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Abstract—In many applications, users specify target values for certain attributes/features without requiring exact matches to these

values in return. Instead, the result is typically a ranked list of “top k” objects that best match the specified feature values. User

subjectivity is an important aspect of such queries, i.e., which objects are relevant to the user and which are not depends on the

perception of the user. Due to the subjective nature of top-k queries, the answers returned by the system to an user query often do not

satisfy the users need right away, either because the weights and the distance functions associated with the features do not accurately

capture the users perception or because the specified target values do not fully capture her information need or both. In such cases,

the user would like to refine the query and resubmit it in order to get back a better set of answers. While there has been a lot of

research on query refinement models, there is no work that we are aware of on supporting refinement of top-k queries efficiently in a

database system. Done naively, each “refined” query can be treated as a “starting” query and evaluated from scratch. This paper

explores alternative approaches that significantly improve the cost of evaluating refined queries by exploiting the observation that the

refined queries are not modified drastically from one iteration to another. Our experiments over a real-life multimedia data set show that

the proposed techniques save more than 80 percent of the execution cost of refined queries over the naive approach and is more than

an order of magnitude faster than a simple sequential scan.

Index Terms—Multidimensional indexing, k-nearest neighbor search, similarity queries, query refinement, relevance feedback.
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1 INTRODUCTION

TOP- k selection queries are becoming common in many
modern-day database applications. Unlike in a tradi-

tional relational database system (RDBMS) where a selec-
tion query consists of a precise selection condition and the
user expects to get back the exact set of objects that satisfy
the condition, in top-k queries, the user specifies target
values for certain attributes and does not expect exact
matches to these values in return. Instead, the result to such
queries is typically a ranked list of the “top k” objects that
best match the given attribute values. As the following
examples illustrate, top-k queries arise naturally in a variety
of today’s applications.

Example 1 (Multimedia Databases). Consider a content-
based image retrieval system [15], [27], [17]. Each image
is represented using features like color, texture, layout,
and shape [16]. The similarity between any two objects is
computed by first computing their similarities based on
the individual features and then combining them to
obtain the overall similarity. Typically, the user submits
an example as the query object and requests for a few

objects that are “most similar” to the submitted example
(Query By Example (QBE)). The DBMS ranks the images
according to how well they match the query image and
returns the best few matches to the user in a ranked
fashion, the most similar images first followed by the less
similar ones.

Example 2 (E-Commerce). Consider a real-estate database
that maintains information like the location of each
house, the price, the number of bedrooms, etc. [5] (e.g.,
MSN HomeAdvisor). Suppose that a potential customer
is interested in houses in the Irvine, CA, area, with four
bedrooms and with a price tag of around $300,000.
Again, the DBMS should rank the available houses
according to how well they match the given user
preference and return the top houses for the user to
inspect. If no houses match the query specification
exactly, the system might return houses in Santa Ana
(a city near Irvine) or two bedroom houses in Irvine or
more expensive houses as the top matches to the query.

An important aspect of top-k queries is user subjectivity
[13], [7]. To return “good quality” answers, the system must
understand the user’s perception of similarity, i.e., the relative
importance of the attributes/features1 to the user. The
system models user perception via the distance functions
(e.g., Euclidean in the above example) and the weights
associatedwith the features [6], [4], [18], [5]. At the time of the
query, the system acquires information from the user based
on which it determines the weights and distance functions
that best capture the perception of this particular user and
instantiates the model with these values. Note that this
instantiation is done at query time since the user perception
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differs from user to user and from query to query. Once the
model is instantiated, we retrieve, based on the model, the
top answers by first executing a k nearest neighbor (k-NN)
algorithm on each individual feature2 and thenmerging them
to get the overall answers [17], [14], [6], [7].

Due to the subjective nature of top-k queries, the answers
returned by the system to a user query usually do not
satisfy the user’s need right away [18], [4], [23], [11]. This
can happen due to several reasons: The starting examples
may not be the best ones to capture the information need
(IN) of the user or the starting weights may not accurately
capture the users perception or both. In this case, the user
would like to refine the query and resubmit it in order to get
back a better set of answers. We refer to this process as query
refinement and the new query is called the “refined” query.
In a QBE environment (e.g., multimedia databases), the user
typically refines the query by finding, among the answers
returned to the “starting” query, one or more objects that
are closest to what she wants and requesting for more
objects like those [22], [23], [18], [4], [11]. Based on the user
feedback, the system will compute the new query objects
and the new weights and execute the refined query.
Another way to refine the query is that the user explicitly
modifies the perception model, i.e., she explicitly changes
the weights of the features so as to better capture her
perception of similarity [13], [7]. In either case, the user can
continue refining the query over as many iterations she
wants till she is satisfied with the results. Recent work
shows that query refinement techniques significantly
improve the quality of answers and answers improve with
more iterations of feedback [23], [18], [11].

While there has been a lot of research on improving the
effectiveness of query refinement as well as on evaluating
top-k queries efficiently, there exists no work that we are
aware of on how to support refinement of top-k queries
efficiently inside a DBMS. We explore such approaches in
this paper. A naive approach to supporting query refine-
ment is to treat a refined query just like a starting query and
execute it from scratch. We observe that the refined queries
are not modified drastically from one iteration to another;
hence, executing them from scratch every time is wasteful.
Most of the execution cost of a refined query can be saved
by appropriately exploiting the information generated during
the previous iterations of the query. We show how to execute
subsequent iterations of the query efficiently by utilizing
the cached information. Note that, since the query changes,
albeit slightly, from iteration to iteration (i.e., the query
points and/or the weights/distance functions are modi-
fied), we, in general, cannot answer a refined query entirely
from the cache, i.e., we still need to access some data from
the disk. Our technique minimizes the amount of data that
is accessed from a disk to answer a refined query.
Furthermore, our technique does not need to examine the
entire cached priority queue to answer a refined query, i.e.,
it explores only those items in the cache that are necessary
to answer the query, thus saving unnecessary distance
computations (CPU cost).3 Our experiments on real-life

multimedia data sets show that our techniques improve the
execution cost of the refined queries by up to two orders of
magnitude over the naive approach.

A secondary contribution of this paper is a technique to

evaluate multipoint queries efficiently. In order to support

refinement, we need to be able to handle multipoint queries

as shown in the MARS and FALCON papers [18], [4], [28].

Such queries arise when the user submits multiple exam-

ples during feedback. We first formally define the multi-

point query and then develop an efficient k-NN algorithm

that computes the k nearest neighbors to such queries. Our

experiments show that our algorithm is more efficient

compared to the multiple expansion approach proposed in

FALCON [28] and MARS [20].
The rest of the paper is organized as follows: In Section 2,

we provide an overview on top-k selection queries and

query refinement techniques. Section 3 presents the k-NN

algorithm for multipoint queries. Section 4 describes the

techniques to evaluate “refined” queries and is the main

contribution of this paper. In Section 5, we present the

performance results. Section 6 offers concluding remarks.

2 THE MODEL

In a top-k retrieval system, the user poses a query Q by

providing target values for each feature and specifying the

number k of matches desired. The target values can be

either explicitly specified by the user (as in Example 2) or

are extracted from the example submitted by the user (as in

Example 1). We refer to Q as the “starting” query. The

starting query is then matched to the set of objects in the

database and the top k matches are returned. If the user is

not satisfied with the answers, she provides feedback to the

system either by submitting interesting examples or via

explicit weight modification. Based on the feedback, the

system refines the query representation to better suit the

user’s information need. The “refined” query is then

evaluated and the process continues for several iterations

until the user is fully satisfied. When the user is satisfied

with the answers returned, she can request for additional

matches incrementally. The process of feedback and

requesting additional matches can be interleaved arbitra-

rily. We now discuss how each object is represented in the

database (the object model), how the user query is

represented (the query model), how the retrieval takes

place (the retrieval model), and how refinement takes place

(the refinement model).

2.1 How are Objects Represented?

Objects are vectors in a multidimensional space. Let S be a

dS-dimensional space. We view an object O as a point in this

multidimensional space, i.e., O is a dS-dimensional vector.

Many image retrieval systems represent image features in

this way. How the objects O are obtained (i.e., the feature

extraction) depends on the application (e.g., in Example 1,

special image processing routines are used to extract the

color and texture from the image; there, a 2D feature space

SC is associated with the color feature).
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2. In this paper, we assume that all the feature spaces are metric and an
index (called the Feature-index or F-index) exists on each feature space. A
F-index is either single dimensional (e.g., B-tree) or multidimensional (e.g.,
R-tree) depending on the feature space dimensionality.

3. Our techniques are independent of the way the user provides feedback
to the system, i.e., it does not matter whether she uses the QBE (i.e., “give
me more like this”) interface or the explicit weight modification interface.
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2.2 How are Queries Represented?

A query is represented as a set of objects from the

multidimensional space S and a distance function DQ that

computes the distance between any object and the set of

query objects. This distance function associates weights �Q

with each dimension of the space S and a weight wQ with

each query point. The reason for including multiple points

in the query is that during refinement, the user might

submit multiple examples to the system as feedback (those

that she considers relevant) leading to multiple points in the

space (see Section 2.3). We refer to such queries as multipoint

queries. The user may also specify the relative importance of

the submitted examples, i.e., the importance of each

example in capturing her information need (e.g., relevance

levels in MARS [23], “goodness scores” in Mindreader [11]).

To account for importance, we associate a weight with each

point of the multipoint query. We now formally define a

multipoint query.

Definition 1 (Multipoint Query). A multipoint query Q ¼
hnQ;PQ;WQ;DQi for the space S consists of the following
information:

. The number nQ of points in Q.

. A set of nQ points PQ ¼ fPQ
ð1Þ; . . . ; PQ

ðnQÞg in the
dS-dimensional feature space S.

. A set of nQ weights WQ ¼ fwQ
ð1Þ; . . . ; wQ

ðnQÞg, the
ith weight wQ

ðiÞ being associated with the ith point
PQ

ðiÞ (1 � wQ
ðiÞ � 0;�

nQ

i¼1wQ
ðiÞ ¼ 1).

. A distance function DQ which, given a point O in the
space S, returns the distance between the query and the
point. To compute the overall distance, we use a point
to point distance function DQ which, given two points
in S, returns the distance between them. We assume
DQ to be a weighted Lp metric, i.e., for a given value of
p, the distance between two points T1 and T2 in S is
given by:4

DQðT1; T2Þ ¼ ½�dS
j¼1�Q

ðjÞðjT1½j� � T2½j�jÞp�
1=p

; ð1Þ

where �Q
ðjÞ denotes the weight associated with the ith

dimension of S. (1 � �Q
ðjÞ � 0;�dS

j¼1�Q
ðjÞ ¼ 1). DQ

specifies which Lp metric to use (i.e., the value of p)
and the values of the dimension weights. We use the
point to point distance function DQ to construct the
aggregate distance function DQðQ;OÞ between the
multiple query points (PQ) and the object O (in S)
DQðQ;OÞ is the aggregate of the distances between O
and the individual points PQ

ðiÞ 2 PQ.

DQðQ;OÞ ¼
XnQ

i¼1

wQ
ðiÞDQðPðiÞ

Q ;OÞ: ð2Þ

We use weighted sum as the aggregation function, but
any other function can be used as long as it is weighted
and monotonic [6].

The choice of DQ (i.e., the choice of the Lp metric) and the
intrafeature weights capture the user perception within the
space as shown in Example 3. Section 2.3 discusses how to
choose the weights/metric. Table 1 provides a summary of
our notation.

Example 3 (Dimension Weighting). In Example 1, let us
consider the distance between Q ¼ ð0:2; 0:4Þ and B ¼
ð0:9; 0:3Þ with respect to the color feature, i.e., DQðQ;BÞ.
With L2 and equal weights, DQðQ;BÞ is 0:50. If the user
weighs the first dimension twice as much as the second,
DQðQ;BÞ isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � ð0:2� 0:9Þ2 þ ð0:4� 0:3Þ2

3

s
¼ 0:58;

i.e., Q and B are not a close match in the color space. If
she weighes the second dimension twice as much as the
first, DQðQ;BÞ isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:2� 0:9Þ2 þ 2 � ð0:4� 0:3Þ2

3

s
¼ 0:41;

i.e., Q and B are a better match in this case than before.
The intrafeature weights thus capture the user’s sub-
jective perception of similarity of color and determine
what is a close match in the color space and what is not.

Example 4 (Multipoint Query). For example, let the query
Q consist of multiple points in the color space. Let
Q ¼ f2; fð0:2; 0:4Þ; ð0:4; 0:1Þg; f0:7; 0:3g, Euclidean (equal
weights), and B ¼ ð0:9; 0:3Þ, then,
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4. Note that this assumption is general since most commonly used
distance functions (e.g., Manhattan distance, Euclidean distance, Bounding
Box distance) are special cases of the Lp metric. However, this excludes
distance functions that involve “cross correlation” among dimensions.
Handling cross-correlated functions has been addressed in [25] and can be
incorporated with the techniques developed in this paper.

TABLE 1
Summary of Symbols, Definitions, and Acronyms
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DQðQ;BÞ ¼ 0:7 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:2� 0:9Þ2 þ ð0:4� 0:3Þ2

2

s

þ 0:3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:4� 0:9Þ2 þ ð0:1� 0:3Þ2

2

s
¼ 0:46:

ð3Þ

Note that the multipoint query is a generalization of the

single point query (the latter is a special case of the

former with nQ ¼ 1).

2.3 How do We Learn the Weights?

We model the user’s perception using multiple points

and weights, but how do we obtain the right values of

the weights/functions that best capture the user’s

perception so that we can accurately instantiate the

model for the user? One solution is for the user to

explicitly specify the weights, as proposed by Motro in

the VAGUE system [13]. Otherwise, we start with an

arbitrary set of weights (e.g., all weights equal) which

are modified later based on user feedback. We then

execute the starting query and return the best matches to

the user. If the user is not satisfied with the answers,

either the query points do not properly capture the

user’s information need or the weights do not capture

the user’s perception accurately or both. We fix the

above two problems by modifying the query points and

the query weights, respectively, based on the user

feedback as described below (e.g., MARS [24], [23],

[18], Mindreader [11]):5

1. Query Modification modifies the location of the
query point(s) PQ in the space S as well as their
weights WQ. If the query interface is the explicit
attribute value specification interface, the user can
modify the attribute values explicitly. If the query
interface is QBE, the user submits examples that
better represent her information need and the
system automatically derives from them the query
points PQ and their weights WQ. There are two
models to do this:

. Query Point Movement (QPM). In this model, the
relevant examples submitted by the user during
feedback are represented by a single point: the
weighted centroid (see Fig. 1). Effectively, the
query point is moved toward the relevant
objects. For example, if A ¼ ð0:4; 0:5Þ and B ¼
ð0:9; 0:3Þ are the two relevant examples sub-
mitted by the user and A is twice as relevant as
B (derived from the relevance levels specified by
the user [18]), the refined query for color is

Qcolor ¼ hf1; 2 � 0:4þ 0:9

3
;
2 � 0:5þ 0:3

3

� �
; 1;DQg;

where DQ (i.e., the �
ðjÞ
colors) is computed based on

the reweighting criteria described below. This

model was proposed in Mindreader [11] and

MARS [22], [24], [23].
. Query Expansion (QEX). In this model, the

submitted examples are represented by multiple

points PQ (called representatives [18]) giving rise

tomultipoint queries (see Fig. 1). The weight wQ
ðiÞ

of any representative P
ðiÞ
Q in the multipoint query

is proportional to the total weight of all the

objects P
ðiÞ
Q represents. For example, if A ¼

ð0:4; 0:5Þ and B ¼ ð0:9; 0:3Þ are the two relevant

examples (see above) submitted by the user and

A is twice as relevant as B, one possible choice of

representatives are the points themselves, i.e.,

Qcolor ¼ h2; fð0:4; 0:5Þ; ð0:9; 0:3Þg; f0:67; 0:33g;DQi:

There are other possible choices of representa-

tives (see [18] for representative selection tech-

niques). This model was proposed in MARS

[18], [19], [20].
2. Reweighting adjusts the dimension weights (i.e., the

�j
Qs in (1)) to better capture the user’s perception

within each feature and across features. If the
refinement interface is the explicit weight specifica-
tion interface, the user can modify the weights
directly as in Motro’s VAGUE system [13]. In a QBE
environment (i.e., “more like this” interface), the
system automatically derives the weights from the
relevant examples submitted by the user [23], [11]
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Fig. 1. Query refinement models.

5. Besides these two steps, some researchers have considered cross-
correlation among the dimensions in S [11]. Although we do not consider
cross-correlation in this paper, our techniques are applicable even when it is
considered.
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(typically by estimating the importance of the
dimension through the variance among values of
relevant points in that dimension).

Once the query points and the weights are determined
(i.e., the construction of the refined query is complete), the
refined query is evaluated and the answers are returned to
the user. The above refinement step indeed improves the
quality of the answers and the answers progressively
improve with more refinement iterations as demonstrated
in references [22], [24], [23], [11], [18], [19], [20]. Note that
how the query points/weights are obtained (i.e., whether
we use the VAGUE approach, the MARS approach, or the
Mindreader approach) is inconsequential to the discussion
in the rest of the paper. This paper discusses how to evaluate the
refined query after it has been constructed using one of the above
models: Hence, the techniques presented here will work irrespec-
tive of how it was constructed. For those discussions, we refer
readers to papers on VAGUE, Mindreader, and MARS [13],
[23], [11], [18].

2.4 Query Evaluation

We first describe how to evaluate a “starting” query. While
sequential scan is an option, it is prohibitively expensive
when the database is large (compare Fig. 11). The most
commonly used approach is to maintain a multidimen-
sional index Idx (called the F-index). The GetNextðQÞ
operation is implemented using the k-nearest neighbor
search (k-NN) algorithm executing on the underlying index
Idx (proposed in [10], [21]).

The k-NN algorithm. The algorithm is shown in Table 2.
It maintains a priority queue that contains index nodes as
well as data objects prioritized based on their distance from
the query Q, i.e., the smallest item (either node or object)
always appears at the top of the queue (min-priority queue).
Initially, the queue contains only the root node (before the
first GetNextðQÞ is invoked). At each step, the algorithm
pops the item from the top of the queue: If it is an object, it is
returned to the caller; if it is a node, the algorithm computes
the distance of each of its children from the query and
pushes it into the queue. The distances are computed as
follows: If the child is a data object, the distance is that
between the query and the object point; if the child is a
node, the distance is the minimum distance (referred to as

MINDIST [10]) from the query point to the nearest

(according to the distance function) boundary of the node.

2.5 Problem Statement

In this paper, we address the following problem: Given a

database DB and a refined query Q, how to evaluate Q and

return AnsðQÞ as efficiently as possible. As mentioned

before, since Q is given to us (by the refinement model),

the techniques proposed in the paper have no effect on the

quality of the answers, i.e., on AnsðQÞ; the only goal is

efficiency. To achieve the goal, we need to address the

following problems:

. Multipoint queries and arbitrary distance func-
tions. The GetNextðQÞ operation is performed by
executing the k-NN algorithm on the corresponding
F-index Idx. Traditionally, the k-NN algorithm has
been used for single point queries, i.e., Q is a single
point in S and the Euclidean distance function, i.e.,
DQ is Euclidean (no dimension weights) [21], [10]. In
a query refinement environment, the above assump-
tions do not hold. We discuss how we implement
GetNextðQÞ efficiently when 1) Q can be a multi-
point query and 2) DQ can be any Lp metric and can
have arbitrary dimension weights.6 We discuss this
in Section 3.

. Optimization of refined queries. The multipoint
query optimization is a necessary building block for
the main contribution of this paper. Our main
contribution is the development of techniques to
execute refined queries efficiently. We focus our
work on first achieving I/O optimality and then to
further improve by achieving computational optim-
ality. We show that, in general, it is not possible to
achieve computational optimality under the design
constraints (e.g., incremental processing) and pro-
pose a heuristic approach to get close to the
optimality criteria. We present our techniques in
Section 4.

3 k-NEAREST NEIGHBOR ALGORITHM FOR

MULTIPOINT QUERIES

The GetNextðQÞ function in Table 2 can handle only single

point queries, i.e., nQ ¼ 1. One way to handle a multipoint

query Q ¼ hnQ;PQ;WQ;DQi is by incrementally determin-

ing the next nearest neighbor NN
ðiÞ
Q of each point P

ðiÞ
Q 2 PQ

by invoking GetNextðP ðiÞ
Q Þ (for i ¼ ½1; nQ�) computing its

overall distances DQðQ;NN
ðiÞ
Q Þ (using (2)) and storing them

in a buffer until we are sure that we have found the next

nearest neighbor to Q. This technique, referred to as the

Multiple Expansion Approach, was proposed in MARS [20]
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6. Note that, it is possible to avoid multipoint queries (i.e., support only
single point queries) by always using QPM as the query modification
technique. However, Porkaew et al. show that QEX-based techniques
usually perform better than QPM-based ones in terms of retrieval
effectiveness [19], [18]. Hence, supporting multipoint queries efficiently is
important for effective and efficient query refinement. Also, since multi-
point queries are a generalization of single point queries, supporting
multipoint queries makes the techniques developed in this paper applicable
irrespective of the query modification technique used.

TABLE 2
Incremental Query Evaluation (The k-NN Algorithm)
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and FALCON [28], which showed it to perform better than

other approaches like the centroid-based expansion and

single point expansion approaches [20].
In this paper, we propose an alternate approach to

evaluating multipoint queries. We refer to it as the multi-

point approach. In this approach, we modify the GetNextðQÞ
function to be able to handle multipoint queries, i.e., it

should be able to compute the distances of the nodes and

objects directly from the multipoint query Q and explore

the priority queue based on those distances. The basic

algorithm in Table 2 does not change, the only changes are

the distance computations. As before, there are two types of

distance computations: 1) distance of an object to the

multipoint query, i.e., DQðQ;OÞ, and 2) distance of a node to

the multipoint query (MINDIST), i.e., MINDIST ðQ;NÞ.
The computation of 1 follows directly from (2). So, all we

need to do is to define the distance MINDIST ðQ;NÞ
between a multipoint query Q and a node N of the F-index.

As in the single point case, the definition of MINDIST

depends on the shape of the node boundary. We assume

that the F-index Idx is a feature-based index (e.g., Hybrid

tree, R-tree, X-tree, KDB-tree, hB-tree) because distance-

based index structures (e.g., SS-tree, SR-tree, TV-tree,

M-tree) cannot handle arbitrary dimension weights (see

[3] for proof). In a feature-based index, the bounding region

(BR) of each node N is always, either explicitly or implicitly,

a dS-dimensional rectangle in the feature space S [2].

Definition 2 (MINDIST for Multipoint Queries). Given the

bounding rectangle (BR) RN ¼ hL;Hi of a node N , where

L ¼ hl1; l2; . . . ; ldS i and H ¼ hh1; h2; . . . ; hdS i are the two

endpoints of the major diagonal of RN , li � hi for 1 � i � dS .

The nearest point NP ðP ðiÞ
Q ;NÞ in RN to each point P

ðiÞ
Q in the

multipoint query Q ¼ hnQ;PQ;WQ;DQi is defined as follows

(explained in Fig. 2):

NP ðP ðiÞ
Q ;NÞ½j� ¼

lj if P
ðiÞ
Q ½j� < lj

hj if P
ðiÞ
Q ½j� > hj

P
ðiÞ
Q ½j� otherwise;

8>><
>>: ð4Þ

whereNP ½j� denotes the position ofNP along the jth dimension

of the feature space S, 1 � j � dS . MINDIST ðM;NÞ is

defined as:

MINDIST ðQ;NÞ ¼
XnQ

i¼1

w
ðiÞ
Q DQ P

ðiÞ
Q ;NP P

ðiÞ
Q ;N

� �� �
: ð5Þ

The GetNext function can handle arbitrary distance
functions DQ (i.e., Lp metrics with arbitrary intrafeature
weights). The above algorithm is correct (i.e., GetNextðQÞ
returns the next nearest neighbor of Q) if MINDIST ðQ;NÞ
always lower bounds DQðQ; T Þ, where T is any point stored
under N .

Lemma 1 (Correctness of GetNext algorithm).

MINDIST ðQ;NÞ

lower bounds DQðQ;T Þ.
Proof. Let N be a node of the index structure, R be the

corresponding bounding rectangle, and T be any object
under N . Let us assume that DQ is monotonic. We need
to show that MINDIST ðQ;NÞ � DQðQ; T Þ. Let T ¼
ht1; t2; . . . ; tdS i be the dS-dimensional vector and R ¼
hl1; l2; . . . ; ldS ; h1; h2; . . . ; hdS i be the dS-dimensional bound-
ing rectangle. Since T is under N , T must be spatially
contained in R.

lj � tj � hj; j ¼ ½1; dS �: ð6Þ

Using the definition of NP ðP ðiÞ
Q ;NÞ½j� and DQðP ðiÞ

Q ; T Þ, (6)
implies

jP ðiÞ
Q ½j� �NP P

ðiÞ
Q ;N

� �
½j�j � jP ðiÞ

Q ½j� � T ½j�j; j ¼ ½1; dS�; ð7Þ

) DQ P
ðiÞ
Q ;NP P

ðiÞ
Q ;N

� �� �
� DQ P

ðiÞ
Q ; T

� �
since D is a weighted Lp metric;

ð8Þ

)
Xn
i¼1

wiDQ P
ðiÞ
Q ;NP P

ðiÞ
Q ;N

� �� �
�
Xn
i¼1

w
ðiÞ
Q DQ P

ðiÞ
Q ; T

� �
since wi � 0;

ð9Þ

) MINDIST ðQ;NÞ � DQðQ;T Þ: ð10Þ

tu

Our experiments show that the multipoint approach is
significantly more efficient compared to the previously
proposed multiple expansion approach (see Section 5).

4 EVALUATION OF REFINED QUERIES

A naive way to evaluate a single feature refined query is to
treat it just like a starting query and execute it from scratch
as discussed in Section 2.4. This approach is wasteful as we
can save most of the execution cost of the refined query,
both in terms of disk accesses (I/O cost) and distance
calculations (CPU cost), by exploiting information gener-
ated during the previous iterations of the query. In this
section, we discuss how to optimize the GetNextðQÞ
function. In the naive approach, the same nodes of Idx
may be accessed from scratch by the k-NN algorithm
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repeatedly iteration after iteration. In other words, a node of
Idx is being accessed from disk multiple times during the
execution of a query (over several iterations) causing
unnecessary disk I/O. For example, let us consider the
query shown in Fig. 3. Region R1 represents the iso-distance
range corresponding to the distance of the kth NN of the
starting query—it is the region in the feature space already
explored to return the top k matches to the starting query,
i.e., all nodes overlapping with R1 were accessed and all
objects (k in number) in that region were returned. R2
represents the iso-distance range corresponding to the
distance of the kth NN of the refined query—it is the
region that needs to be explored to answer the refined
query, i.e., all nodes overlapping with R2 need to be
explored and all objects (k in number) in that region need to
be returned. If no buffering is used, to evaluate the refined
query, the naive approach would access all the nodes
overlapping with R2 from the disk, thus accessing those
nodes that overlap with the shaded region from the disk
twice. If traditional LRU buffering is used, some of the
nodes overlapping with the shaded region may still be in
the database buffer and would not require disk accesses
during the evaluation of the refined query. Our experiments
show that, for reasonable buffer sizes, most of the nodes in
the shaded region get ejected from the buffer before they are
accessed by the refined query. This is due to the use-
recency-based page replacement policy used in database
buffers. The result is that the naive buffering approach still
needs to perform large numbers of repeated disk accesses to
evaluate refined queries (see Fig. 8). Concurrent query
sessions by different users and user think time between
iterations would further reduce buffer hit ratio, causing the
naive approach to perform even more poorly.

Our goal in this paper is to develop a more I/O-efficient
technique to evaluate refined queries. If a node is accessed
fromdisk once during an iteration of a query,we should keep
it in mainmemory (by caching) so that it is not accessed from
disk again in any subsequent iteration of that query. In Fig. 3,
to evaluate the refined query, an I/O optimal algorithm
would access from disk only those nodes that overlap with
region R2, but do not overlap with region R1 and access the
remaining nodes (i.e., those that overlap with the shaded
region) frommemory (i.e., from the cache).We formally state
I/O optimality as follows:

Definition 3 (I/O Optimality). Let N be a node of the F-index
Idx. An algorithm executing the refined query Qnew is I/O
optimal if it makes a disk access for N only if 1) there exists at
least one desired answer O such that DQðQnew;OÞ �
MINDIST ðQnew;NÞ and 2) N is not accessed during any
previous iteration (say Qold).

Condition 1 is necessary to guarantee no false dismissals,
while Condition 2 guarantees that a node is accessed from
the disk at most once throughout the execution of the query
across all iterations of refinement. The naive approach is not
I/O optimal as it does not satisfy condition 2.

We achieve I/O optimality by caching on a per-query
basis instead of using a common LRU buffer for all queries.
To ensure condition 2, we need to “cache” the contents of
each node accessed by the query in any iteration and retain
them in memory till the query ends (i.e., till the last
iteration) at which time the cache can be freed and the
memory can be returned to the system. Since the priority
queue generated during the execution of the starting query
contains the information about the nodes accessed, we can
achieve the above goal by caching the priority queue. We
assume that, for each item (node or object), the priority
queue stores the feature values of the item (i.e., the
bounding rectangle if the item is a node, the feature vector
if it is an object) in addition to its id and its distance from
the query. This is necessary since, in some approaches, we
need to recompute the distances of these items based on the
refined queries. We also assume that the entire priority
queue fits in memory as is commonly assumed in other
works on nearest-neighbor retrieval [12], [26].7 In the
following sections, we describe how we can use the priority
queue generated during the starting query (that contains
items ordered based on distance from the starting query) to
efficiently obtain the top k matches based on their distances
from the refined query.

4.1 Full Reconstruction (FR)

We first describe a simple approach called the full
reconstruction approach. In this approach, to evaluate the
refined query, we “reconstruct” a new priority queue
queuenew from the cached priority queue queueold by
popping each item from queueold, recomputing its distance
from the refined query Qnew, and then pushing it into
queuenew. We discard the old queue when all items have
been transferred. We refer to this phase as the transfer phase.
Subsequently, the multipoint k-NN algorithm proposed in
Section 3 is invoked with Qnew as the query on queuenew. We
refer to this phase as the explore phase. The queue is handed
from iteration to iteration through the reconstruction
process, i.e., the queuenew of the previous iteration becomes
the queueold of the current iteration and is used to construct
the queuenew of the current iteration. Thus, if a node is
accessed once, it remains in the priority queue for the rest of
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7. This assumption is reasonable when the number k of top matches
requested is relatively small compared to the size of the database which is
usually the case [1]. For example, in our experiments, when k ¼ 100, the size
of the priority queue varies between 512KB and 640KB (the size of the F-
index is about 11MB). The techniques proposed in the paper would work
even if the priority queue does not fit in memory and would still perform
better than the naive approach; however, they may not be I/O optimal.

Fig. 3. I/O Cost of naive and reconstruction approaches.
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the query and, in any subsequent iteration, is accessed
directly from the queue (which is assumed to be entirely in
memory) instead of reloading from the disk. The entire
sequence of iterations is managed using two queues and
swapping their roles (old and new) from iteration to
iteration. It is easy to see that this approach is I/O optimal.

Now that we have achieved I/O optimality, let us

consider the CPU cost of the approach. The CPU cost is

proportional to the number of distance computations

performed. The algorithm performs distance computations

during the transfer phase (one computation each time an

item is transferred from queueold to queuenew) and also during

the explore phase (one computation for each child in the

node being explored). Since the technique is I/O optimal,

there is no node being explored unnecessarily, i.e., we cannot

save any distance computations in the explore phase

(already optimal). However, we can reduce the CPU cost of

the transfer phase if we avoid transferring each and every

item from queueold to queuenew without sacrificing correct-

ness. In otherwords, we should transfer only those items that

are necessary to transfer to avoid false dismissals.

4.2 Selective Reconstruction (SR)

Our Selective Reconstruction approach transfers incremen-
tally only as many items as are needed to produce the next
result. As with I/O optimality in FR, our goal here is to
ensure that any item comparisons and transfers are truly
necessary to produce a result. We first describe how to
achieve this within a single feedback iteration and describe
the problems found, then extend it to function properly for
multiple iterations and discuss the limits of this technique.

4.2.1 Single Iteration Selective Reconstruction

We modify the FR approach to reduce the CPU cost while
retaining the I/O optimality. We only transfer those items
from queueold to queuenew that are necessary to ensure
correctness. We achieve this by imposing a stopping
condition on the transfer as illustrated in Fig. 4. Suppose
that GetNext is returning the kth NN of Qnew. P1 is the iso-
distance range corresponding to the distance of the kth NN
of Qnew, i.e., any object outside this region is at least as far as

the kth NN. P2 is the smallest iso-distance range from Qold

totally containing P1. Therefore, to return the kth NN of
Qnew, we can stop transferring when we reach the range P2

in queueold without sacrificing correctness since, at this
point, any object left unexplored in queueold is at least as far
from Qnew as the kth NN of Qnew. This represents the optimal

stopping condition because we cannot stop before this
without sacrificing correctness. In other words, if we stop
before this, there will be at least one false dismissal. The FR
approach has no stopping condition at all as is graphically
shown in Fig. 4 by region P4, i.e., the entire feature space.

While in the FR approach, the entire transfer phase is
followed by the entire explore phase, here the two phases are
interspersed. The algorithm pseudocode is shown in Table 3.
During the transfer phase, we transfer items from queueold to
queuenew until we are sure that no item exists in queueold that
is closer to Qnew than the top item of queuenew (i.e., the next
item to be explored—topnew). In other words, the lower
bounding distance LBDðqueueold; QnewÞ of any item in
queueold is greater than or equal to the distance between
topnew and Qnew (topnew:distance ¼ DQðQnew; topnewÞ), this is
the stopping condition in line 5. If we are sure, we go into the
explore phase, i.e., we explore topnew. If topnew is an object, it is
guaranteed to be the next bestmatch toQnew and is returned to
the caller. Otherwise, it is a node; in that case, we access it
from disk, compute the distance of each child fromQnew, and
push it back into queuenew; then, we return to the transfer
phase. It is easy to see that the selective reconstruction
technique is I/O optimal.

Let us now explain the notion of LBD in the stopping
condition (in line 5). LBDðqueueold; QnewÞ denotes the the
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smallest distance any item in queueold can have with respect
to the new query Qnew, i.e.,

LBDðqueueold; QnewÞ � Dnew
Q ðQnew;OÞ

for all O 2 queueold. To complete the algorithm, we need to
specify how to compute LBD ðqueueold; QnewÞ. We need to
compute it without incurring any extra cost, i.e., in a
single constant time operation. If we can obtain the
optimal LBDðqueueold; QnewÞ (i.e., there exists an object
O 2 queueold, where LBDðqueueold; QnewÞ ¼ Dnew

Q ðQnew;OÞ),
we can achieve the optimal stopping condition (shown by
P2 in Fig. 4) and, hence, the optimal CPU cost.

Example 5 (SR Algorithm). Fig. 5 shows old and new
queries (Qold and Qnew) with iso-distance curves at one
unit intervals. For example, in the figure, the outermost
iso-distance curve of Qnew is the optimal stopping
condition for any points within the first iso-distance
curve of Qold (i.e., points A, B, C). Following Fig. 5, the SR
algorithm examines queueold in distance order. It first
compares the top item from queuenew which at first is
empty (and, thus, 0) to the LBD of point A and finds that
the condition is not met, A is then transferred to
queuenew. This continues until E is retrieved from
queueold. For E, the optimal stopping condition should
be true as there are no items in queueold that can possibly
be closer to Qnew. Thus, E would be returned by GetNext.

Lemma 2 (CPU Optimality). The number of distance
computations (i.e., the stopping condition) is optimal if
LBDðqueueold; QnewÞ is optimal.

Proof. Let Inew be an item in queuenew. Let Iold be the item at
the top of queueold. Assuming LBDðqueueold; QnewÞ is
tight, we need to show that, if Iold is transferred to
queuenew, there exists an item I 0old in queueold such that
Dold

Q ðIold; QoldÞ � Dold
Q ðI 0old; QoldÞ and

Dnew
Q ðI 0old; QnewÞ � Dnew

Q ðInew;QnewÞ:

Let us assume Iold is transferred, i.e, the stopping condition
is not satisfied (LBDðqueueold; QnewÞ < topnew:distance).
Since LBD is tight, there exists an unexplored item I 0old in
queueold such thatDnew

Q ðI 0old; QnewÞ � topnew:distance. Since

topnew:distance � Dnew
Q ðInew;QnewÞ;

Dnew
Q ðI 0old; QnewÞ � Dnew

Q ðInew;QnewÞ:

Since Iold is at the top of queueold and I 0old is yet
unexplored, Dold

Q ðIold; QoldÞ � Dold
Q ðI 0old; QoldÞ. tu

We believe that it is not possible to compute the optimal

LBD without exploring queueold (which would defeat the

purpose of the reconstruction approach). Instead, we derive

a conservative estimate of LBD. For correctness, the

estimated LBD must be an LBD, i.e., it must always

underestimate the optimal LBD. The closer the estimate to

the optimal LBD, the fewer the number of transfers, and the

lower the CPU cost. In the derivation, we exploit the fact that

topold:distance lower bounds the distance of any item in

queueold from the old query Qold. For simplicity of notation,

we define the distanceDðQold; QnewÞ between twomultipoint

queries as follows: LetQold ¼ hnold
Q ;Pold

Q ;Wold
Q ;Dold

Q i be the old

multipoint query where Pold
Q ¼ fPold

Q

ð1Þ
; � � � ; P old

Q

ðnold
Q
Þg and

Wold
Q ¼ fwold

Q
ð1Þ
; � � � ; wold

Q
ðnold

Q
Þg. Let

Qnew ¼ hnnew
Q ;Pnew

Q ;Wnew
Q ;Dnew

Q i

be the new multipoint query where

Pnew
Q ¼ fPnew

Q
ð1Þ; � � � ; Pnew

Q
ðnnew

Q
Þg

and

Wnew
Q ¼ fwnew

Q
ð1Þ; � � � ; wnew

Q
ðnnew

Q
Þg:

The distance DðQold; QnewÞ is defined as the weighted all-

pairs distance between the constituent points:

DðQold; QnewÞ ¼
Xnold

Q

i¼1

wold
Q

ðiÞXnnew
Q

j¼1

wnew
Q

ðjÞDnew
Q Pold

Q

ðiÞ
; Pnew

Q
ðjÞ

� �0
@

1
A:

ð11Þ

Also, let �old
Q

ðkÞ
; k ¼ ½1; dS� and �new

Q
ðkÞ; k ¼ ½1; dS� denote the

old and new intrafeature weights, respectively:

Dold
Q ðT1; T2Þ ¼ �dS

j¼1�
old
Q

ðjÞ jT1½j� � T2½j�jð Þp
h i1=p

; ð12Þ

Dnew
Q ðT1; T2Þ ¼ �dS

j¼1�
new
Q

ðjÞ jT1½j� � T2½j�jð Þp
h i1=p

: ð13Þ

The following lemma defines the stopping condition (SC)

in line 5.
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Lemma 3 (Stopping Condition).

topold:distance

K
�DðQnew;QoldÞ

� �

lower bounds the distance of any unexplored object in queueold

from Qnew, where

K ¼ maxdS
k¼1

�old
Q

ðkÞ

�new
Q

ðkÞ

 !
:

Proof. Let I be any item in queueold. We need to show

Dold
Q ðI;QoldÞ � topold:distance )

Dnew
Q ðQnew; IÞ � topold:distance

maxm
k¼1

�old
Q

ðkÞ

�new
Q

ðkÞ

� Dnew
Q ðQnew;QoldÞ:

Let us assume

Dold
Q ðQold; IÞ � topold:distance: ð14Þ

LetPold
Q

ðiÞ 2 Pold
Q andPnew

Q
ðjÞ 2 Pnew

Q . By triangle inequality,

Dnew
Q ðPnew

Q
ðjÞ; IÞ � Dnew

Q ðPold
Q

ðiÞ
; IÞ � Dnew

Q ðPnew
Q

ðjÞ; P old
Q

ðiÞÞ:
ð15Þ

From (12) (assuming D is monotonic),

Dnew
Q Pold

Q

ðiÞ
; I

� �
�

Dold
Q Pold

Q
ðiÞ
; I

� �
maxdS

k¼1

�old
Q

ðkÞ

�new
Q

ðkÞ

: ð16Þ

From (15) and (16),

Dnew
Q Pnew

Q
ðjÞ; I

� �
�

Dold
Q Pold

Q
ðiÞ
; I

� �
K

�Dnew
Q Pnew

Q
ðjÞ; P old

Q

ðiÞ� �
;

ð17Þ

where

K ¼ maxmk¼1

�old
Q

ðkÞ

�new
Q

ðkÞ :

Multiplying both sides by wold
Q

ðiÞ
(since wold

Q
ðiÞ � 0) and

summing over i ¼ 1 to nold,

Xnold

i¼1

wold
Q

ðiÞDnew
Q Pnew

Q
ðjÞ; I

� �� �
�

1

K

Xnold

i¼1

wold
Q

ðiÞDold
Q Pold

Q

ðiÞ
; I

� �� �
�

Xnold

i¼1

wold
Q

ðiÞDnew
Q Pnew

Q
ðjÞ; P old

Q

ðiÞ� �� �
;

ð18Þ

) Dnew
Q Pnew

Q
ðjÞ; I

� �
�

Dold
Q Qold; I
� �
K

�

Dnew
Q Pnew

Q
ðjÞ; Qold

� �
:

ð19Þ

Multiplying both sides by wnew
Q

ðjÞ (since wnew
Q

ðjÞ � 0) and
summing over j ¼ 1 to nnew,

Xnnew

j¼1

wnew
Q

ðjÞDnew
Q Pnew

Q
ðjÞ; I

� �� �
�

1

K

Xnnew

j¼1

wnew
Q

ðjÞDold
Q Qold; I
� �� �

�

Xnnew

j¼1

wnew
Q

ðjÞDnew
Q Pnew

Q
ðjÞ; Qold

Q

� �� �
;

ð20Þ

) Dnew
Q Qnew; Ið Þ �

Dold
Q Qold; I
� �
K

�Dnew
Q Qnew;Qold
� �

: ð21Þ

Equations (14) and (21) imply

Dnew
Q Qnew; Ið Þ � topold:distance

maxmk¼1

�old
Q

ðkÞ

�new
Q

ðkÞ

� Dnew
Q Qnew;Qold
� �

: ð22Þ

tu

The LBDðqueueold; QnewÞ in the stopping condition in
line 5 of the SR algorithm (see Table 3) can now be replaced
by the above estimate. Thus, the stopping condition is:

topold:distance

K
�D Qnew;Qold

� �� �
� topnew:distance: ð23Þ

Note that the above SC is general. It is valid irrespective
of the query modification technique used, i.e., it is valid for
both QPM and QEX models. It is also valid irrespective of
whether intrafeature reweighting is used or not. If
intrafeature reweighting is not used (i.e., all weights are
considered equal),K turns out to be 1, which means there is
no effect of intrafeature reweighting at all. Also, note that
bothK andDðQnew;QoldÞ are computed just once during the
execution of the refined query. The computation of K is
proportional only to the number of dimensions dS in the
space. The computation of LBD involves just two arith-
metic operations, a division followed by a subtraction. Since
we use an estimate of LBD and not the exact LBD, in
general, SC is not optimal. This implies that, as shown in
Fig. 4, the stopping condition is range P3 and not the
optimal range P2. We perform experiments to compare the
above stopping condition with the optimal one in terms of
CPU cost (see Section 5).

Example 6. Consider again Fig. 5. The first item from
queueold is A. Its distance to Qnew is 5 and Qnew has a high
weight (0.66) in the vertical dimension and a small
weight (0.33) in the horizontal dimension. So,

K ¼ max
0:5

0:33
;
0:5

0:66

� 	
¼ 0:5

0:33
¼ 1:5;

and notice that DðQnew;QoldÞ ¼ 5. So, the LBD estimate
for A is 0

1:5 � 5 ¼ �5. Likewise, for point E, the LBD is
3
1:5 � 5 ¼ 2� 5 ¼ �3. Here, we see the lower bounding
nature of our approximation. If our LBD estimate were
optimal, the LBD for point E should be 0 and E could be
returned.
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4.2.2 Multiple Iteration Selective Reconstruction

The above discussion of the SR approach considered how to
evaluate the first iteration of the query refinement given the
priority queue queuestart generated during the execution of
the start query (iteration 0). The discussion omitted what to
do when the iteration finishes and a new feedback iteration
starts. If we discard the old queue, create a new, empty
queue, and follow the same algorithm, we will sacrifice the
correctness of the algorithm. Consider Fig. 6 which shows
the starting query Qstart, and two feedback iterations Q1 and
Q2 using the simple QPM model and no reweighting. If we
follow the SR algorithm for Q2, we will miss answers in the
problem region. These items were present in queuestart, but
not transferred to queue1 (some may be included since our
LBD is an approximation); therefore, they are irretrievably
lost for Q2.

To properly handle multiple feedback iterations using the
SR algorithm, we must accommodate for unprocessed items
in earlier iterations. Copying the remaining items to the new
queue would be equivalent to the FR approach. Instead, our
solution is to maintain a history of the queries and queues
from the start. This approach stores the same number of
items as the FR approach (no item is ever discarded), and has
the benefits of the SR approach in exchange for some
administrative complexity. Table 4 shows the algorithm that
accounts for multiple iterations. We maintain a history list of
tuples hQðiÞ; queuei;Ki;DðQðiÞ; QnewÞi that keep each query,
queue, and additional parameters for each iteration. When a
new iteration starts, we update all tuples in the history with
the corresponding new values for Ki and DðQðiÞ; QnewÞ. The
algorithm then extends the single iteration SR by selecting in
each iteration the minimum LBD among all queries in the
history to maintain the LBD correctness. The CPU complex-
ity of the algorithm is only increased by selecting the
minimum LBD among all previous queues; as discussed
above, this means two arithmetic operations per iteration in
addition to the single iteration SR algorithm. The storage
requirements for each iteration consist of the queryQi which
is dependent only on the number of points and the
dimensionality (but typically only a few hundred bytes in
size), and the valuesKi andDðQðiÞ; QnewÞwhich are just two
constants. The total number of items in all queues is at most
that of the FR approach (only necessary nodes are expanded,
and no items are dropped).

4.2.3 Cost-Benefit Based Use of SR

As later iteration queries drift farther apart from the starting
query, the storage and computation costs increase as more
items and auxiliary information accumulate. We turn our

attention to the problem of deciding whether a new query
iteration should be evaluated by continuing the use of SR,
or naively (followed by iterations using SR). We distinguish
three distinct considerations involved:

. I/O cost. From an I/O perspective, the FR and SR
techniques are I/O optimal; therefore, they always
reduce the number of I/Os over a naive execution
regardless of the convergence properties of the
feedback. When queries converge over iterations,
as is generally the case [28], [20], [11], the I/O count
per iteration asymptotically approaches 0 (see
experiments).

. CPU cost. With more items from early iterations
lingering in the queues, the number of computations
increases. An absolute upper bound on the number
of iterations can be obtained by observing that each
new SR iteration necessarily requires us to revise the
Ki and DðQðiÞ; QnewÞ values for each iteration.8 The
computation of these values depends on the dimen-
sionality of the space and the number of points in the
queries. For simplicity, we estimate the cost to be the
same as one distance computation. By maintaining
simple statistics, we can estimate the number of
distance computations used in a naive reevaluation
to be the number of items for which a computation
was made in the starting query Q0. This is the
number of items in history:queue0 plus the k items
returned to the user plus any intermediate items that

266 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 2, FEBRUARY 2004

TABLE 4
The Multiiteration GetNext Algorithm

for Refined Queries Using the SR Approach

8. This must be done either explicitly as in our description or implicitly if
we avoid caching these values in the history.

Fig. 6. Problem region for single iteration SR approach.
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were discarded mdiscarded
0 . A definite CPU based

upper bound is then when:

kþmdiscarded
0 þ j history:queue0 j< i;

that is, there are more iterations than elements in the
starting query.

This bound is generally much too high. A new
iteration starts by exploring the current and earlier
queues and transfers items until the stopping
condition permits the return of a result. In practice,
this generally implies several hundred distance
computations that must be done after the new
iteration started. SR adds computation overhead
proportional to the number of iterations over FR. A
better estimate can thus be obtained by deducting
those initial computations from the number of
iterations. Let tðiÞ be the number of items transferred
during iteration i to the current queue from all
earlier queues before the first result is returned to
the user. Then, a better estimate is:

kþmdiscarded
0 þ j history:queue0 j þtði�1Þ < i:

From our experiments, SR still pays off even after
50 iterations.

. Memory cost. To reduce the memory used, we must
eliminate items from the queues. We follow a
straightforward approach which drops all the
queues whenever the DBMS faces a memory short-
age and do a naive reexecution of the query, thus
trading I/O cost for a reduced memory footprint. A
general algorithm to consolidate individual items
under their parent node is too expensive since it
must examine large portions of the queues.

5 EXPERIMENTAL EVALUATION

We conducted an extensive empirical study to 1) evaluate
the multipoint approach to answering multipoint k-NN
queries and compare it to the multiple expansion approach,
and 2) evaluate the proposed techniques, namely, full
reconstruction (FR) and selective reconstruction (SR), to
answering refined queries over a single feature and
compare them to the naive approach. We conducted our
experiments on real-life multimedia data sets. The major
findings of our study are:

. Efficiency of multipoint approach. The k-NN search
based on our multipoint approach is more efficient
than the multiple expansion approach. The cost of
the latter increases linearly with the number of
points in the multipoint query while that of the
former is independent of the number of query
points.

. Speedup obtained for refined queries. The FR and
SR approaches speed up the execution of refined
queries by almost two orders of magnitude over the
naive approach. As expected, the SR approach is the
most efficient among all approaches. The sequential
scan is significantly slower than any of the index
based approaches.

Thus, our experimental results validate the thesis of this
paper that the proposed approaches to evaluating refined
queries offer significant speedups over the naive approach.
All experiments reported in this section were conducted on
a Sun Ultra Enterprise 450 with 1GB of physical memory
and several GB of secondary storage, running Solaris 2.7.

5.1 Experimental Methodology

We conducted our experiments for single feature queries on
the COLHIST data set comprised of 4� 4 color histograms
extracted from 70,000 color images obtained from the Corel
Database (obtained from http://corel.digitalriver.com) [2],
[18]. We use the Hybrid tree as the F-index for the
16-dimensional color histograms [2]. We chose the hybrid
tree since 1) it is a feature-based index structure (necessary
to support arbitrary distance functions) (see Section 3) and
2) it scales well to high dimensionalities and large-sized
databases [2]. We choose a pointQC randomly from the data
set and construct a graded set of its top 50 neighbors (based
on L1 distance),9 i.e., the top 10 answers have the highest
grades, the next 10 have slightly lower grades, etc. We refer
to this set the relevant set RelðQCÞ of QC [18]. We construct
the starting query by slightly disturbing QC (i.e., by
choosing a point close to QC) and request for the top
100 answers. We refer to the set of answers returned as the
retrieved set RetðQCÞ. We obtain the refined query Qnew

C by
taking the graded intersection of RetðQCÞ and RelðQCÞ, i.e.,
if an object O in RetðQCÞ is present in RelðQCÞ, it is added to
the multipoint query Qnew

C with its grade in RelðQCÞ. The
goal here is to get RetðQCÞ as close as possible to RelðQCÞ
over a small number of refinement iterations. The intrafea-
ture weights were calculated using the techniques described
in [18]. In all the experiments, we perform five feedback
iterations in addition to the starting query (counted as
iteration 0). All the measurements averaged more than
100 queries. In our experiments, we fix the hybrid tree page
size to 4KB (resulting in a tree with 2,766 nodes).

5.2 Multipoint Query Results

We compare the multipoint approach to evaluating single
feature k-NN queries to the multiple expansion approach
proposed in FALCON [28] and MARS [20]. Fig. 7 compares
the cost of the two approaches in terms of the number of
disk accesses required to return the top 100 answers (no
buffering used). The I/O cost of the multipoint approach is
almost independent of the number of points in the multi-
point query while that of the multiple expansion approach
increases linearly with the number of query points. The
reason is that, since the multiple expansion approach
explores the neighborhood of each query point individu-
ally, it needs to see more and more unnecessary neighbors
as the number of query points increases.

5.3 Query Expansion Results

We first present the results for the QEX model. Fig. 8
compares the I/O cost of the naive and reconstruction
approaches for the QEX model. In this experiment, the
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9. We use L1 metric (i.e., Manhattan distance) as the distance functionDQ

for the color feature since it corresponds to the histogram intersection
similarity measure, the most commonly used similarity measure for color
histograms [16], [17].
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size of cached priority queue varies between 512KB and
640KB (across the iterations). We first run the naive
approach with no buffer. We also run the naive approach
with an LRU buffer for three different buffer sizes:
540KB, 1080KB, and 2160KB, i.e., they would hold 135,
270, and 540 of the most recently accessed nodes (4KB
each) of the F-index (which has 2,766 nodes), respectively.
Note that the above three buffers use approximately the
same amount of memory as the reconstruction approach
(to keep the priority queue cached in memory), twice as
much and four times as much, respectively. We also
implemented a type of session aware cache we call the
Reuse approach, which is a buffer organized as the
priority queue itself. When a new iteration starts, we
push back all the returned items into the queue without
any modification, this has the effect of caching all the
information seen so far. Note that, since at each iteration
we start with all items seen in the previous iteration in
the queue, this algorithm is not I/O optimal as it may
explore nodes again with the new distance function. This
buffer is then traversed based on a LBD, as in the SR
approach, we used the optimal LBD for this experiment
by exploring the entire queue to reflect the best possible
use of this buffering approach. We implemented this
session aware buffering approach to show that, even with
intelligent buffering, our approach is superior.

The reconstruction approach (with no additional buffer
besides the priority queue cache) significantly outperforms
the naive approach, even when the latter uses much larger
buffer sizes (up to four times more). While the reconstruc-
tion approach is I/O optimal (i.e., accesses a node from the
disk at most once during the execution of a query), the
naive buffer approach, given the same amount of memory,

needs to access the same nodes multiple times from disk
across the refinement iterations of the query. In more
realistic environments where multiple query sessions
belonging to different users run concurrently and users
have “think time” between iterations of feedback during a
session, we expect the buffer hit rate to drop even further,
causing the naive approach to perform even more repeated
disk accesses and making our approach of per-query
caching even more attractive [8]. The reuse approach
performs better than any of the LRU-based approaches
after the second iteration (remember that the reuse
approach is not IO optimal), but worse than our reconstruc-
tion approach. Even after five iterations, the reuse approach
performs roughly three times as many I/Os than our
reconstruction approach. Fig. 9 compares the CPU cost of
the FR and SR approaches for the QEX model. The SR
approach significantly outperforms the FR approach in
terms of CPU time. Fig. 10 compares the number of distance
computations performed by the FR approach, the SR
approach with the proposed stopping condition, and the
SR approach with the optimal stopping condition (range P2
in Fig. 4). The proposed stopping condition saves more than
50 percent of the distance computations performed by FR,
while the optimal stopping condition would have saved
about 66 percent of the distance computations. This shows
that the proposed stopping condition is quite close to the
optimal one. Fig. 11 compares the average response time
(sum of I/O wait time and CPU time) of a query for the
naive (with buffer), FR, SR, and sequential scan approaches
(assuming that the wait time of a random disk access is
10ms and that of a sequential disk access is 1ms [9]). The SR
technique outperforms all the other techniques; it outper-
forms the naive approach by almost an order of magnitude
over the naive approach and the sequential scan approach
by almost two orders of magnitude.
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Fig. 9. CPU time of full and selective reconstruction approaches for

QEX.

Fig. 10. Distance computations saved by stopping condition in SR
approach.

Fig. 7. I/O cost of multipoint approach and multiple expansion approach.

Fig. 8. I/O cost of naive and reconstruction approaches for EX queries.
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5.4 Query Point Movement Results

Fig. 12 compares the I/O cost of the our reconstruction
approach and the same reuse buffering approach with
optimal LBD used in Section 5.3 (no additional buffer in
either case) for the QPM model. Again, the I/O optimal
reconstruction approach is far better compared to the reuse
approach. Fig. 13 compares the SR and FR approaches with
respect to the CPU cost. Unlike in the QEX approach where
the SR approach is significantly better than the FR approach,
in QPM the former is only marginally better. The reason is
that, unlike in the QEX approach where the savings in
distance computations far outweighs the cost of “push back,”
the savings only marginally outweighs the extra cost in the
case of QPM. This is evident in Fig. 14 which shows that the
the number of distance computations performed by the SR
approach is much closer to that performed by the FR
approach as compared to the QEX model. Even the optimal
stopping condition would not save as many distance
computations as the QEX model. This is due to dimension
reweighting that causes the stopping condition to become
more conservative (by introducing the factorK in Lemma 3)
resulting in less savings in distance computations. However,
with a more efficient “push back” strategy, we expect the SR
approach to be significantly better than the FR approach in
this case as well.

SR improves response time over FR for the top few
matches. In an interactive user environment, it is important
to consider not only the time required to compute the top k
answers, but how soon they can be produced. Fig. 15
compares FR and SR for the QPM model in terms of the
relative response time for the first answer out of top
100 queries. In FR, while the queue is transferred, no
answers are produced. By contrast, SR will produce the first
answer as soon as it is possible, therefore producing quicker
the answers users see first. The figure plots the fraction of
time SR needs to produce the top answer relative to FR
which is always 100 percent.

6 CONCLUSION

Top-k selection queries are becoming common in many

modern-day database applications like multimedia retrieval

and e-commerce applications. In such queries, the user

specifies target values for certain attributes and expects the

“top k” objects that best match the specified values. Due to

the user subjectivity involved in such queries, the answers

returned by the system often do not satisfy the user’s need

right away. In such cases, the system allows the user to

refine the query and get back a better set of answers.

Despite much research on query refinement models, there is

no work that we are aware of on supporting refinement of

top-k queries efficiently in a database system. Done naively,

each “refined” query is treated as a “starting” query and

evaluated from scratch. We propose several techniques for

evaluating refined queries efficiently. Our techniques save

most of the execution cost of the refined queries by

appropriately exploiting the information generated during

the previous iterations of the query. Our experiments show

that the proposed techniques provide significant improve-

ment over the naive approach in terms of the execution cost

of refined queries.
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Fig. 13. CPU time for full and selective reconstruction approaches for

QPM.

Fig. 14. Distance computations saved by stopping condition for QPM.

Fig. 15. Response ratio SR/FR for the top 1 item in a KNN query.

Fig. 12. I/O cost of reuse and reconstruction approaches for QPM.

Fig. 11. Response time of naive, full, and selective reconstruction
approaches for QEX.
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