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Abstract
Most programming languages in use today let one freely use arbi-
trary (side) effects. This is despite the fact that unknown and un-
restricted side effects are the cause of many software problems.
We propose a programming model where effects are treated in a
disciplined way, and where the potential side-effects of a function
are apparent in its type signature. In contrast to most effect systems
that are meant for internal compiler optimizations, our system is de-
signed to be used by the programmer. Inspired by Haskell, we use a
coarse-grained hierarchy of effects, like pure and io, which makes
it convenient to read and write type signatures. The type and effect
of expressions can also be inferred automatically, and we describe a
polymorphic type inference system based on Hindley-Milner style
inference.

1. Introduction
Procedures in programs are generally quite different from mathe-
matical functions. In particular, they can do more than simply re-
turn values: procedures can raise exceptions, fail to terminate, read
from or write to a heap, or perform I/O operations. This extra power
comes at a cost though. Many useful properties enjoyed by pure
mathematical functions are not shared by effectful procedures, so it
is harder for programmers to reason about their code and for com-
pilers to perform optimizations.

We propose a programming model where effects are a part of
the type signature of a function. Just like types help to structure and
clarify code, we believe that effects should be part of the mindset
of the programmer. Not only would this enable stronger guarantees
and better understanding, it would also encourage a more effect-
free style of programming with more optimization opportunities.
For example, the squaring function:

sqr(x : int) = {x ∗ x }
Gets the type:

sqr : int
total−−→ int

signifying that sqr has no side effect at all and is a total function
from integers to integers. If we add a print statement though:

sqr(x : int) = {print(x ); x ∗ x }
the (inferred) type indicates that sqr has an input-output (io) effect:

sqr : int
io−→ int

Note that there was no need to change the original function nor to
promote the expression x ∗ x into the io effect. One of our goals
is to make effects convenient for the programmer, so we automat-
ically combine effects together using a hierarchy of subeffects. In
particular, this makes it convenient for the programmer to use pre-
cise effects without having to insert coercions. For example, we

can split Haskell’s state monad into three separate effects (read,
allocate, and write), while automatically combining these effects
when required. Types and effects are inferred automatically using a
variant of polymorphic Hindley-Milner-style type inference (Hind-
ley 1969; Milner 1978), and there is a natural subtype relation on
effects that will automatically promote an effect when necessary
without the need for explicit coercions.

We are somewhat hesitant to call our type system an effect
system: many effect systems in the literature are designed to enable
internal compiler optimizations (Benton and Buchlovsky 2007)
and the effect language is often quite complex. In contrast, our
effect system is specifically designed for programmers as part of
the surface language. We use a coarse-grained natural hierarchy
of effects like pure and io so that the effects are easy to write
and understand. Nonetheless, our effects are expressive enough to
describe effects in ML and precise enough to recognize common
usage patterns of effects. In this paper we make the following
contributions:

• We have designed a programming language with explicit, pre-
cise, and convenient effects. Furthermore we show that this lan-
guage has a well-defined unambiguous semantics.

• We show how a coarse-grained hierarchy of effects offers many
benefits and insights to the programmer. We precisely describe
how different effects are related to each other, and motivate the
particular choice of hierarchy on the basis of different desirable
properties.

• We show how certain stateful computations can be safely con-
sidered pure again (Peyton Jones and Launchbury 1995), and
how exception handlers can remove partiality.

• Having to keep track of effects manually would be a large
burden: we describe a sound and complete polymorphic type-
and-effect-inference system that automatically infers the effect
and type of any expression, and automatically promotes effects
when necessary.

• We formalize the type system and give type directed translation
to monadic System F.

Effect systems have been widely studied from many perspectives,
and we draw from much of this prior work. Nevertheless, we
present a novel system of effects that builds onto the experience
with monads in Haskell, and shows how these various perspectives
can be combined into a cohesive system.

2. Overview
Before we describe our design, we first take a short look at one of
the most prominent programming languages that distinguishes pure
expressions from side-effecting ones, namely Haskell. In Haskell,
all expressions are by default pure and cannot have a side effect.
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The only way to introduce side effects is to use the IO (or ST )
monad. Take for example the fibonacci function in Haskell:

fib n = if n 6 0 then 1 else fib (n − 1) + fib (n − 2)

which will be assigned the type Int → Int in Haskell which
signifies that this a pure function from integers to integers. If we
would like to print a message in the base case though, we need to
‘lift’ everything explicitly into the IO monad as follows:

fib n = if n 6 0 then do {print "hi"; return 1}
else do {x ← fib (n − 1);

y ← fib (n − 2);
return (x + y)}

The type would now become Int → IO Int signifying that this is
a function from Int to an IO monad of Int , i.e. a computation that
when executed returns and Int and potentially has an input/output
effect.

The Haskell solution of using monads to separate pure and side-
effecting computations has been quite successful and there exists a
multiple of real-world programs that use this. Nevertheless, there is
a significant syntactic burden: in order to adapt the original function
above to print a message, we had to change the entire function,
lifting each sub expression into the IO monad. This is also the
reason many Haskell programmers tend to put different effects
into one larger monad, as it it quickly becomes tiresome to lift the
different kinds of expressions explicitly into the right monad.

More seriously, the Haskell notion of purity is still not be strong
enough to enable many interesting transformations. In particular,
purity includes the effects of partiality and divergence. For exam-
ple, an expression can have a type Int but when the value is de-
manded it might actually diverge or raise an exception. The true
type is really not Int , but Int⊥ signifying that the value can either
be an integer, or be undetermined. Even simple transformations like
replacing 0 ∗ x with 0 where x is a variable become invalid under
this notion of purity.

2.1 Effect types
To address the previous problems, we took a fresh look at program-
ming with monads and side-effects, and developed a small proto-
type language called Fox (pronounced ‘fox’). In essence one can
see it as ML with controlled side effects, or as Haskell with strict
semantics and implicit monads. In particular, we use a strict seman-
tics where arguments are evaluated before calling a function. This
implies that an expression with type int can really be modeled se-
mantically as an integer (and not as a delayed computation that can
potentially diverge or raise an exception).

As a consequence, the only point where side effects can occur
is during function application. We will write function types as
(τ1, ..., τn)

ε−→ τ to denote that a function takes arguments of type
τ1 to τn, and returns a value of type τ with a potential side effect ε.
As apparent from the type, and in contrast to ML, functions need to
be fully applied and are not curried. This is to make it immediately
apparent where side effects can occur. For example, in a curried
language like ML an expression like f x y can have side effects at
different points depending on the arity of the function f . In our
system this is always explicit as function application is written
explicitly, and we have either f (x , y) or (f (x ))(y).

2.2 The basic effect hierarchy
The potential effects that we support form a partial order under a
sub-effect relation 6, where we have for example that pure 6 io.
In Figure 1 we show a simplified version of the effect hierarchy
where each edge ε1 → ε2 implies ε1 6 ε2. We can roughly divide
the effects in three groups, the bottom four pure effects, the middle
four state effects, and the top I/O effect.

io

st(h)
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OO

++

alloc(h)

<<yyyyyy
read(h)

OO

write(h)

ccGGGGGG

pure
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;;vvvvvvv

��
partial

;;wwwwwww

//

divergent

ddHHHHHHH

total
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Figure 1. The (simplified) effect hierarchy: an arrow ε1 → ε2
implies that ε1 6 ε2.

total signifies the absence of any effects. In particular, total is
a bottom element with total 6 ε for any effect ε. Functions with a
total effect corresponds basically to total mathematical functions.
The effects directly above total are partial and divergent, respec-
tively representing expressions that possibly raise an exception or
may not terminate. pure is the join of the those effects. We chose
to call this effect pure as it corresponds directly to Haskell’s notion
of purity. The result of functions with the pure effect is completely
determined by the values of the arguments. Indeed, in the absence
of arbitrary side effects, such functions behave like mathematical
functions and are fully deterministic. The dotted line shows that we
can sometimes transform an partial expression to a total one, and
a pure expression to a divergent one, when handling exceptions as
discussed in Section 3.5.

The middle group of effects all deal with state and are parame-
terised with a heap argument h . Such heap arguments never need to
be introduced explicitly by the programmer but will arise naturally
as part of type inference. The alloc(h) effect allocates in the heap h ,
read(h) reads the heap, and write(h) writes to the heap. The st(h)
effect is the join of those effects and can potentially allocate, read,
and write to the heap. It is useful to distinguish the read, write, and
allocate effects as all three have different properties. For example,
reads commute with each other and can for example be safely par-
allelized, as we discuss in Section 3.2. The dotted line implies that
we can sometimes safely convert a stateful expression into a pure
one as discussed in Section 3.1. The hierarchy of stateful effects is
simplified here and well will refine it further in Section 3.1.

Finally, the io effect represesents what is more traditionally
thought of as side effecting and can perform arbitrary I/O oper-
ations like file I/O, networking, and generally make any external
procedure calls – all bets are off! and unfortunately, for most pro-
gramming languages one must assume that expressions are always
in this particular effect. Note that io is not a sub effect of arbitrary
stateful effects, only st(h) effects where the heap h is equal to the
type constant ioheap. We discuss this in more detail in Section 3.1.

3. Programming with effects
Now that the high level hierarchy of effects is known, we will
discuss various properties and details of the effect system in the
following sections.
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3.1 State
Using stateful operations, we can for example describe a linear
version of the fibonacci function:

fib(n) {
f1 ← newref (1);
f2 ← newref (1);
repeat(n − 1){

sum ← !f1 + !f2;
f1 := !f2;
f2 := sum;
}
!f2;
}

In the above code newref creates a new reference, f := e assigns
e to a reference f , and !f dereferences a reference. The statement
x ← e binds a name to the result of an expression. The repeat(n)
statement executes its body n times. A valid type for fib is:

fib : ∀h. int
st(h)−−−→ int

reflecting that the function allocates, reads, and writes into some
heap h . As apparent, there is no need for the programmer to ex-
plicitly manage heaps but the type system introduces such names
automatically as part of normal type inference.

From state to pure Interestingly, the above function could be con-
sidered pure though: for any input, it always returns the same output
since the heap h cannot be modified or observed from outside this
function. In particular, we can safely convert any function with an
effect st(h) to a pure function when the heap h is inaccessible from
outside. It can be shown that this is exactly the case whenever the
function is polymorphic in the heap h and where h is not among
the free type variables of argument types or result type. This notion
is formalized in the next section and corresponds directly to the
use of the higher-ranked runST function in Haskell (Peyton Jones
and Launchbury 1995). As we will discuss later, we can generally
not apply this rule automatically in the type inferencer and the pro-
grammer needs to explicitly insert a run statement as follows:

fib(n) = run{ ...}
Now, the type inferred can be safely refined to be pure:

fib : int
pure−−→ int

We represent the run transition with the upper dotted arrow in
Figure 1.

A more refined state Even the previous type can be further re-
fined. As said before, the diagram in Figure 1 is somewhat simpli-
fied. In the full system, there are four variants of each heap effect,
one for each of the four basic effects: total, partial, divergent, or
pure. For example, the stateful type of the original fibonacci func-
tion becomes:

fib : ∀h. int
st-total(h)−−−−−−→ int

signifying that this is a stateful, but total function, i.e. it will termi-
nate and raise no exceptions.

The more informative heap effects still form a partial order but
the simple arrow between the previous read(h) and st(h) effect
now becomes a cube as shown in Figure 2, and similarly for the
other heap effects. The main advantage distinguishing these heap
effects is that we can revert to an even more specific effect when
using the run statement. In particular, with the run statement, the
type inferred for fib function will actually be total:

fib : int
total−−→ int

st-divergent(h) //

��

st-pure(h)

��

st-total(h)

88qqqqqqqq
//

��
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Figure 2. The full relation between the basic effects and the ex-
panded read and st effect.

In Figure 2 the valid transitions induced by run are denoted by the
dotted downward arrows. It may seem that we could parameterise
a heap effect directly with a nested effect, as in st(h, total), but as
shown in Section 6.3 this would lead to an unsound type system
and we need to use different effect constants instead.

The example program uses state in a rather limited fashion
and uses the heap references just like local variables. Generally
though stateful effects can do arbitrary heap manipulation and work
across function boundaries. An extended example of the use of
isolated state for efficient graph algorithms is described by King
and Launchbury (1995).

3.2 Commutative effects
Any effects under read-divergent, read-partial, alloc-divergent, or
alloc-partial, have the special property that they are commutative
effects. This means that it is not observable in which order such
effects are executed. For example, for any two nullary functions
f1 and f2 with a commutative effect and unit result, we have that
f1(); f2() is equivalent to f2(); f1(). Note that we cannot include
pure in the commutative effects since this can change the non-
termination behaviour. With partial, the kind of exception that is
raised might differ but we will address this in the way we define
exception handlers in Section 3.5. Similarly, allocation might be
done in a different order, but we offer no ordering or addressOf
operations on references making the difference unobservable.

A common issue in strict programming languages is the or-
der of evaluation of function arguments. Some languages (like
C) leave this unspecified but in the presence of side effects this
might lead to unpredictable results. For example, the expression
foo(print("a"), print("b")) might print either "ab" or "ba".
This is a innocent example but in general unexpected side effects
in arguments can cause bugs that are hard to find. To avoid these
issues, we require that all function arguments have commutative
effects. The order in which arguments are now evaluated becomes
irrelevant since the order is unobservable.

As shown in the previous fibonacci function it is very useful
to allow arbitrary commutative effects where we used the addition
operator on arguments with a read effect:

sum ←!f1+!f2
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Explicit monadic programming can be quite cumbersome in these
cases as all the the reads have to be both lifted explicitly and
performed in an explicit order.

We would still need to order non-commutative arguments ex-
plicitly though. For example, our earlier C example must be written
as x ← print("a"); y ← print("b"); foo(x , y) where the order
of the print statements is made explicit – a good thing!

3.3 Polymorphic effects
As already apparent from the previous examples, the type system
supports full parametric polymorphism a la Hindley-Milner (Hind-
ley 1969; Milner 1978). For example, the head function can return
the head element of any list regardless of the element type:

head : ∀α. list(α)
partial−−−→ α

This form of polymorphism extends naturally to effects too. Take
for example the function map that applies a function to all elements
of a list:

map(f , xs) {
match (xs){

cons(x , xx )→ {y ← f (x );
yy ← map(f , xx );
cons(y , yy)}

nil → nil
}
}

which will get the type:

map : ∀αβε. (α ε−→ β, list(α))
ε−→ list(β)

The inferred type for map naturally expresses that the (side) effects
of executing map is dependent on the effects that the provided
function has. For example, map(print , ["a", "b"]) will have an
io effect while map(sqr , [1, 2]) will be total.

3.4 No value restriction
Supporting both Hindley-Milner style polymorphic type inference
and effects must be done carefully, since polymorphic type infer-
ence is generally unsound in the presence of unrestricted side ef-
fects. We illustrate the problem with an example of the ML lan-
guage. ML also has polymorphic type inference and allows (im-
plicit) side effects. As an example, take the following ML program

let r = ref [ ]
in r := [true ]; head !r + 1

First a reference to an empty list is created. Subsequently, we as-
sign a list with a boolean element to this reference, and then read
the element back (head !r ) as an integer! This is clearly unsound
and the above program is not a valid ML program. Nevertheless,
the program would type check fine under standard Hindley-Milner
type inference: the type of ref [ ] is generalized and r is assigned
the type ∀α. ref (list(α)) which can be instantiated to both a refer-
ence to a list of integers, but also to a reference to a list of booleans.
To avoid this issue, the ML language adds the value restriction
where only expressions that are syntactically a value can be gener-
alized. Therefore, the above code fragment is rejected since r gets
a monomorphic type and cannot be used as a reference for both
integer lists and boolean lists. Unfortunately, this restriction also
rejects many programs that are sound since there is no side effect
involved, for example, let revlists = map rev is rejected, while
let revlists xs = map rev xs is accepted.

When side-effects are known, this issue disappears and there is
no need for the value restriction at all. In particular, we can safely
generalize over precisely those expressions that have idempotent

effects, i.e. those effects where executing {x ← e; (x , x )} is equal
to executing {x ← e; y ← e; (x , y)}. In particular, this holds for
any effect under pure, for read and write, but not for alloc, st, or
io. For the purposes of this paper, we are going to be a bit more
conservative though and only generalize over expressions that are
total. This still includes many expressions though, for example, all
standard function definitions.

Generalizable bindings are simply written as x = e where the
name x is bound to the expression e where the effect of e must be
total. The type of a total binding is always generalized and can thus
be polymorphic. In contrast, we can bind a name x to the result of
an effectful expression as x ← e . The type of such binding is not
generalized and has monomorphic type. This corresponds directly
to the notion of let bindings and monadic bindings in Haskell.

The reason for only allowing total expressions for let bindings,
is that the equal sign in the binding now truly means equality:
i.e. such bindings are referentially transparent and we can apply
equational reasoning where we can either replace a name by its
definition, or abstract an expression into a shared let binding. This
clearly cannot be done for effectful functions in general, and not
even for effects like divergent, partial, or pure. Consider:

x ← 1/0
if true then 1 else x

In the above program, we cannot replace the occurence of x by
its (partial) binding as that changes the termination behavior of
the program: as it stands, it always raises an exception, while the
inlined program always returns 1.

Even effectful bindings have many useful properties though.
For example, for any expression e with an idempotent effect, the
evaluation of the expression (at that program point) will always give
the same result, i.e. the expression {x ← e; y = x } is equivalent
to {x ← e; y ← e }.

3.5 On exceptions
Exceptions can occur in any subeffect of the partial effect. Excep-
tions are raised by undefined matches, intrinsic partial operations
like division by zero, or explictly by the user. We can also catch
exceptions but we need to be careful. For example, we generally
cannot observe exceptions or otherwise our partial effect would no
longer be commutative. One way around this issue is to give catch
an io effect:

catchIO : ∀α. (() io−→ α, exn
io−→ α)

io−→ α

This works as io already includes non deterministic behaviour, and
this is the way Haskell exceptions are catched. Another solution
is possible if we make the exact exception unobservable in the
handler:

catch : ∀αε. (() partial−−−→ α, ()
ε−→ α)

ε−→ α

We can now for example use a total handler to convert a partial
expression into a total one. Moreover, it is possible to use a handler
with a st-total(h) effect for example. Similarly, we can transform
pure operations to divergent ones:

catchPure : ∀αε. (() pure−−→ α, ()
divergent−−−−−→ α)

divergent−−−−−→ α

These two transformations are denoted by the dotted lines in the
original effect hierarchy in Figure 1. Of course, we can define
similar catch functions for the stateful operations st-partial and
st-pure.

In Figure 2 we have not denoted these catch transitions, but we
could show them as dotted lines that go horizontally from right to
left from each corner in the cubes.
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Types,Effects τ, ε ::= α (type variable)
| c(τ1, ..., τn) (type constructor )
| (τ1, ..., τn)

ε−→ τ (function (n > 0))

Type schemes σ ::= ∀α. τ (quantification)

Figure 3. Types.

3.6 Partiality and non-termination
The reader might be somewhat curious how a type system can
determine the partiality and termination effects of an expression.
Of course, both the partiality and termination behavior of functions
cannot be determined statically in general. Therefore, the type
system relies on an separate analysis that determines whether an
expression is partial or possibly non-terminating. This analysis is
defined according to some simple rules such that the outcome is
predictable for the programmer.

Partiality is introduced by the use of partial functions, and by in-
complete match expressions. We consider a match only total when
it matches on all possible constructors. When guards are involved
we require that there is at least one case per constructor that has no
guard expression. We are similarly conservative when determining
non-termination: a recursive function is only considered to termi-
nate when it uses structural recursion, i.e. in each recursive call, no
argument can grow and at least one must be smaller. In contrast to
lazy languages like Haskell, this is valid since in a strict setting all
data types are inductive and finite.

Clearly, the above decision procedures for partiality and non-
termination are quite conservative, but that is fine: for many func-
tions the given rules work well, and we prefer clear conservative
rules over complex and unpredictable analysis. One area we would
like to handle better is simple recursion over integers where it is
useful to detect when integers get smaller. For now, we leave this to
future work when we have more experience with larger programs.

4. The type system
In this section we are going to treat the type system more formally
and explain how types can be derived. As a first step we are going
to show a basic type system where all function parameters are
annotated with their type. This system is powerful enough to check
all examples in this paper and is how we envision how programmers
view effect typing. Nevertheless, we would like to have a more
powerful inference system where types can be inferred for function
parameters too. In Section 4.5 we extend the basic type system with
qualified types to allow this.

4.1 Types
The grammar of the types is given in Figure 6. Simple monomor-
phic types are written as τ and consist of type variables, type con-
structors, and functions. We usually write ε for effect types that
form a subset of the monotypes (of kind Effect). Type construc-
tors include builtin types like int , but also user defined types like
list(α). Type schemes σ have the form ∀α1, ..., αn. τ where a type
τ is quantified over the type variables α1 to αn.

For the purposes of this paper, type constructors are always fully
applied, but the system can be easily extended to also support par-
tially applied type constructors. We do this in our implementation
where we use a kind system to ensure that types are well formed
(Jones 1995). If partially applied type constructors are allowed, it is
important that type variables can no longer range over function ar-
rows (→). As we will see later, this is vital to keep the simplication
of constraints decidable. This property is easy to fulfill by ensuring
that a function arrow is always (syntactically) fully applied.

SUB-FUN
τ ′i 6 τi τ 6 τ ′ ε 6 ε′

(τ1, ..., τn)
ε−→ τ 6 (τ ′1, ..., τ

′
n)

ε′−→ τ ′

SUB-TRANS
τ1 6 τ2 τ2 6 τ3

τ1 6 τ3

SUB-REFL τ 6 τ

Figure 4. Structural subtype rules.

VAR
x : σ ∈ Γ

Γ ` x : σ | total

FUN
Γ, x1 : τ1, ..., xn : τn ` e : τ | ε

Γ ` λ(x1 : τ1, ..., xn : τn)→ e : (τ1, ..., τn)
ε−→ τ | total

APP

Γ ` e : (τ1, ..., τn)
ε−→ τ | ε′ Γ ` ei : τi | ε′

comm ε′ ε′ 6 ε

Γ ` e(e1, ..., en) : τ | ε

LET
Γ ` e1 : σ1 | total Γ, x : σ1 ` e2 : τ2 | ε

Γ ` x = e1; e2 : τ2 | ε

BIND
Γ ` e1 : τ1 | ε Γ, x : τ1 ` e2 : τ2 | ε

Γ ` x ← e1; e2 : τ2 | ε

GEN
Γ ` e : τ | total α 6∩ ftv(Γ)

Γ ` e : ∀α. τ | total

INST
Γ ` e : ∀α. τ | ε

Γ ` e : [α := τ ]τ | ε

SUB
Γ ` e : τ1 | ε τ1 6 τ2

Γ ` e : τ2 | ε

LIFT
Γ ` e : σ | ε1 ε1 6 ε2

Γ ` e : σ | ε2

RUN-PURE
Γ ` e : σ | st-pure(h) h /∈ ftv(σ,Γ)

Γ ` run e : σ | pure

Figure 5. Type rules.

Furthermore, we have two constraint relations on types and ef-
fects: the predicate τ1 6 τ2 constrains a type τ2 to be a subtype
of τ1, and the predicate comm ε constrains ε to a commutative
effect. We assume that all commutative effects are defined as ax-
ioms. In our case, it holds for the effects total, partial, divergent,
read-total, read-partial, read-divergent, alloc-total, alloc-partial,
and alloc-divergent.

The subtype relation τ1 6 τ2 is assumed to form a semi-
lattice with total as the least element. Moreover, the subtype rules
in Figure 4 should hold. We assume that all standard subtype
relations are added as defined in Figure 1 and Figure 2, and includes
for example partial 6 pure, read-total(h) 6 st-total(h), and
read-total(h) 6 read-partial(h).

In Figure 4, the top rule, SUB-FUN, encodes the usual subtyping
relation on functions where the subtype relation switches for argu-
ments. Because functions can be nested, we usually say that a type
is in a positive position when it can be increased to a subtype, and
in a negative position if the direction is opposite. If a type is in both
a negative and positive position, we call it neutral or invariant. The
next two rules define that subtyping is transitive and reflexive.
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4.2 Type rules
Before we discuss the type rules, we first define the core language
of expressions. The grammar is defined as:

e ::= x (variable )
| e(e1, ..., en) (function application)
| λ(x1, ..., xn)→ e (function definition)
| x = e1; e2 (let binding)
| x ← e1; e2 (effect binding)
| run e (run isolated state)

Figure 5 gives the type rules of our system. These rules are declara-
tive and are not syntax directed. The declaration Γ ` e : τ | ε states
that expression e can be assigned the type τ with effect ε, assuming
a type environment Γ. The type environment maps free variables to
types. We write environment extension as (Γ, x :σ) which removes
any previous bindings for x from Γ and adds the binding x :σ to Γ.
The inferred effect ε means that evaluation of the expression e can
have a potential effect ε.

The first rule VAR simply states that the type for a variable x is
the type bound in the environment. Since there is no evaluation for
a variable, we can assign a total effect. The next rule FUN is for
lambda expressions. Since evaluation of the definition of a function
has no effect at all, the inferred effect is total: indeed, functions are
just values. The inferred effect of the body of the function in the
premise shifts to the arrow of the function type in the conclusion,
since calling the function will lead to evaluation of the body. Note
that we assume that all function parameters are annotated with
their type. This ensures that we have principle types and greatly
simplifies type inference to be almost like type checking since only
result types are inferred.

The rule for applications is the most interesting with regard
to effects. In particular, the effects of the arguments ei and the
function expression e are restricted to commutative effects. Since
commutative effects form a semi-lattice we ensure this by requiring
that ei and e have a common effect ε′ which is commutative, i.e.
comm ε′. Note that we can always lift all arguments to a common
effect through the rule LIFT. The effect assigned to the function
application is of course the effect of the function: dual to function
definitions, the effect on the arrow in the premise now shifts to
the effect inferred in the conclusion. Also, we need to ensure that
this effect is a subtype of the effect of the arguments and function
expression ε′, i.e. ε′ 6 ε. Without this premise, we might for
example have a divergent argument but infer a total effect which
would be wrong. In the case that ε 6 ε′, we can always lift the type
of a function using rule SUB to satisfy this premise.

The next two rules deal with binding names to expressions. The
LET rule allows names to be bound to a polymorphic type σ, but
requires that the effect of the body of the definition is total. In
contrast, the rule BIND binds names to expressions with an arbitrary
effect but restricts the binding to monomorphic types τ .

Rule GEN is the usual generalization rule where a type can be
generalized over variables α as long as α is disjoint with the free
type variables of the environment. Note that we can only generalize
over expressions that are total. As shown in Section 3.4 it would
be unsafe to allow generalization over arbitrary side effecting oper-
ations.

Rule INST instantiates quantifiers to a monomorphic type. The
next rule SUB states that if we can derive a type τ , we can also
derive a type τ ′ if that is a subtype of τ , i.e. τ 6 τ ′.

The last two rules are specific to effects. The rule LIFT allows
us to use subtyping on the derived effect: if we can derive an
effect ε1, we can also derive a ‘worse’ effect ε2 if these are in
a subtype relation: ε1 6 ε2. The rule RUN-PURE captures those
stateful expressions that can be considered pure since their heap is
unobservable from outside. If the heap variable h is not among the

free type variables in the assumption, or type, we can safely derive
the effect pure. For simplicity we left out the other three variants of
this rule for total, partial, and divergent heap effects.

4.3 Divergence
We assume that primitive effect operations like throwning an ex-
ception, reference creation and assigment etc. are defined as primi-
tive functions, similarly to stateful operations in Haskell.

One effect that cannot be described that way is divergence. In-
stead we assume that the termination analysis phase translates re-
cursive let-bindings to a special syntactic construct, rec f :τ

ε−→ τ =
e where we assume for simplicity that such recursive bindings are
annotated with a monomorphic type (but in practice it is straight-
forward to infer polymorphic types for monomorphic recursion).
Since we have strict evaluation the type must be a function, and
since it is recursive, we require that the effect ε is a divergent ef-
fect, like divergent or st-divergent(h) for example. The type rule
for this binding is now straightforward:

LET-REC

Γ, f : τ
ε−→ τ ` e1 : τ

ε−→ τ | total ε is divergent
Γ, f : τ

ε−→ τ ` e2 : σ | ε′

Γ ` rec f : τ
ε−→ τ = e1; e2 : σ | ε′

4.4 Type inference
As remarked, since all function parameters are annotated with their
type, type checking is straightforward. On the other hand, it can
be a burden to annotate all function parameters and we would like
to have a type inference system that needs no type annotations on
function parameters.

Unfortunately, once we remove such annotations, we can no
longer assign principal types to expressions. The reason for this is
that we lack polymorphic subtype and commutativity constraints.
Take for example the function twice defined as:

twice(f : α
partial−−−→ α, x : α) = f (f (x ))

Here the user annotated the function f with a partial effect to satisfy
the commutivity constraint arising from the application f (f (x )),
but a divergent effect would suffice too:

twice(f : α
divergent−−−−−→ α, x : α) = f (f (x ))

Unfortunately, without annotation we cannot choose a principal (or
‘best’) type. In order to be able to give principal types, we are going
to use polymorphic qualified types. In particular, the type of twice
can then be inferred as:

twice : ∀αε. comm ε⇒ (α
ε−→ α, α)

ε−→ α

or as its principal type, namely:

twice : ∀αβε. (β 6 α, comm ε)⇒ (α
ε−→ β, α)

ε−→ β

In the next section, we extend the basic type system with qualified
types to enable type inference with principal types. At the same
time we still restrict user annotations to types without subtype
constraints; a choice we will motivate in Section 4.9.

4.5 An extension with qualified types
Figure 6 shows our types extended with qualifiers. Type schemes σ
now have the form ∀α1, ..., αn. (π1, ..., πn) ⇒ τ where a type τ
is quantified over the type variables α1 to αn. The qualifiers π1 to
πm are predicates that need to hold.

We write a set of predicates as P. There is an entailment relation
written as P1 `̀ P2 which asserts that the predicates in P2 hold
whenever those in P1 are satisfied. Following Jones (1992) We
require that this relation is transitive, closed under substitution, and
that P1 `̀ P2 whenever P2 ⊆ P1.
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Qualified types σ ::= ∀α. π ⇒ τ (quantify)

Qualifiers P, π ::= π1, ..., πn (predicates )
π ::= τ1 6 τ2 (sub type)

| comm ε (commutative)

Figure 6. Type schemes with qualified types.

ENTAIL
π ∈ P
P `̀ π

SUB-FUN
P `̀ τ ′i 6 τi



ular, according to the subtype relation in Figure 7 data types are
always neutral and that only function types have nested subtyping.
This means in practice that any constraint α 6 c(τ1, ..., τn) for
example can be simplified to α = c(τ1, ..., τn) removing many
constraints that would arise in systems with subtyping on general
types.

This also implies that we can always bring subtype constraints
into an atomic form where subtype is always between either a
type variable or effect constant, for example, α 6 β, or ε1 6
ε2. As an aside, in our implementation we allow higher order
polymorphism where type constructors can be partially applied. We
restrict polymorphism to range only over neutral type constructors
and not over the function arrow. As a result, we can still simplify
constraints of the form α 6 β(τ1, ..., τn) since it is guaranteed that
there will be no nested subtyping (since β can never be substituted
with the arrow constructor).

Moreover, since we do have a deep subtype relation over func-
tions, it is possible to simplify many types where part of the con-
straint only occurs in a positive or negative location. Take for ex-
ample the apply function:

apply(f , x ) {f (x ); }
where we can derive a principal type:

∀αβα1β1εε1. (ε 6 ε1, α1 6 α, β 6 β1)⇒ (α
ε−→ β, α1)

ε1−→ β1

which is quite complicated. However, since β1 and ε1 occur only in
a positive position and are only bound below, we can simplify them
to equal their lower bounds, β = β1 and ε = ε1. Likewise, since
α1 occurs only negatively and is only bound above, we can make it
equal to its upper bound α = α1. The simplified type will be:

∀αβ. (α ε−→ β, α)
ε−→ β

which is the same as the standard Hindley-Milner type. Note that
under our instance relation (Section 4.6) these two types are equiv-
alent and one type is not better than the other in a semantic sense.

In general there might be constraints that cannot be simplified
any further. For example, the principal type for twice , defined as:

twice(f , x ) {f (f (x )); }
is

∀αβε. (β 6 α, comm ε)⇒ (α
ε−→ β, α)

ε−→ β

For this particular type, both α and β are neutral and we cannot
simplify it further.

4.9 User annotations and decidability
The system as described does not allow type annotations on let
bindings, but in practice this is of course required. Unfortunately,
we cannot support general user annotations but need to restrict the
type schemes that the user can write to type schemes without any
subtype constraints (but commutatitivity constraints are allowed).

The reason for this restriction is that it is generally not decidable
whether the subtype constraints in a user defined type annotation
imply the inferred subtype constraints (Pottier 1996; Smith 1991).
Even in the restricted case where subtype constraints consist just of
type variables and where the effect hierarchy is finite, this is a NP
hard problem.

Fortunately, the simplification procedure sketched in the previ-
ous section illustrates that the type of most functions can be re-
duced to contain no subtype constraints at all. In our experience,
the remaining functions such as twice are often intended to have
a polymorphic type without contraints as well. In light of this, we
chose to disallow any subtype constraints in user defined type an-
notations. We still allow commutativity constraints though since
constraint implication for these is decidable. For example, we can

not annotate twice with its principal type, but we can annotate it
with a slightly more restrictive type that has no subtype constraint:

twice : ∀αε. (comm ε)⇒ (α
ε−→ α, α)

ε−→ α

This type is probably expected in practice anyway since the one
with the subtype constraint is generally difficult to envision for
most people. With this restriction in place predicate solving be-
comes efficient and can purely be done through local reasoning, and
as a consequence type inference is decidable with these restricted
annotations.

Obviously, the weakness of our current approach is that even
though the system infers principal types, the user might not be able
to actually write that type down. Moreover, for some programs,
annotating with a more restrictive type would make the program no
longer type check.

We would love to improve on this but we have not found a
satisfactory solution. On the other hand, we have not seen any
programs yet where this is a problem in practice: we argue that
this is a consequence of two reasons. First, the subtype relation
is very limited in scope and only applies to effects (and not to
general data types). Secondly, the use of effects generally leads to
the effects in positive positions. The exception are effectful higher-
order functions, but those are generally either applied positively,
or passed directly to other functions. The cases where a higher
order argument is applied to itself (as in twice), or used in multiple
negative positions, occur seldomly.

5. A type-directed monadic translation
Figure 9 defines a type-directed translation from the basic type
system to a predicative fragment of System F. Our translation
assumes the existence of a monad Mε for each effect ε, including
the primitive monad operations that should satisfy the monad laws:

>>=ε : ∀αβ.Mε(α)→ (α→Mε(β))→Mε(β) (bind)
unitε : ∀α. α→Mε(α) (return)

Our translation also assumes a family of run functions for each
basic effect. For example:

runpure : ∀α. (∀h.Mst-pure(h)(α))→Mpure(α) (runST)

We treat the total monad specially though and treat Mtotal(σ) as
a type synonym for σ, i.e. total is the identity monad. As such,
the bind operation for total is just reverse function application and
the unit operation is the identity function. For simplicity, we do not
translate types explicitly to System-F types but directly interpret a
type like τ1

ε−→ τ2 as τ1 →Mε(τ2) when necessary.
For each basic subeffect relation, we assume that a proper evi-

dence function f exists, written as ε1 6 ε2  f where the evidence
function f has type ∀α.Mε1(α) → Mε2(α). Using the structural
subtype rules from Figure 4 it is straightforward to define the sub-
type relation on types τ1 6 τ2  f where the evidence function f
has type τ1 → τ2. For example, the transitivity rule simply com-
poses evidence:

SUB-TRANS
τ1 6 τ2  f1 τ2 6 τ3  f2

τ1 6 τ3  f2 ◦ f1
Using these primitives, the monadic type directed translation is
straigtforward and follows exactly the structure of the type deriva-
tion. Each rule Γ ` e : σ | ε  e states that if we derive a type
σ with effect ε for an expression e under the environment Γ, we
can also derive a corresponding well-typed System-F expression
e with type Mε(σ). Well-typedness of the System F expression is
straightforward to prove by induction over the type rules. Note how
expressions with a total effect, like in the rules VAR, FUN, and GEN

translate directly to their corresponding System-F expressions.
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VAR
x : σ ∈ Γ

Γ ` x : σ | total x

FUN
Γ, x1 : τ1, ..., xn : τn ` e : τ | ε e

Γ ` λ(x1, ..., xn)→ e : (x : τ1, ..., x : τn)
ε−→ τ | total

 λ(x1 : τ1, ..., xn : τn). e

APP

Γ ` e : (τ1, ..., τn)
ε−→ τ | ε′  e Γ ` ei : τi | ε′  ei

comm ε′ ε′ 6 ε f

Γ ` e(e1, ..., en) : τ | ε 
f(e) >>=ε λ(x : (τ1, ..., τn)

ε−→ τ).
f(e1) >>=ε λ(x1 : τ1).

...
f(en) >>=ε λ(xn : τn).
x(x1, ..., xn)

LET

Γ ` e1 : σ1 | total e1
Γ, x : σ1 ` e2 : τ2 | ε e2

Γ ` x = e1; e2 : τ2 | ε (λ(x : σ1). e2) e1

BIND

Γ ` e1 : τ1 | ε e1
Γ, x : τ1 ` e2 : τ2 | ε e2

Γ ` x ← e1; e2 : τ2 | ε e1 >>=ε λ(x : τ1). e2

GEN
Γ ` e : τ | total e α 6∩ ftv(Γ)

Γ ` e : ∀α. τ | total Λ(α1, ..., αn). e

INST
Γ ` e : ∀α. τ | ε e τ = τ1, ..., τn

Γ ` e : [α := τ ]τ | ε e[τ1, ..., τn ]

SUB
Γ ` e : τ1 | ε e τ1 6 τ2  f

Γ ` e : τ2 | ε e >>=ε (unitε ◦ f )

LIFT
Γ ` e : σ | ε1  e ε1 6 ε2  f

Γ ` e : σ | ε2  f(e)

RUN-PURE
Γ ` e : σ | st-pure(h) e h /∈ ftv(σ,Γ)

Γ ` run e : σ | pure runpure (Λh. e)

Figure 9. Monadic type-directed translation.

Since System-F is sound, we have as a consequence that our
basic type system is sound, under the assumption that our primitive
monad operations are sound. We define these remaining operations
within the next section.

6. Unambiguous denotational semantics
Our operational semantic definition in the previous section is rather
weak: the monads are still abstract and there are more possible
translations that are also correct, for example with respect to the
order of argument evaluation. In this section we will make the
semantics more precise.

Generally, operational semantics essentially specify an imple-
mentation of the language, but they do not assign any deeper mean-
ing to programs in that language. For example, programmers and
compilers might reason that the program x ∗ 0 is equivalent to 0.
However, in Haskell for example, “*” does not mean multiplication
exactly, and variable x of type int does not quite mean a 32-bit in-
teger, so these programs are not actually equivalent in Haskell.

We want to give types and programs a precise natural meaning.
In particular, a program of type int

total−−→ int means precisely a
total function on 32-bit integers. To formalize this concept, we use
constructive set theory to specify a denotational semantics for our
language. The System-F translation above does part of the work,
since System-F without recursion can be modeled directly by con-

structive set theory. The only remaining components are the defi-
nitions of the monad and monad operations for each effect, which
are presented later in this section. The reason why we don’t use
System-F for all definitions is that certain effects, like divergence
and I/O, cannot be expressed directly in System-F’s type system as
such, but we can define them in constructive set theory.

6.1 Effects
Our starting point for the denotational semantics is the type directed
translation to System-F in Figure 9. With the difference that we
interpret the System-F program in constructive set theory, where
all functions are total by definition. Moreover, we will show that
for each of the monads we will define, the corresponding monad
laws hold. In particular:

(M-LEFT) unitε(x ) >>=ε f ≡ f (x )

(M-RIGHT) e >>=ε unitε ≡ e

(M-ASSOC) e >>=ε (λx . f (x ) >>=ε g) ≡ (e >>=ε f ) >>=ε g

We rely on the monad-assocativity law M-ASSOC to resolve ambi-
guity in how to parse a sequence of commands. In particular, the
following program has the following two possible translations:

e1;
e2;
e3

translates to7−−−−−−−−→
e1 >>= (λ .e2 >>= (λ .e3))

or
(e1 >>= (λ .e2)) >>= (λ .e3)

Essentially the program could be parsed as e1; (e2; e3) or (e1; e2); e3
where the monad-associativity law guarantees that the two transla-
tions are semantically equivalent.

6.2 Subeffects
A major component of our language is its ability to mix different
effects together by using the concept of subeffects. Languages with
subtypes often have an underlying function which shows how to
convert the subtype into the supertype. Often this process is injec-
tive or monomorphic, meaning that distinct values in the subtype
remain distinct in the supertype. We take a similar approach where
for every two subeffects ε1 6 ε2 we have an injective natural trans-
formation f with type ∀α.Mε1(α)→Mε2(α). For clarity, we will
often write the function f as subε16ε2 .

We have to be careful with our choice of natural transforma-
tions, though, or else our language can have an ambiguous seman-
tics. This can be quite challenging, and so we take inspiration from
Reynolds’ concept of natural subtyping (Reynolds 1980). Suppose
we have the expression 1+2+“hi”, using “+” as both addition and
as string concatenation. If we assume that integers are a subtype of
strings, we haven an ambigious expression that can evaluate both
to “12hi” or “3hi”.

We avoid this situation by making subeffecting natural by con-
struction. In particular, we ensure that all the primitive lifting func-
tions f with type ∀α.Mε1(α) → Mε2(α) satisfy the monad mor-
phism laws (Liang et al. 1995; Wadler 1992):

(M-UNIT) f ◦ unitε1 ≡ unitε2
(M-BIND) f (e >>=ε1 g) ≡ f(e) >>=ε2 (f ◦ g)

There are many ways in which one effect may be a subeffect of
another. If we consider the structural subtype rules, we see that
whenever we have ε 6 ε′ and ε′ 6 ε′′, we can derive that ε
is a subeffect of ε′′ through transitivity. This leaves us with two
ways to convert values with effect ε to have effect ε′′: use the
indirect path of applying subε6ε′ followed by subε′6ε′′ , or use
the direct path of simply applying subε6ε′′ . For our language to
be unambiguous, we ensure that both methods always produce
the same result. This is guaranteed by ensuring M-UNIT holds for
these definitions. Similarly, the reflexivity law makes any effect
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a subeffect of itself, so we always define subε6ε as the identity
function, again ensuring an unambiguous semantics.

More significantly, we must ensure that subeffects interact un-
ambiguously with how we sequence effectful computations. Sup-
pose we have a sequence of two effectful computations both with
effect ε which is a subeffect of ε′. There are two ways in which we
might convert this sequence so that it has effect ε′:

x← sub(e1);
sub(e2)

or sub
(
x← e1;
e2

)
That is, we may either convert their effect before or after we
sequence them. Again, by enforcing the monad morphism laws we
ensure that either process produces the same result.

There is an interesting consequence of using subeffects: we have
no need for the return function used in Haskell to explicitly con-
vert noneffectful computations into effectful computations. Instead,
this is accomplished implicitly by the fact that every effect is a su-
pereffect of total. In fact, for any effect ε, the function subtotal6ε
converting from total to ε is the unit of the monadMε. The monad-
identity laws ensure that this is a monad morphism.

6.3 The Monads
So far we have set up the framework for an effectful language with
unambiguous denotational semantics. At this point, there is still a
key component missing: the actual monads and monad morphism
definitions. Here we outline the monad used for each effect, and
discuss some of the monad morphisms used for conversion. We
also phrase our primitive operations in terms of these monads,
demonstrating their soundness. Thus, soundness of our language
becomes immediate consequence of our denotational semantics.

total The total effect is represented using the identity monad. In
fact, we can take a type Mtotal(τ) as a synonym for τ , and give
trivial implementations for the unit and bind operations:

unittotal(x ) = x

e >>=total f = f (e)

Thus any function with this effect corresponds directly to a total
mathematical function. The proof that this monad is commutative
is trivial.

partial The partial effect is defined as usual:

Mpartial(τ) = Ok(τ) + Fail

unitpartial(x ) = Ok(x )

Ok(e) >>=partial f = f(e)
Fail >>=partial f = Fail

This is a commutative monad because there is only one way to fail.
Using this monad we can define partial operations. For example,
integer division can be defined as

i÷ j =

{
j = 0 Fail

otherwise Ok(bi/jc)

Also, whenever cases are missing from a pattern match, we can
simply implicitly map the missing cases to Fail . Thus, we ensure
that all our introductions of the partial effect are sound.

We can also use this monad to show how we can eliminate the
partial effect. Specifically, we can define the catch operation as:

catch : (thrower : ()
partial−−−→ τ, handler : ()

ε−→ τ)
ε−→ τ

= case thrower() of

{
Ok(x) unitε(x)

Fail handler()

which shows our elimination of the partial effect is also sound.

divergent The divergent effect is represented using the non-
termination monad Mdivergent We can represent this monad in vari-
ous ways in constructive set theory, using for example co-algebras.
The details are beyond the scope of this paper, and are not so im-
portant here since we never eliminate the divergent effect; all that
matters is that it can be used to encode arbitrary recursive functions.
In constructive set theories, Mdivergent is different from Mpartial; In
particular we cannot recognize a value as having the divergence
condition in contrast to partiality; thus, there is no catch counter-
part for divergence. This monad is commutative, since if either ef-
fectful expression fails to terminate, then neither sequencing of the
expressions will terminate. As is usual, we often write the applica-
tion of a divergent monad Mdivergent(τ) as τ⊥.

pure The pure effect combines both the partial and divergent
effects into a single monad:

Mpure(τ) = (Mpartial(τ))⊥

We can define it by using the following distributive law (King and
Wadler 1993), which defines a nice way for two monads to interact
in order to give their composition a monadic structure:

dist : ∀α.Mpartial(α⊥)→Mpure(α)

dist(Ok(dx )) = dx >>=⊥ (unit⊥ ◦Ok)
dist(Fail) = unit⊥(Fail)

We can also define catchPure by lifting catch to propogate any
non-termination, turning any pure computation into a divergent
one.

Unlike our earlier monads, the pure monad is not commuta-
tive. The reason is that there are now two ways to fail: throw an
exception or never terminate. If we change the order of effectful
computations, we might change which of these two failures oc-
curs. In many languages, like Haskell for example, the divergent
and partial effect are merged into a single failure condition (which
is non-deterministic) to simplify the semantics but it is less precise.

heap Modeling heap effects faithfully in constructive set theory
proved to be a challenge and required some complex type-theoretic
constructs: in particular, we need a special heap type where the
type itself can be updated to faithfully model allocation. Explaining
these new constructs goes beyond the scope of the paper, so for
explanation purposes we treat heaps as finite maps from integer
locations to values. This model is slightly inaccurate though as
it assumes that only valid and appropriately typed references are
read. For our language this property holds though as shown by
Launchbury and Sabry (1997).

Let H be the type for heaps: finite maps from integer locations
to values. For sake of brevity, we only present the type component
for the three basic effects read-total, alloc-total, and write-total
but we will present st-pure in full detail though, as it is an espe-
cially interesting case. The types of the three basic effects are:

Mread-total(h)(τ) = H → τ

Mwrite-total(h)(τ) = H × τ
Malloc-total(h)(τ) = N → H × τ

Since read-total only reads the heap, the monad is just a function
from the heap H to its result. Dually, write-total only writes and
takes no H parameters. Finally alloc-total takes a natural number
as an argument to be able to assign a fresh location in the returned
heap H . The order in which operations read from the heap have no
impact on their results, so reading is commutative provided that the
underlying effect is also commutative, i.e. read-total, read-partial,
and read-divergent.

Allocation is not commutative perse due to the integer argument
used to allocate fresh locations. However, since these locations are
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opaque, the numbers are not observable outside this effect, and we
can consider allocation commutative modulo the values of these
otherwise unobservable numbers (as long as the underlying effect
is also commutative).

One may expect write-total to be defined using H → H ,
but this does not reflect the fact that the change to the heap is
independent of contents of the heap. Instead, we encode write with
a partial heap indicating the locations and values that were written.
The bind operation combines the two partial heaps by preferring
values in the second heap (representing the more recent writes).
The write effect is not commutative, since it is important that the
most recent writes to the heap are preferred.

Finally, we define the monad for st-pure, which combines all
the heap effects along with the pure effect.

Mst-pure(h)(τ) = H → (H ×Mpartial(τ))⊥

unit(st-pure(h))(x ) = λheap. unit⊥(〈heap, unitpartial(x )〉)
e >>=(st-pure(h)) f

= λheap. (e heap) >>=⊥ λ〈heap′, px 〉.
case px of

Ok(x )→ f (x )(heap′)
Fail → unit⊥(〈heap′,Fail〉)

The bind operation passes the heap resulting from the first effectful
value into the second effectful operation. As a consequence this ef-
fect is not commutative. Moreover, if the first effectful value failed
however, then we simply use the resulting heap and completely by-
pass the second operation entirely. Thus, even in failure we propa-
gate all changes to the heap, as one usually expects. Also note that
the partial effect is applied to τ whereas the divergent effect is ap-
plied to the whole tuple. Thus, the two components of the pure ef-
fect are split up when combined with the heap effects which is nec-
essary to produce the expected semantics of propagating changes
to the heap even in light of failure.

Originally, we had designed the heap effects as monad trans-
formers st(h, ε) parameterised by a nested effect ε, for example
st(h, total). We also allowed operations that were polymorphic
with respect to this nested effect. However, when we tried to de-
fine the semantics as described in this section, we discovered that
st(h, pure) could not be given the intended semantics (and likewise
for partial). The best approximation we can get is the following
type for an st effect that is polymorphic in its nested effect:

Mst(h,ε)(τ) = H →Mε(〈H × τ〉)
However, if we for example instantiate ε with the partial effect,
any writes to the heap would be lost whenever an exception was
thrown, which is not the expected semantics for using the heap.
In general, using monad transformers to combine arbitrary effects
may not always produce the desired semantics.

io It is important for computations to be able to interact with the
outside world. This interaction is surprisingly challenging to rep-
resent though. One may expect that simply using an input stream
and an output stream would suffice, but this fails to capture the fact
that the inputs to the program can be affected by the outputs to
the program. Instead, we expressed program interaction by defin-
ing a coinductive data type in terms of the various primitive inter-
active operations. To validate our formalization, we also designed
a (non-terminating) process for evaluating an interactive program
given an interactive environment. We then used this evaluation to
form a quotient type of our coinductive data type in which all ob-
servably equivalent programs would be represented by the same
value. This quotient type is our monad for the io effect. By con-
struction, all primitive io operations can be expressed using this
monad, as can infinitely recursive interactive programs. Also, there
is a monad monomorphism from st-pure(ioheap) by construction.

This monadic construction is merely meant to prove soundness of
io operations and semantics, and full details are beyond the scope
of this paper.

6.4 Meaningful Soundness
From the definitions above, we can prove a very useful thing: our
programs mean what one would expect them to mean. A total
function from int to int is in fact a total function from Z232

to Z232 . More formally, suppose every primitive type τ has a
set representing its intended meaning: [[τ ]]. Similarly each type
constructor has an apprioprate corresponding function from sets to
sets. In particular, the intended meaning of (τ1, . . . , τn)

ε−→ τ is
[[τ1]]× · · · × [[τn]]→Mε[[τ ]]. From this, we can give every type in
our language an intended meaning. Then we claim the following:

Theorem For every well-typed expression x1 : τ1, . . . , xn : τn `
e : τ |ε (with no free type variables for simplicity), there is a
corresponding mathematical function [[e]] : [[τ1]] × · · · × [[τn]] →
Mε[[τ ]].

Corollary Our language has a sound type system and semantics.

7. Related work
The problems with arbitrary effects have been widely recognised,
and there is a large body of work studying how to delimit the scope
of effects. There have been many effect typing disciplines pro-
posed. Early work is by Gifford and Lucassen (1986; 1988) which
was later extended by Talpin (1993) and others (Talpin and Jouvelot
1994; Nielson et al. 1997). These systems are closely related since
they describe polymorphic effect systems. Unfortunately, none of
these have the same generality or rich effect structure that we de-
scribe. Moreover, to keep the systems decidable there are vari-
ous constraints. For example, the system described by Nielson et
al. (1997) requires the effects to form a complete lattice with meets
and joins which we would be too weak to model our hierarchy (or
user defined effects).

Tofte and others proposed a system for tracking region based
memory allocation (Tofte and Birkedal 1998). Java contains a sim-
ple effect system where each method is labeled with the excep-
tions it might raise (Gosling et al. 1996). A system for finding un-
caught exceptions was developed for ML by Pessaux et al. (1999).
A more powerful system for tracking effects was developed by
Benton (2007) who also studies the semantics of such effect sys-
tems (Benton et al. 2007). Variants of the ML value restriction is
studied by Pessaux and Leroy (1993)

Tolmach (1998) describes an effect analysis for ML in terms
of monads based on a subset of our effect hierarchy, namely total,
partial, divergent and st. This is system is not polymorphic though
and meant more for internal compiler analysis. In the context proof
systems there has been work to show absence of observable side
effects for object-oriented programming languages, for example by
Naumann (2007).

Marino et al. recently produced a generic type-and-effect sys-
tem (2009). This system uses privelege checking to describe an-
alytical effect systems, and they provide a soundness proof for
their type system. For example, an effect system could use try-
catch statements to grant the canThrow privelege inside try blocks.
throw statements are then only permitted when this privelege is
present. Their system is very general and can express many prop-
erties. However, the specifications in their effect system have no
semantics on their own. For example, according to their notion of
soundness, it would also be sound for the effect system to have “+”
grant the canThrow privelege to its arguments. Thus, one has to do
an additional extensive proof to show that the effects in these sys-
tems actually correspond to an intended meaning. In essence, we
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define a coarse-grained denotational effect system whereas Marino
et al. define a generic fine-grained analytical effect system.

Wadler and Thiemann showed the close relation between effect
systems and monads (2003) and showed how any effect system can
be translated to a monadic version – which is the case for our sys-
tem too. There is a large body of work on the integration of subtyp-
ing and polymorphism. Early work was done by Mitchell (1991)
which was later extended to a polymorphic setting (Smith 1991;
Jones 1992). Pottier describes a more powerful simplification algo-
rithm for subtype constraints (1996) (which is still incomplete).

8. Future work
There are still many items we wish to investigate further. Currently,
our prototype implementation is very small and we are working on
extending it to a more full-fledged language which would enable
us to experiment with larger programs and study optimizations
that exploit the effect information available. Another item we are
working on is user-defined effects, enabling programmers to define
custom effects by specifying monads along with various monad
morphisms to integrate the custom effects into the effect hierarchy.
The use of such effects corresponds closely to the definition of
custom monads in Haskell and could be used to add effects such as
“parser” and “environment”. We are also interested in investigating
how we can apply this work to existing ML and F# programs.
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