.

• Through realistic data sets, we evaluate the perfor-
mance and accuracy of the Cypress framework.

The rest of the paper is organized as follows. In section 2,
we give a running example of a data center monitoring appli-
cation and describe common queries on performance coun-
ters. In section 3 we present our Cypress framework. In sec-
tion 4, we show how histogram queries can be efficiently an-
swered by our framework. In Section 5, we analytically show
the accuracy of correlation of two signals directly from their
random sketches, as a function of sketch length. We evaluate
the Cypress framework to performance counters collection

0 500 1000 1500 2000 2500 3000
0

0.5

1

(a) Raw data: CPU utilization of a server over a day, sampled every 30 seconds.

0 500 1000 1500 2000 2500 3000
0

0.5

1

(b) LoF: Low freqeuncy smoothed signal using 24 Fourier coeffcients.

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

(c) Spikes: detected after removing LoF from raw data.

0 500 1000 1500 2000 2500 3000
0

0.5

1

(d) Reconstuction: The signal constructed from LoF and spikes.

0 500 1000 1500 2000 2500 3000
-0.2

0

0.2

(e) Residual: The noise in the raw data after removing the LoF and the spikes.

Figure 1: Decomposition of the raw CPU utiliza-
tion signal (a) into low-frequency (b), spike (c), and
high frequency (e) components. Each component is
compressed as a separate trickle.

from about 800 servers in a Microsoft online service in sec-
tion 6. In section 7 we discuss related work. We conclude
the paper in Section 8.

2. A RUNNING EXAMPLE
We introduce a running example using performance coun-

ters from a production Internet service with millions of users.
There are three types of servers — A, B, and C. We use 50
server for each type (150 servers total) in the data set. All
servers are stateful, but in different ways. Type A servers
are client facing, behind load balancers. They maintain long
living TCP connections with clients. Type B and C servers
are internal servers behind type A servers.

Without losing generality, we use CPU utilization as an
example throughout our discussion. The CPU utilization on
each server is affected by many factors, such as total number
of users in the system, load balancing algorithms that deter-
mine the number of users on each server, background tasks,
and, in rare cases, software bugs, etc. In our example, pro-
cessor utilizations are collected every 30 seconds from each
server. So, each server generates 2880 CPU utilization sam-
ples per day. Figure 1(a) shows a typical CPU utilization
trace for a type A server over 1 day.

As mentioned before, Cypress archives this data as a col-
lection of trickles: the LoF trickles represent the high level
trend of the signal (Figure 1,b), the spike trickles represent-
ing the spikes (Figure 1,c), and the HiF trickles represent-

ing the residual noisy signal (Figure 1,e). While our target
queries can be directly answered using the trickles, LoF and
spike trickles also allow approximate reconstruction of the
original signal (without the noise component), as shown in
Figure 1(d). Thus, queries that may not be directly sup-
ported by the trickles can be answered on this reconstructed
signal.

We now show how typical queries are answered by using
different trickles. Some example queries that a data center
operator wants to make on the CPU data are as follows.

• Q1 (capacity planning): What is the average growth
rate for the service over last three months?

• Q2 (server provisioning): How many servers have reached
80-percentile utilization in the last Christmas season?

• Q3 (dependency analysis): How behaviors of type A
servers correlated with those of type B servers?

• Q4 (load balancing): Do servers within a cluster re-
ceive balanced load?

• Q5 (anomaly detection): Are utilization spike pat-
terns on servers in one cluster also exhibited by other
servers?

We notice that given the spatial and temporal span of the
data, all these queries are statistical in nature. Small ap-
proximation errors in answers are acceptable as they do not
effect decision making quality.

Q1 is a trend query. In this application, the number of
users in the system is known to scale linearly with total CPU
utilization [5]. So, average user growth can be approximated
by computing daily average of CPU utilizations across all
servers. This can be done by using the LoF trickles and
linear regressions.

Q2 is a histogram query over a time window and across all
servers. In Section 4, we will show that this can be answered
directly from LoF trickle and spikes.

Q3, Q4, and Q5 are all correlation queries, seeking simi-
larity in the data directly or features contained in the data.
However, they need to be answered using different compo-
nents of the signal (and hence different trickles). To illus-
trate Q3, Figure 2(a) shows the correlation coefficients com-
puted across 150 servers using the raw data over a day. The
image is a visualization of a 150×150 matrix, indexed by the
servers. That is, the (i, j)th element of the matrix is the cor-
relation coefficient of the values (2880 samples) between the
ith server and the jth server. The diagonal elements are 1’s.
We can clearly see the two clusters of B servers, and that A
servers’ behaviors are strongly correlated. Type C servers
are less correlated, indicating that the access patterns to C
servers are not uniform. In addition, those were four ab-
normal servers that were idling for the day. It is interesting
to observe that Q3 can also be answered accurately with
much fewer data points. For example, Figure 2(b) shows
the correlation coefficients computed from the LoF trickle
from the 150 servers. Even with only 24 data points per
server, we can still clearly differentiate server types, their
strong correlation within the clusters A and B, and the ab-
normal servers.

In contrast, Q4 needs to be answered using the high fre-
quency components of the signals (or, the Spike trickles).
Figure 2(c) and (d) shows two clusters within Type B servers,

(a) raw data (b) low freqs (c) spikes (d) residual

A

B

C

A B C

Figure 2: The correlation coefficients across 150 servers, computed using different components of signals.
Darker pixels represent higher correlation coefficients (e.g., a black pixel represents a corr. coeff. of 1).

implying the presence of two load-balanced clusters. The
presence of these clusters is not visible in Figure 2 (a) and
(b), suggesting that Q4 cannot be answered from the low fre-
quency signals. On the other hand, Figure 2(d) pronounces
the clusters more clearly than (c), and hence Q4 is best an-
swered from residual noises (i.e., HiF trickle).

Finally, Q5 needs to be answered from the Spikes trick-
les of the signals, as other components do not capture the
spikes. As shown, some correlations in type C servers are
visible only in Figure 2(c).

3. MULTI-SCALE COMPRESSION
FRAMEWORK

The key for data compression is to seek structure (e.g.
sparsity) in the data streams and to tease out data that do
not contribute to the accuracy of query answers. Through-
out this section, the starting point is considered to be a one-
dimensional raw data stream represented by a real-valued
discrete time signal x(n). It is assumed that this signal cor-
responds to uniformly spaced samples of a continuous time
process (e.g. CPU utilization) with initial sampling rate fs

samples per second (i.e. there are 1/fs seconds between each
sample). Compression is achieved by representing the sig-
nal x(n) with fewer than 1/fs values per second while still
maintaining the ability to answer queries of interest.

In section 3.1 below we review standard properties from
signal processing and perform spectrum analysis the CPU
data. The upshot of this analysis is that a great deal of
the signal’s “energy” can be persevered using filtering and
down-sampling. Next, in Section 3.2 we introduce the full
Cypress framework which goes beyond the basic ideas of
filtering and down-sampling and allows for high resolution
answers to various type of queries.

3.1 Spectrum Analysis
Fourier-type transforms allow us to analyze time-series in

the frequency domain. For example, Figure 3 shows the
frequency spectrum measured over four days of CPU uti-
lization computed after removing the mean. It is clear that
most of the “energy” in the signal is stored in low frequency
components which correspond to the LoF trickle.

The mechanism to keep the signals in the time domain
is through filtering and downsampling. For completeness
of discussion, we review the following basic properties. A
discrete time signal x(n) can be equivalently represented by

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

Frequency (Cycles/Min)
A

ve
ra

ge
 E

ne
rg

y
(d

B
)

Spectrum analysis of 4 days of CPU

Figure 3: Spectrum analysis of CPU utilization over
four days after removing the daily mean.

it discreet time Fourier transform (DTFT)

X(f) =
∑

n

x(n)e−i n 2πf/fs (1)

where the frequency parameter f has units of cycles/sec-
onds. Note that X(f) is periodic with period fs. A discrete
time signal x(n) is said to have bandwidth fc if fc < fs/2
and the magnitude of X(f) is equal to zero for all frequen-
cies f such that fc < |f | < fs − fc. As we show below,
the significance of the bandwidth is that it determines the
minimum sampling rate required to accurately represent the
signal.

Downsampling x(n) by a factor of L consists of keeping
every L’th sample and disregarding the others. The DTFT
of the downsampled signal xL(n) = x(nL) corresponds to
the sum of L shifted versions of X(f),

XL(f) =
1

L

L−1
∑

k=0

X(f − (k/L)fs), (2)

and the new sampling rate of the downsampled signal is
given by fs/L. If the bandwidth fc is greater than fs/2L,
then the shifted versions overlap and aliasing occurs. How-
ever, if fc < fs/2L then aliasing does not occur and the
original sequence x(n) can be recovered by first stretching
xL(n) by a factor L (i.e. inserting L− 1 zeros between each
sample of xL(n)) and then ideal low-pass filtering the result-
ing signal with cutoff frequency fc. These key aspects are

summarized in the following observations.

Observation 3.1. If a discrete time signal x(n) has band-
width fc < fs/2L, then downsampling x(n) by a factor L
does not introduce any aliasing. That is, downsampling pre-
serves all frequency components.

Note that the band-limited condition is important. Down-
sampling a wideband signal (e.g. raw data) does not pre-
serve its spectrum.

Observation 3.2. If a discrete time signal x(n) has band-
width fc < fs/2, then x(n) can be upsampled by a factor L
by passing the L-stretched signal through an ideal low-pass
filter with cutoff frequency fc.

A key approach in our system then, is to separate the time
series into low and high frequency components. From Fig-
ure 3 it is clear that relatively low sampling rate is needed
to retain the majority of the energy in the data. The dom-
inance of the resulting LoF components can be seen by re-
constructing one days of CPU utilization based on various
sampling rates. Figure 1(b) shows the low frequency compo-
nents in the time domain corresponding to sampling rates of
48. With only two samples per hour (48 samples per day),
it is already possible to see the trend in the data.

3.2 The Cypress Framework
Our Cypress framework applies a sequence of filters and

statistical analysis to the raw data to identify sparsity in
the raw signals. The top part of Figure 4 shows the flow of
the overall compression process. We use an example CPU
utilization trace mentioned in Section 2 to help explain the
process. Plots (A)–(G) in the figure shows how the data
look like after various steps.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Low Pass
Filter

Down
sampling

Thresholding

Raw stream

Random
Projection

LoF trickle

Sketch trickleHiF
-

+

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

Spike trickle

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

0 50 100 150

-0.2

-0.1

0

0.1

0.2

2880

2880

0 500 1000 1500 2000 2500 3000
-0.5

0

0.5

(A)

(B) (C)

(D)

(E)

(G)(F)

(A)
2880
(B)

48
(C)

2880
(D)

52
(E)

144
(G)(F)

Figure 4: The Cypress framework for multi-scale
compression. The top part shows the flow of the
process. The plots (A) – (G) show the effects on an
example signal (CPU utilization) flowing through
the system. The numbers below the plot labels
are the signal lengths. In this case, we reduce the
2880 sample raw data into three trickles of 48, 52,
and 144, respectively, achieving a data reduction of
about 91.5%.

3.2.1 LoF Trickles
In order to obtain the LoF representation of the signal,

the raw data (A in Figure 4) first goes through a low pass
filter with cut off frequency fs/2M , where M is an applica-
tion specific parameter that is tunable based on the nature
of the data streams. It can be experimentally determined
by performing spectrum analysis on examples of the data
streams and analyzing the energy concentration in the spec-
trum. For example, we use M = 60 in the filtering of the
CPU utilization data.

The effect of low pass filtering is to create a band-limited
signal (B) (in Figure 4) with bandwidth fs/2M so that
downsampling by a factor M to signal (C) does not create
aliasing. That is, if required in the future, we can recon-
struct a full length smooth signal (B) by first M -stretching
signal (C) and then running it through the same low pass
filter.

The downsampled signal (C) captures low frequency trends
in the original data. For example, the average signal value
over one day based on the LoF trickle (C) requires only 48
data points and is essentially the same as the average over
the same time period based on the 2880 data points of the
raw stream (A).

To answer histogram type of queries, we prefer to store
LoF representation in the time domain, rather than the fre-
quency domain, although they are equivalent in terms of in-
formation contents and the accuracy of approximating the
original signal. This decision differentiates our approach
from StatStream [22].

3.2.2 Spike Trickles
The difference (D) between the raw stream (A) and its

smoothed approximation (B) is a zero mean “noise” like
signal. So, it does not contribute much to trending analysis.
However, any significant variation from the standard devia-
tion is potentially interesting for several useful queries (e.g.,
Q2 and Q5 in section 2).

Cypress detects the spikes of a signal by applying a thresh-
old to the “noise”, which is the signal obtained by subtract-
ing the bandpass signal (B) from the original signal (A). The
threshold can be application specific. In this example we use
3σ as the threshold, where σ is the standard deviation of the
“noise”.

Spikes are typically sparse, due to the Gaussian like dis-
tribution of the noise. In our example, there are 52 spikes
in (E). They captures moments where the CPU utilization
has abrupt changes, including when it reaches 100% and 0.

3.2.3 HiF Trickles
After removing LoF and spikes, the residual is bounded in

value but has a wide frequency band. It does not contribute
much to the statistical analysis of a single stream, such as
trending, histogram, or rare-event analysis. However, as we
will see further in section 5, they still contain rich informa-
tion, especially when correlating across data streams. So, for
applications where the residual cannot be simply ignored, we
need to find ways to archive and process them efficiently.

General purpose compression of wide band signals is chal-
lenging since the entropy in the signal is high. However,
since the purpose of keeping the residuals are for correlation
analysis beyond the low frequency bands, we apply Johnson-
Lindenstrauss style compressive random projections (also
called sketches). We call such sketches HiF trickles. A

compressive random projection is a linear transformation
A ∈ R

K×N with K < N , where the elements of the matrix
are drawn i.i.d from an appropriate distribution (e.g. Gaus-
sian or Bernoulli). For a vector with dimension (i.e. length)
N , the projected vector is of dimension K. Random pro-
jections are universal dimension reduction techniques that
preserve the relative distance between vectors [17] .

While LoF and spike trickles are generated in a streaming
fashion, HiF trickles are generated in batches. Like Stat-
Stream, we group n successive residual data points into a
basic window of length N , and compute the HiF trickle for
the entire basic window. A key question to answer when ap-
plying random projections is the projection length K. Ob-
viously, the shorter the length is, the better data reduction
rate can be achieved and the less data need to processes
when computing for queries. However, shorter projections
can also sacrifice query answer quality. Further discussions
on the tradeoff between projection length and correlation
accuracy is given in section 5.

In summary, the Cypress framework breaks each signal x
into three kinds of streams based on their time scales (or
frequencies): a LoF signal xL, a spike signal xS, and a HiF
signal xH . When the signals are archived, the three kinds of
signals are further converted into three kinds of trickles: a
LoF trickle x̃L via downsampling, a spike trickle x̃S = xS as
is, and compressed HiF trickle x̃H via random projections
of xH .

3.2.4 The System Model
Similar to StatStream [22], Cypress distinguishes between

three time periods: i) timepoint: the smallest unit of time
over which the system collects data, e.g. second; ii) basic
window: a consecutive subsequence of timepoints that Cy-
press processes in a batch to maintain three different types
of trickles, e.g., several hours; and iii) query window: a
user-defined consecutive subsequence of basic windows over
which the user wants statistics, e.g. a day or a week. As
each signal streams into Cypress, a basic window worth of
data is buffered, which is then decomposed into individual
trickles.

A query in Cypress is issued on a particular trickle set,
chosen based on the query. For example, a histogram query
can be made on the LoF trickles only, if the querier wants
to ignore the spikes and residual noise. Therefore, different
trickles are archived in different database tables. To support
queries on an arbitrary query window, trickles within each
trickle table are indexed on their signal IDs and timestamps.
Cypress uses the Multi-skip List (MSL) data structure [11]
for this purpose, which supports efficiently retrieving trickles
for a given set of signal IDs and within a time range. For lack
of space, we do not discuss the details of Cypress’s storage
component in this paper.

4. HISTOGRAM QUERIES
Histograms are a commonly used analysis tool for archived

data that provide valuable insight in the distributions of
signal values. For instance, if the signals are viewed as ran-
dom processes, then histograms are essentially a smoothed
estimates of the underlying probability distributions. Ac-
cordingly, the ability to accurately and efficiently compute
histograms is an important component of our compression
framework.

In this section, we address one dimensional histograms

that correspond to an analysis window of length N , and we
use the vector notation x = [x(n), · · · , x(n + N − 1)]. We
refer to both x(n) and x as signals, where is it clear that
x(n) is a stream and x is a vector.

For a given signal x, and given set of B intervals (or bins)
(b0, b1], (b1, b2], · · · , (bB−1, bB], we define the histogram to
be the vector H(x) = [H1(x), · · · , HB(x)] where Hi(x) is
the number of elements in x whose value falls in the ith bin.

It is desirable to answer histogram queries based on as
few tickles as possible and from as few samples within each
tickle as possible. Figure 5 shows a histogram with 10 bins
(10% CPU utilization per bin) computed from raw signal
(Figure 5 (a)) and a reconstructed signal (Figure 5 (b)).

We let x denote the original signal and let x̃ = xL + xS,
where xL and xS denote the LoF and spike components of
x. We further define the Histogram Error Ratio (HER) to
be the total differences in each bin counts divided by the
total number of samples in the signal:

HER(x) =

B
∑

i=1

|Hi(x) − Hi(x̃)|

B
∑

i=1

Hi(x)

(3)

For example, the HER of the histograms shown in Figure 5
is 6.4%.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

500

1000

1500

(a) Histogram computed from raw data.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

500

1000

1500

(b) Histogram computed from reconstution of LoF+Spikes.

Figure 5: Comparison of histograms computed from
raw signal and that computed from (LoF+Spike) re-
construction.

To understand the accuracy of this histogram approxima-
tion, we need to answer two questions:

Effects of discarding HiF signals. Since spikes are kept
with full precision in the trickles, it is fair to compare the
effect of HiF signals xH on the histogram of LoF signals xL.

The HiF signal xH has the following statistical properties:

• The mean of xH is approximately zero since we re-
moved a small number of spikes from an otherwise zero
mean signal.

• |xH | < d, where d is the threshold for detecting spikes.

If we assume that xH and xL correspond to indepen-
dent random processes, then the probability density func-
tion (pdf) of xH + xL is the given by the convolution of

the pdf of xH and of xL. So, adding xH to xL effectively
blurs the histogram by spreading each bin in the histogram
to its neighbor bins. The degree of blurring depends on the
resolution of the bins and the pdf of the two random vari-
ables. For example, assume that xL has n samples in the
bin (a, b], and b − a > 2d. If both xL and xH have uniform
distributions, then xL + xH will spread over three ranges
(a − d, a], (a, b], and (b, b + d], with d

b−a+2d
n, b−a

b−a+2d
n, and

d
b−a+2d

n samples. In other words, the error scales linearly
with d, the range of the HiF signal. If the pdf of xH is
close to a Gaussian distribution with fast decay of proba-
bility from the (zero) mean, which is true for many noisy
signals, then the amount of spreading over is much smaller.
In addition, not all spreading leads to errors in histograms.
The spreading over from neighboring bins partially cancel
out each other. So the overall error introduced by neglect-
ing xH can be small.

When xH and xL are not independent, (e.g. the pdf of
xH depend on the values that xL takes), then the error may
be more concentrated in certain bins than in others.

Approximate the histogram of LoF signal from LoF
trickles. If H(xL) is an acceptable approximation of H(xL+
xH), how can we compute H(xL) efficiently? The archived
trickle x̃L is a downsampling of xL. Is it possible to approx-
imate H(xL) from the shorting length trickle x̃L without
fully reconstructing xL.

Note that upsampling of x̃L (as defined in section 3.1) is
the inverse of downsampling of xL. Since we are aggressive
in terms of selecting cut off frequencies when filtering x to
obtain xL, there are many levels of intermediate upsampling
of x̃L that progressively approximate xL.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Upsampling ratio

H
E

R

Histogram error ratio with xL upsampling

Figure 6: Histogram Error Ratio computed from
upsampling the LoF trickle used in the running ex-
ample.

Figure 6 shows the HER when use various rates to up-
sample the LoF trickle. We see that without upsampling,
the histogram of the trickle directly gives about 10% error.
A small upsampling, say less than 4 can significantly reduce
the error to about 1%.

Ultimately, the resolution (i.e. bin size) and accuracy
of histograms are application dependent. For example, for
CPU utilization data, it does not give more information if
we consider bin size less than 5%.

From the above discussions, we see the tradeoff between
compression rate and the accuracy of answering histogram
queries. The larger the cut off frequency is used to separate
LoF, the better that the LoF signal approximates the orig-
inal signal. The smaller threshold is used to detect spikes,
the less blurring is introduced when eliminating HiF. How-
ever, the larger cut off frequency means more samples need
to be archived in LoF trickle. Smaller threshold also causes
more samples being classified as spikes.

5. CORRELATION QUERIES
Correlations are a useful measure of the similarity of two

data streams and different insights are gained by perform-
ing correlation analysis on LoF, Spike, and Hi trickles sep-
arately. Intuitively this makes sense because the trickles
correspond to different time-scales and behaviors. For ex-
ample, LoF correlations may correspond to long-term trends
while Spike and HiF correlations correspond to short-term
behavioral relationships.

As we have shown in Sections 3, compressible signals such
as the LoF and Spike trickles can be represented accurately
from a relatively small number of samples and it follows that
correlation analysis can be performed directly on their com-
pressed representations. However, the HiF trickle is not as-
sumed to be compressible, and hence the main challenge is to
find a compressed version or “sketch” of the HiF trickle that
is sufficient for approximating correlation analysis. Since
compression is achieved by discarding some of the informa-
tion content in the HiF trickle, any sketching method car-
ries some risk that the resulting correlation estimates will be
highly inaccurate. In this section, we show that random lin-
ear projections provide a robust method for sketching, and
we analyze the tradeoff between accuracy in the correlation
estimates and the length of the sketch.

To be explicit, the correlations we discuss are the sample
correlations between two signals, say x1 and x2, over an
analysis window of length N . Using the vector notation
x1 = [x1(n), · · · , x1(n+N −1)] and x2 = [x2(n), · · · , x2(n+
N − 1)], the sample correlation is given by

ρi,j =
〈x1, x2〉

‖x1‖‖x2‖
.

where 〈·, ·〉 is the inner product and ‖ · ‖ is the Euclidian
norm.

In the Cypress framework, the HiF trickles are buffered
and processed in blocks of length N creating a sequence of
vectors xi ∈ R

N . The goal is to find a sketching method
f : R

N 7→ R
K with K << N that can be applied indepen-

dently to each vector xi such that for any pair (i, j) the cor-
relation ρi,j can be estimated accurately from the sketches
f(xi) and f(xj). The following sections discus linear sketch-
ing functions of the form f(x) = Ax where A is a K × N
sketching matrix.

5.1 Risk of Downsampling
Uniform downsampling by a factor N/K can be expressed

as a linear projection with a K×N matrix A where the rows
of A correspond to K distinct rows of the N × N identity
matrix. Hence it is clear that downsampling represents a
particular instance of linear sketches.

If it is assumed that the elements of two streams x1(n) and
x2(n) are drawn i.i.d. over n from a bivariate distribution,
then the downsampled vectors Ax1 and Ax2 corresponds to

a set of K i.i.d. pairs. Hence, it is clear that accuracy of
statistics computed on Ax1 and Ax2 depends only on the
number of samples K and not on the length of the original
vectors N .

Moreover, if the independence assumption above is re-
laxed to allow for sequences xi(n) with short term corre-
lations, then it follows that uniform downsampling should
have the same properties mentioned above provided that the
duration between samples is long enough to ensure that they
are sufficiently independent. We refer to either the i.i.d. or
the identically distributed with short term correlation set-
tings as idealized noise.

To the extent that the HiF trickles correspond to idealized
noises, uniform downsampling provides an efficient and ac-
curate sketching method for preserving sample correlations.
However, if the trickles do not correspond to idealized noise,
then there is a risk that downsampled sketches will “miss”
the important contents in the vectors x1 and x2 the resulting
estimate ρ̂1,2 will be very different from the true sample cor-
relation ρ1,2. To illustrate this point, consider the following
example of non-stationary noise.

Consider the setting where the vectors x1 and x2 corre-
spond to the HiF trickles of two servers S1 and S2 on the
same day. Now, assume that the short term behaviors of
S1 and S2 are independent in general, but are highly corre-
lated during some event of interest E. Clearly, the sample
correlation over the day depends on the how often the event
E occurs. However, since these occurrences of E could be
spread arbitrarily (i.e. not uniformly) throughout the day,
there is a risk that uniform sampling will miss a significant
portion of these occurrences. While one solution may be
to use a non-uniform downsampling pattern, such a method
has the risk that the samples will not be sufficiently inde-
pendent.

As the above example helps to show, for any fixed linear
projection A, there exists a class of signals for which A will
perform badly, and hence robust guarantees are difficult. In
the following section, we illustrate that one solution to this
problem is to use randomized linear projections which offer
good performance with known reliability.

5.2 Robust Guarantees from Random Projec-
tions

This section shows that random linear projections are a
robust method of sketching with probabilistic error guaran-
tees. To begin, it is useful to observe that for any (i, j) the
sample correlation between xi and xj does not depend on
the magnitudes ‖xi‖ and ‖xj‖. Hence, without loss of gen-
erality, it may be assumed that all signals are normalized
to unit magnitude so that sample correlation is related to
Euclidian distance by

ρi,j = 1 −
1

2
‖xi − xj‖

2. (4)

A great deal of work [17, 15, 2, 6, 21, 20, 7, 16] has con-
sidered the problem of estimating pairwise distances from
lower-dimensional projections. Below, we present a key re-
sult that is used in various proofs [2] of the Johnson - Lin-
denstrauss Lemma [17].

Theorem 5.1. [2] Given any sequence of vectors xi ∈
R

N and any ε > 0, let A be a K × N matrix chosen inde-
pendently of xi with entries i.i.d. zero mean Gaussian with

variance 1/d where

K >
2

ε2/2 − ε3/3
log(2/δ). (5)

Then for each pair (i, j) the bounds

(1 − ε)‖xi − xj‖
2 ≤ ‖Axi − Axj‖

2 ≤ (1 + ε)‖xi − xj‖
2

(6)

hold with probability at least 1 − δ.

Thus, a suitably chosen set of random linear projections
will, with high probability, preserve the Euclidian distance
between any two vectors. Using the relation (4), it is straight-
forward to see that under the same conditions given in The-
orem 5.1, the correlation estimate ρ̂i,j = 1− 1

2
‖Axi −Axj‖

2

obeys the bound |ρ̂i,j − ρi,j | < 2ε with probability at least
1 − δ. While this bound is tight in the scaling sense as K
becomes large, it is loose for the relatively small values of
K needed to provide significant compression in the Cypress
framework. In the following result we improves the error
bound by a factor of two by considering the estimation of
the correlation directly.

Theorem 5.2. Given any sequence of vectors xi ∈ R
N

with unit norm and any ε > 0, let A be a K × N matrix
chosen independently of xi with entries i.i.d. zero mean
Gaussian with variance 1/K where K satisfies (5). Then,
for each pair (i, j) the estimated correlation ρ̂ = 〈Axi, Axj〉
obeys |ρ̂ − ρ| < ε with probability at least 1 − δ.

Proof. The normalized vectors
√

D
2(1+ρ)

A(xi + xj) and
√

D
2(1−ρ)

A(xi − xj) have Gaussian distribution N (0, Id×d)

and are independent due to the orthogonality of xi +xj and
xi − yj . Hence, the random variables Y1 = D

2(1+ρ)
‖A(xi +

xj)‖
2 and Y2 = D

2(1−ρ)
‖A(xi − xj)‖

2 are i.i.d. chi-square

(χ2) with D degrees of freedom, and the estimate can be
written as

ρ̂ = 〈Axi, Axj〉

=
1

4

[

‖A(xi + xj)‖
2 − ‖A(xi − yj)‖

2
]

=
1

2D
[(1 + ρ)Y1 − (1 − ρ)Y2]

= ρ +
1 + ρ

2
(Y1/D − 1) −

1 − ρ

2
(Y2/D − 1)

Since a χ2 variable with D degrees of freedom has mean D,
it follows that E(ρ̂) = ρ. Using the fact that Y1 and Y2 are
independent and applying a Chernoff bound directly to the
estimate ρ̂ shows that for all ρ ∈ [−1, 1], the following bound
holds

Pr

(
∣

∣

∣

∣

1 + ρ

2
(Y1/D − 1) −

1 − ρ

2
(Y2/D − 1)

∣

∣

∣

∣

> ε

)

< 2 exp(−D[ε2/4 − ε3/6])

Hence, if we choose D satisfying (5) then the stated result
follows

From the proof of Theorem 5.2, it also possible to get
an approximate “upper bound” on the estimation error for
Gaussian random projections. Note that if |ρ| = 1 then

Pr(|ρ̂ − ρ| > ε) = Pr(|ZK − E(ZK)| > εK) (7)

where ZK is a χ2 random variable with K degrees of free-
dom. With some exception (such as very small values of ε),
this behavior corresponds to the worst case choice of ρ, and
thus Equation (7) provides an improved upper bound for
various regimes of ε and K.

It is worth noting the correlation estimate 〈Axi, Axj〉
is used above for the convenience of getting a closed-form
bound. In practice, normalization or truncation to the in-
terval [−1, 1] should improve the accuracy. Also, although
Gaussian projections can be shown to attain good perfor-
mance, other constructions are worth considering. For ex-
ample, sparse or binary matrices allow for fast computation
[2] and, as the next section show, matrices with orthonormal
rows can guarantee that no correlation is underestimated.

5.3 Avoiding False Negatives
For a given signal xi, consider the problem of identifying

all other signals xj , j 6= i, that are similar to xi in the sense
that their sample correlation ρi,j exceeds some threshold ρ∗.
For each estimate ρ̂i,j there are two kinds of error events: a
false negative occurs if the true correlation is large ρi,j ≥ ρ∗

but ρ̂i,j < ρ∗ and a false positive occurs if the true corre-
lation is small ρi,j < ρ∗ but ρ̂i,j ≥ ρ∗. Generally, one may
consider a tradeoff between the two types of errors by ad-
justing the degree to which ρ̂i,j over or underestimates the
true correlations.

In the setting where this similarity index is used a “first
cut” metric to determine which signals xj merit further con-
sideration, it is important to avoid false negatives. For ex-
ample, StatStream builds a grid structure with estimations
of pair-wise correlations of signals, to prune the search space
for highly correlated signal pairs. To use our techniques with
a similar approach, the correlation estimations cannot have
false negatives (but they may have some false positives).
Note that a false negative occurs if the norm of the differ-
ence signal y = xi − xj increases after sketching, that is if
‖Ay‖ > ‖y‖. Since the ratio ‖Ay‖/‖y‖ is upper bounded
by the largest singular value of A, denoted s1(A), it follows
that false negatives will not occur if s1(A) ≤ 1. Note that
any K × N sketching matrix with orthonormal rows, such
as any subset of the Fourier matrix for example, has all K
non-zero singular values equal to one and satisfies this con-
dition.

For the i.i.d. Gaussian sampling matrix A considered in
Theorem (5.2) the event ‖Ay‖ > ‖y‖ occurs with proba-
bility approximately one half because the variance of each
element is normalized such that the rows ak, k = 1, · · · , K
of A have expected magnitude E‖ak‖

2 = N/K. If instead
the variance of each element is 1/N , then A is comparable to
a sketching matrix with orthonormal rows in the sense that
E‖ak‖

2 = 1 and E〈ak, al〉 = 0, for k 6= l. The probability of
a false negative for these rescaled sampling matrices is easily
upper bounded using using Theorem 5.2 with ε = N/K.

6. EVALUATION
We evaluate the performance and accuracy of the Cypress

framework using 800 data streams, a super set of the exam-
ple described in section 2, over a week. There are 16M
records in total. In some cases, we extrapolate the results
to 50,000 servers, which is the target application size of Cy-
press. We first show the performance of filtering and com-
pression in terms of execution time and compression ratio,
then evaluate the performance and accuracy of running his-

0

10

20

30

40

50

60

0 500 1000 1500

Pro
ce

ssi
ng

 Tim
e (

se
c)

sketch length

800 streams

1600 streams

3200 streams

6400 streams

Figure 7: Execution time for sketching.

togram and correlation queries. For execution time mea-
surements, we use a PC with Intel Core 2 Duo 2.4GHz and
2GB memory, running Windows Vista.

6.1 Multi-scale compression
There are several parameters that effect the performance

of Cypress

• The number NF of cut off frequency, and thus the
downsampling size, which determines the compression
ratio of the LoF trickle.

• The spike detection threshold Ts, which impacts on
how many spikes will be archived and the bound on
residuals.

• The sketch length K, which determines the compres-
sion ratio of the HiF trickle.

Obviously, these parameters also effect the accuracy of query
answers.

Execution Time. Among the operations that Cypress
takes, low pass filtering and thresholding are streaming op-
erators, which consist of several dozens of multiplications,
additions, subtractions, and comparisons for every new sam-
ple streamed in. Even with an implementation that bulk
processes raw data once a day and uses ideal low pass filter
by performing pairs of FFT and IFFT, the test PC finished
filtering, downsampling, and spike detection for 800 data
streams in 1.66 seconds.

Sketching is a relatively expensive operation for two rea-
sons: 1) the random projection matrix is dense, and 2) a
single projection from N dimension to K dimension requires
N · K multiplications and N · K additions. Figure 7 shows
the execution time for sketching 800, 1600, 3200, and 6400
streams, with sketch length 10, 20, 40, 80, 160, 320, 640,
and 1440. We see a significant jump in execution time when
the sketch length goes from 160 to 320. A possible cause is
extra memory allocation or swapping.

Compression Ratio. The storage space used for archiving
trickles is affected by both NF , the number of LoF stored,
Ts, the threshold used to detect spikes, and K, the sketch
length. The contribution of LoF and sketches to the archiv-
ing space is solely determined by NF and K, but the storage
space for spikes can vary. More interestingly, a smaller Ts

clearly causes more spikes to be detected. But a larger NF

can cause the LoF signal to approximate raw data better,
which may reduce the number of spikes.

0

50

100

150

200

250

1 2 3 4 5 6 7

90-percentile
10-percentile
average

Days

Dis
tri

bu
tio

no
f #

 of
 sp

ike
s/s

tre
am

Figure 8: The distribution of the number of spikes
detected in 800 streams, over 7 days.

We use the CPU utilization from the first day as the data
set to compare storage space reduction. Table 1 shows the
storage space required for the LoF and Spike trickles under
various parameters. Assuming a sketch length of 144, the
total compression ration, defined as the storage space used
by raw data divided by that of Cypress is between 3× to
8×.

There is also a trade off among using different NF and
Ts. For example, in Table 1 using 384 LoF samples/day
(NF = 192) and 10% CPU utilization threshold requires
more storage space than using 192 LoF samples/day (NF =
96) but 8% threshold. How to choose these parameters also
depends on query answer accuracy, which we will elaborate
in later sections.

Table 1: Storage space requirement of different
trickles as a percentage of raw data computed from
800 streams over 1 day. Assuming a sketch length
of 144, we need additional 5% storage space for
sketches. The total compression ratio is between
3× to 8×.

Spike Storage
NF LoF Storage Ts = 0.1 Ts = 0.08 Ts = 0.05
24 1.67% 5.3% 10.3% 25%
48 3.3% 4.7% 9.6% 24%
96 6.6% 4.4% 9.4% 23.5%
192 13.2% 3.8% 6.6% 21.7%

Since spikes cause the variation in storage space require-
ment, we plot the distribution of the number of spikes de-
tected in each stream (Figure 8) over 7 days. We use a loose
threshold of NF = 24, i.e. storing 48 LoF samples per day,
and Ts = 0.1 (10% CPU utilization) in these results. We ob-
serve that in the CPU utilization data spikes are common.
There are on average about 50 spikes per server per day.

6.2 Histogram Queries
We evaluate the accuracy of histogram queries using the

data set. As discussed in section 4, two factors affect the
accuracy of histograms: the upsampling length from LoF
and the residual distribution.

Selecting bin size 10, we first vary the upsampling length
when compress with 48, 96, and 192 LoF per day, as shown
in Figure 9. We make three observations. First, on aver-

age, LoF + spikes give almost accurate histogram approx-
imations, with less than 10% histogram error ratio (HER)
error. However, in the worst case the error can be 20% to
30%. Second, for this data set, increasing the size of LoF
trickles does not have significant impact on histogram accu-
racy. Finally, on average, increasing the number of samples
used in computing histograms by upsampling improves his-
togram accuracy almost linearly.

0
0.1
0.2
0.3
0.4

48 96 192 384 768 1536 2880

HE
R

Upsampling length

48 LoF per day

Min
Average
Max

0
0.1
0.2
0.3
0.4

X 96 192 384 768 1536 2880
HE

R
Upsampling length

96 LoF per day

Min
Average
Max

0
0.1
0.2
0.3
0.4

x x 192 384 768 1536 2880

HE
R

Upsampling length

192 LoF per day

Min
Average
Max

Figure 9: The effects of upsampling length on His-
togram Error Rate (HER) when approximating his-
tograms using LoF+Spikes.

Next, we evaluate the effect of varying the spike thresh-
old Ts from 10, 8, to 5. Intuitively, the tighter the bound
is, the smaller the error introduced to histogram approxi-
mation should be. Figure 10 is computed using 96 LoF. We
observe that with low upsampling length, smaller Ts can sig-
nificantly improve the worst case HER. However, the trend
becomes counterintuitive when upsampling length is large.
We believe that a small number of outliers cause the change
in distribution.

6.3 Correlation Queries
Figure 11 shows the empirical probability that the sam-

ple correlation estimates sketches deviate more than ε =
0.1 from the true sample correlations computed on the raw
signals. A comparison is made between using Gaussian
sketches and uniform downsampling on the HiF signals, a
non-stationary subset of the HiF signals, and the uncom-
pressed spike trickle. The results show that in general the
HiF trickles in our data correspond to the “idealized” noise

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

96 192 384 768 1536 2880

HE
R

Upsampling length

Min (Ts=5)
Average (Ts=5)
Max (Ts=5)
Min (Ts=8)
Average (Ts=8)
Max (Ts=8)
Min (Ts= 10)
Average (Ts=10)
Max (Ts=10)

Figure 10: The effects of spike threshold on His-
togram Error Ratio (HER) when approximating his-
tograms using LoF+Spikes.

assumptions discussed in Section 5, but that for a subset of
non-stationary HiF signals the risk of uniform sampling can
be large. Additionally, we include results for the “spiked
noise” which corresponds to sketching the (uncompressed)
spike trickle and also serves to illustrates the risk uniform
downsampling. For comparison, we include the approxi-
mate upper bound (7) which follows from the proof of The-
orem 5.2.

Note that both downsampling and random sketches have
the same space requirement. These results show that for an
additional sketching cost, random sketches have the prop-
erty that their performance does not depend on the noise
type, and is consistently below the bound (7). For example,
by using a random sketch of size 500, the probability of esti-
mation error exceeding 0.1 can be very small (close to 0.01),
which is acceptable in our target applications. This shows
the effectiveness of using random sketch, which is smaller
than original signal, for computing correlation.

The small correlation estimation error from random sketch
comes with the advantage of smaller latency of correlation
estimation. To understand the benefit, we use a query that
requires computing correlation of all pairs of signals in the
system and measure the throughput in terms of the num-
ber of signal pairs whose correlation coefficients have been
computed in a second. We consider different sketch lengths,
including a sketch of length 2880 samples per day that rep-
resents the original uncompressed signal. We consider two
cases where correlations are computed over 1-day long sig-
nal and over 1-week signal. Figure 12 shows the results. As
shown, if the system computes correlation from original sig-
nals, it can compute correlation of around 60 pairs of 1-week
long signals(or, 400 pairs of 1-day signals). In contrast, if
Cypress is configured to compute correlations based on ran-
dom sketches of length 300 per day, it can correlate around
550 pairs of 1-week long signals (or, 2600 pairs of 1-day long
signals), giving more than a factor of 9 higher throughput
than a system that uses raw signals.

The higher throughput of sketch-based correlation com-
pared to raw-signal-based correlation comes from two sources.
First, since correlation is computed on smaller signals (sketches),
this involves a smaller computational overhead. Second,
since in the sketch-based approach, less data needs to be
read from disk, it has a smaller I/O overhead as well. Ta-
ble 2 shows CPU and I/O overheads of computing correla-
tion of a single pair of 1-day long signal. With a sketch of
length 100, around 81% of total processing time is due to

0
1000
2000
3000
4000
5000

0 1000 2000 3000

1-day long signal

1-week long signal

Sketch size/day

Pa
irs

/se
co
nd

Figure 12: Throughput of pairwise correlation out-
put as a function of different sketch size. A sketch
size of 2880 represent the original signal.

I/O latency. As the sketch size increases, both CPU and I/O
latencies increase; however, I/O cost increases at a higher
rate than CPU cost (e.g., I/O cost is 94% when correlation
is computed from raw signals).

Table 2: CPU and I/O latency of computing pair-
wise correlation of two signals of length 2880 (1 day).

Sketch Length CPU time (ms) I/O time (ms)
100 0.04 (19%) 0.19 (81%)
500 0.06 (10%) 0.5 (90%)
1000 0.07 (8%) 0.89 (92%)
2880 0.14 (6%) 2.37 (94%)

7. RELATED WORK
Time series data mining is an active field of research. Sev-

eral prior work has shown how to index large time series
data [23, 26]. Cypress is significantly different from these
systems in terms of its approach of separately compressing
and indexing different frequency component of signals and in
terms of the queries it support (e.g., correlation, histogram,
etc.). Data structures and algorithms for supporting fast
correlation computation have been studied in the context of
streaming databases. In StatStream [22], correlations are
approximated by transforming the signals to the frequency
domain using DFT. The approach is similar to our corre-
lation queries on LoF signals. In BRAID [21], geometric
probing and curve fitting are used to compute correlations
with time shifts, although each correlation coefficient is com-
puted using the full signal.

Correlation analysis is a common statistical and data min-
ing method for analyzing software system utilization. How-
ever, instead of solving specific applications, as in capacity
planning [9] or performance debugging [3], we point out the
distinct information contents in different frequency bands.
So it is necessary to archive the information for long term
analysis. Combining this notion with data reduction tech-
niques, we can answer a broad spectrum of useful queries
without significant increase in storage space.

The theoretical inspiration of Cypress comes from random
projection and compressive sensing [17, 2, 8, 14]. Random
projection (or sketches) has been used as an effective di-

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Samples

P
ro

ba
bl

ity
 o

f E
rr

or
Idealized Noise

Gaussian Sketch
Uniform Downsample
Gaussian Upper Bound

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Samples

P
ro

ba
bl

ity
 o

f E
rr

or

Non−Stationary Noise

Gaussian Sketch
Uniform Downsample
Gaussian Upper Bound

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

Number of Samples

P
ro

ba
bl

ity
 o

f E
rr

or

Spiked Noise

Gaussian Sketch
Uniform Downsample
Gaussian Upper Bound

Figure 11: Empirical probability that the correlation estimate error exceeds ε = 0.1. Comparison of Gaussian
projections, uniform downsampling, and the upper bound (7) for three different types of HiF trickles.

mension reduction technique in data mining. For example,
in [10], Fern et. al. apply random projection for point data
clustering. In [4], the authors conducted empirical study to
show that random projection out performs principle com-
ponent analysis and discrete Cosine transform in image and
text compression, in terms of introducing least distortion.
In [24], sketches are used to maintain dynamic histograms
over data streams. Compressive sensing techniques has re-
cently been applied to collecting and processing computer
system data streams. In [18], compressive sensing princi-
ple is used to derive an approximation framework for fine-
grained network measurements. The focus of this paper is
to provide a generic correlation analysis framework based on
the random projection principle.

8. CONCLUSION
We have presented Cypress, a novel framework to archive

and query massive time series streams. Cypress applies
multi-scale analysis to decompose time series and to obtain
sparse representations in various domains (e.g. frequency
domain and time domain). Relying on the sparsity, the time
series streams are archived with reduced storage space. We
also showed that many statistical queries such as trend, his-
togram and correlations can be answered directly from com-
pressed data rather than from reconstructed raw data. Our
evaluation with server utilization data collected from real
data centers showed significant benefit of our framework.

9. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), 2005.

[2] D. Achlioptas. Database-friendly random projections.
In ACM PODS, 2001.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes. In
ACM SOSP, 2003.

[4] E. Bingham and H. Mannila. Random projection in
dimensionality reduction: applications to image and
text data. In in Knowledge Discovery and Data
Mining, pages 245–250. ACM Press, 2001.

[5] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao. Energy-aware server provisioning and
load dispatching for connection-intensive internet
services. In USENIX NSDI, 2008.

[6] R. Cole, D. Shasha, and X. Zhao. Fast window
correlations over uncooperative time series. In KDD,
2005.

[7] G. Cormode, P. Indyk, N. Koudas, and
S. Muthukrishan. Fast mining of massive tabular data
via approximate distance computations. In ICDE,
2002.

[8] D. Donoho. Compressed sensing. IEEE Trans. on
Information Theory, 52(4):1289 – 1306, 2006.

[9] X. Fan, W. dietrich Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In Intl.
Symp. on Computer Architecture, pages 13–23, 2007.

[10] X. Z. Fern and C. E. Brodley. Random projection for
high dimensional data clustering: A cluster ensemble
approach. In Intl. Conf. on Machine Learning, 2003.

[11] S. Gandhi, S. Nath, S. Suri, , and J. Liu. GAMPS:
Compressing Multi Sensor Data by Grouping and
Amplitude Scaling . In ACM SIGMOD, 2009.

[12] M. Garofalakis and P. B. Gibbons. Wavelet Synopses
with Error Guarantees. In ACM SIGMOD, 2002.

[13] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss. One-pass wavelet decompositions of
data streams. IEEE Transactions on Knowledge and
Data Engineering, 15(3):541–554, 2003.

[14] J. Haupt and R. Nowak. Signal reconstruction from
noisy random projections. IEEE Trans. on
Information Theory, 52(9):4036–4048, 2006.

[15] P. Indyk, N. Koudas, and S. Muthukrishan.
Identifying representative trends in massive time series
data sets using sketches. In VLDB, 2000.

[16] P. Indyk and R. Motwani. Approximate nearest
neighbots: Towards removing the curse of
dimensionality. In ACM STOC, 1998.

[17] W. Johnson and J. Lindenstrauss. Extensions of
lipschitz mapping into hilber space. Contemporary
Mathematics, 26:189–206, 1984.

[18] Y. Lu, A. Montanari, B. Prabhakar,
S. Dharmapurikar, and A. Kabbani. Counter braids: a
novel counter architecture for per-flow measurement.
In ACM SIGMETRICS, 2008.

[19] A. K. Menon, G. V. A. Pham, S. Chawla, and
A. Viglas. An incremental data-stream sketch using

sparse random projections. In SIAM International
Conference on Data Mining, 2007.

[20] S. Papdimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In VLDB,
2005.

[21] Y. Sakurai, S. Papdimitriou, and C. Faloutsos. Braid:
Stream mining through group lag correslations. In
SIGMOD, June 2005.

[22] Y. Z. D. Shasha. StatStream: Statistical monitoring of
thousands of data streams in real time. In In VLDB,
2002.

[23] J. Shieh and E. Keogh. iSAX: indexing and mining
terabyte sized time series. In ACM SIGKDD, 2008.

[24] N. Thaper, S. Guha, P. Indyk, and N. Koudas.
Dynamic multidimensional histograms. In ACM
SIGMOD, 2002.

[25] A. Thiagarajan and S. Madden. Querying continuous
functions in a database system. In ACM SIGMOD,
2008.

[26] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multidimensional time-series. The
VLDB Journal, 15(1):1–20, 2006.

