
Rack-scale Data Processing System

Jana Giceva, Darko Makreshanski, Claude Barthels, Alessandro Dovis, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich

Rack-scale Data Processing System

Jana Giceva, Darko Makreshanski, Claude Barthels, Alessandro Dovis, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich

Application’s perspective
of a rack

3

Analytical QP

Transactional QP Graph processing

Machine learning

Ad-hoc BI QP

MULTI FLAVOR DATA PROCESSING

FruitBox – a data processing system

Workshop for Rack-scale Computing

4

FruitBox

Analytical QP

Transactional QP

Graph processing

Machine learning

Ad-hoc BI QP

MULTI FLAVOR DATA PROCESSING

 Building a system for multi-flavor data processing:

1. Hardware that meets the resource demand.

2. System architecture to support workload heterogeneity.

3. Aim for 10s-100s millions of
requests per second.

4. Efficient resource utilization.

Workshop for Rack-scale Computing

FruitBox – a rack-scale data processing system

Analytical QP

Transactional QP

Graph processing

Machine learning

Ad-hoc BI QP

MULTI FLAVOR DATA PROCESSING

 Which box could run such a heterogeneous WL?
 A multicore is not enough

 A rack-scale system:
 More resources

 Better isolation

 Blurring the machine-cluster boundaries

RACK-SCALE SYSTEM

1000s of cores
TBs of RAM

InfiniBand

Workshop for Rack-scale Computing 5

Rack-scale data processing system

Custom build a rack-scale system
for data processing?

Many such commercial systems exists – Data Appliances

Oracle Exadata Netezza (IBM) TwinFin

and many more …
Workshop for Rack-scale Computing 6

 Separate data-storage from data-processing

 Achieve both physical and logical data independence

7

Transactional
processing

Analytical
processing

Storage Engine

Machine
Learning

Data processing

System design for Multi-flavor data processing

Workshop for Rack-scale Computing

Storage Engine

8

Data processing

Transactional
processing

Analytical
processing

Machine
Learning

Storage Engine

Tuple- and batch-based interface
to the storage engine.

Workshop for Rack-scale Computing

Storage Engine

9

Data processing

Transactional
processing

Analytical
processing

Machine
Learning

Storage Engine

KV Stores Scans

Storage engine components:

 KV Stores (B-tree)
 Crescando Scans

KV Stores → transactional
Scans → analytical

Tuple- and batch-based interface
to the storage engine.

Workshop for Rack-scale Computing

Storage Engine

10

Data processing

Transactional
processing

Analytical
processing

Machine
Learning

Storage Engine

KV Stores Scans

Storage engine components:

 KV Stores (B-tree)
 Crescando Scans

KV Stores → transactional
Scans → analytical

Tuple- and batch-based interface
to the storage engine.

 Transaction logic separated from
 query processing.

MVCC: Snapshot isolation

Hyder [SIGMOD’15], HyPer[VLDB’11], Hekaton [SIGMOD’14],
SharedDB [Giannikis PhD’14], Tell [SIGMOD’15], Multimed [Eurosys’11]

Handling millions of requests/second

11

 It makes no sense to process them individually

 if they access the same data.

 Why should each query scan a TB of data?

 Batch requests – share data, computation, bandwidth

 … for higher throughput and predictable performance
 trading off a bit of latency.

IBM Blink, MonetDB/X100[VLDB’07], CJOIN [VLDB’09], Crescando[VLDB’09], SharedDB [VLDB’12,’14],

vs

Workshop for Rack-scale Computing

Efficient resource utilization

 Getting the most out of such a complex system
requires cross-layer optimization.
 e.g. DB/OS co-design

 Already some work on multicore systems.

12

Analytical QP

Transactional QP

Graph processing

Machine learning

Ad-hoc BI QP

MULTI FLAVOR DATA PROCESSING Noisy system environment
 Load interaction

Unpredictable performance
Not meeting SLAs

 Resource overprovisioning

Inefficiency and higher cost

12

OS

DB

What is the
knowledge we have?

Who knows what?

Big semantic
gap!

COD: DB/OS co-design

Application requirements
and characteristics

System state and
utilization of resources

Hardware & architecture
+

COD: Database/Operating System co-design [CIDR’12]

Workshop for Rack-scale Computing

13

DB storage engine

OS policy engine

DBMS

OS

other apps

DB/OS Interface

Constraints and requirements

Notification on updates Explicit allocation

COD’s interface

Workshop for Rack-scale Computing

14

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

La
te

nc
y

[s
ec

]

Elapsed time [min]

Adaptability – Latency

Naïve datastore engine

SLA COD

Experiment setup

• AMD MagnyCours
• 4 x 2.2GHz AMD Opteron 6174 processors
• total Datastore size 53GB
• Noise: another CPU-intensive task
 running on core 0

Adaptability to dynamic system state

Workshop for Rack-scale Computing

Resource efficient deployment

15

Deployment algorithm

Query plan
Resource requirements

of operators Multicore machine

Data dependency
graph

Resource Activity
Vectors

Model of multicore
machine

Deployment of operators
to CPU cores

DB OS

Deployment of query plans on multicores [VLDB’15]
Workshop for Rack-scale Computing

Evaluation

16

Query plan

 SharedDB’s TPC-W [1]
 11 web-interactions in

one query plan
 44 operators
 20GB dataset

7
2 6

3

1 5
0 4

AMD Magnycours

 4 x 2 dies:

 6 cores
 5 MB L3 cache
 16 GB NUMA node

L3 cache

D
R
A
M

46 42 38

 34 30 26

[1] SharedDB – Giannikis et al. VLDB’12 Workshop for Rack-scale Computing

Comparison with standard approaches

17

Throughput [WIPS] Response Time [ms]

Approaches # cores Average Stdev 50th 90th 99th

Default OS 48

Operator per core 44

Deployment algorithm

Workshop for Rack-scale Computing

Comparison with standard approaches

18

Throughput [WIPS] Response Time [ms]

Approaches # cores Average Stdev 50th 90th 99th

Default OS 48 317.30 31.11 8.22 72.43 82.03

Operator per core 44 425.86 54.34 14.59 22.93 36.08

Deployment algorithm

Workshop for Rack-scale Computing

Comparison with standard approaches

19

Throughput [WIPS] Response Time [ms]

Approaches # cores Average Stdev 50th 90th 99th

Default OS 48 317.30 31.11 8.22 72.43 82.03

Operator per core 44 425.86 54.34 14.59 22.93 36.08

Deployment algorithm 6

Workshop for Rack-scale Computing

Comparison with standard approaches

20

Throughput [WIPS] Response Time [ms]

Approaches # cores Average Stdev 50th 90th 99th

Default OS 48 317.30 31.11 8.22 72.43 82.03

Operator per core 44 425.86 54.34 14.59 22.93 36.08

Deployment algorithm 6 428.07 32.80 15.36 23.73 36.13

Workshop for Rack-scale Computing

Comparison with standard approaches

21

Throughput [WIPS] Response Time [ms]

Approaches # cores Average Stdev 50th 90th 99th

Default OS 48 317.30 31.11 8.22 72.43 82.03

Operator per core 44 425.86 54.34 14.59 22.93 36.08

Deployment algorithm 6 428.07 32.80 15.36 23.73 36.13

Performance / Resource efficiency savings of x7.37

Workshop for Rack-scale Computing

Conclusion

22

 Multi-flavor data processing system
 We have all the pieces of the puzzle

Separate data-
storage from

data-processing

Efficient resource
management

Batching as a first
class citizen

… on a rack-scale
system

Workshop for Rack-scale Computing

Putting them together opens a lot of opportunities.

Conclusion

23

 Multi-flavor data processing system
 We have all the pieces of the puzzle

Separate data-
storage from

data-processing

Efficient resource
management

Batching as a first
class citizen

… on a rack-scale
system

Workshop for Rack-scale Computing

Putting them together opens a lot of opportunities.

 Intelligent storage engine:
 Co-processors, active-memory, hardware specialization (FPGAs)

 Optimizing the network stack:
 … for different memory access patterns

 Extend the cross-layer interface:
 DB optimizer that is aware of the complexity of the rack

 Rack-scale resource management

