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MULTI FLAVOR DATA PROCESSING 

FruitBox – a data processing system 
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MULTI FLAVOR DATA PROCESSING 

 Building a system for multi-flavor data processing: 
 
1. Hardware that meets the resource demand. 

 

2. System architecture to support workload heterogeneity. 
 

3. Aim for 10s-100s millions of  
requests per second. 
 

4. Efficient resource utilization. 
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FruitBox – a rack-scale data processing system 
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MULTI FLAVOR DATA PROCESSING 

 Which box could run such a heterogeneous WL? 
 A multicore is not enough 

 

 A rack-scale system: 
 More resources 

 Better isolation 

 Blurring the machine-cluster boundaries 

 
RACK-SCALE SYSTEM 

1000s of cores 
TBs of RAM 

InfiniBand 
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Rack-scale data processing system 

Custom build a rack-scale system  
for data processing? 

Many such commercial systems exists – Data Appliances 

Oracle Exadata Netezza (IBM  ) TwinFin 

and many more … 
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 Separate data-storage from data-processing 

 

 

 

 

 

 

 Achieve both physical and logical data independence 
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Data processing 

System design for  Multi-flavor data processing 
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Storage Engine 

Tuple- and batch-based interface  
to the storage engine. 

Workshop for Rack-scale Computing 



Storage Engine 

9 
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processing 
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Storage Engine 

KV Stores Scans 

Storage engine components: 
 

 KV Stores (B-tree) 
 Crescando Scans 

 

KV Stores → transactional 
Scans → analytical 

Tuple- and batch-based interface  
to the storage engine. 
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Storage engine components: 
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 Crescando Scans 
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Tuple- and batch-based interface  
to the storage engine. 

 
 
 
 

 
    Transaction logic separated from 
     query processing. 

MVCC: Snapshot isolation 

Hyder [SIGMOD’15],  HyPer[VLDB’11], Hekaton [SIGMOD’14],  
SharedDB [Giannikis PhD’14],  Tell [SIGMOD’15], Multimed [Eurosys’11] 



Handling millions of requests/second 
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 It makes no sense to process them individually 

 if they access the same data. 

 Why should each query scan a TB of data? 
 

 

 

 

 

 Batch requests – share data, computation, bandwidth 

     … for higher throughput and predictable performance 
         trading off a bit of latency. 
 
IBM Blink, MonetDB/X100[VLDB’07], CJOIN [VLDB’09], Crescando[VLDB’09], SharedDB [VLDB’12,’14],  

vs 
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Efficient resource utilization 

 Getting the most out of such a complex system  
requires cross-layer optimization. 
 e.g. DB/OS co-design 

 

 Already some work on multicore systems. 
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Analytical QP 

Transactional QP 

Graph processing 

Machine learning 

Ad-hoc BI QP 

MULTI FLAVOR DATA PROCESSING  Noisy system environment 
 Load interaction 

 
Unpredictable performance 
Not meeting SLAs 

 Resource overprovisioning 
 
Inefficiency and higher cost 
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OS 

DB 

What is the 
knowledge we have? 

 
Who knows what? 

Big semantic 
gap! 

COD: DB/OS co-design 

Application requirements 
and characteristics 

System state and 
utilization of resources 

Hardware & architecture 
+ 

COD: Database/Operating System co-design  [CIDR’12] 
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DB storage engine 

OS policy engine 

DBMS 

OS 

other apps 

DB/OS Interface 

Constraints and requirements 

Notification on updates Explicit allocation 

COD’s interface 

Workshop for Rack-scale Computing 



14 

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

La
te

nc
y 

[s
ec

] 

Elapsed time [min] 

Adaptability – Latency  

Naïve datastore engine 

SLA COD 

Experiment setup 

• AMD MagnyCours 
• 4 x 2.2GHz AMD Opteron 6174 processors 
• total Datastore size 53GB 
• Noise: another CPU-intensive task 
  running on core 0  

Adaptability to dynamic system state 
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Resource efficient deployment 
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Deployment algorithm 

Query plan 
Resource requirements 

of operators Multicore machine 

Data dependency 
graph 

Resource  Activity  
Vectors 

Model of multicore 
machine 

Deployment of operators  
to CPU cores 

DB OS 

Deployment of query plans on multicores [VLDB’15] 
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Evaluation 
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Query plan   

 
 SharedDB’s TPC-W [1] 
 11 web-interactions in  

one query plan 
 44 operators 
 20GB dataset 
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AMD Magnycours 
 
 4 x 2 dies: 

 6 cores  
 5 MB L3 cache 
 16 GB NUMA node 

L3 cache 

D
R
A
M
 

46 42 38 

 34  30  26 

[1] SharedDB – Giannikis et al. VLDB’12 Workshop for Rack-scale Computing 



Comparison with standard approaches 
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Throughput [WIPS] Response Time [ms] 

Approaches # cores Average Stdev 50th  90th 99th 

Default OS 48 

Operator per core 44 

Deployment  algorithm 
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Throughput [WIPS] Response Time [ms] 
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Throughput [WIPS] Response Time [ms] 

Approaches # cores Average Stdev 50th  90th 99th 

Default OS 48 317.30 31.11 8.22 72.43 82.03 

Operator per core 44 425.86 54.34 14.59 22.93 36.08 

Deployment  algorithm   6 
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Throughput [WIPS] Response Time [ms] 

Approaches # cores Average Stdev 50th  90th 99th 

Default OS 48 317.30 31.11 8.22 72.43 82.03 

Operator per core 44 425.86 54.34 14.59 22.93 36.08 

Deployment  algorithm   6 428.07 32.80 15.36 23.73 36.13 
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Comparison with standard approaches 
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Throughput [WIPS] Response Time [ms] 

Approaches # cores Average Stdev 50th  90th 99th 

Default OS 48 317.30 31.11 8.22 72.43 82.03 

Operator per core 44 425.86 54.34 14.59 22.93 36.08 

Deployment  algorithm   6 428.07 32.80 15.36 23.73 36.13 

Performance / Resource efficiency savings of  x7.37 
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  Multi-flavor data processing system 
 We have all the pieces of the puzzle 

 

 

 

 

 

 

Separate data-
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data-processing 

Efficient resource 
management 

Batching as a first 
class citizen 

… on a rack-scale 
system 

Workshop for Rack-scale Computing 

Putting them together opens a lot of opportunities. 
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Putting them together opens a lot of opportunities. 

 Intelligent storage engine: 
 Co-processors, active-memory, hardware specialization (FPGAs) 

 Optimizing the network stack: 
 … for different memory access patterns 

 Extend the cross-layer interface: 
 DB optimizer that is aware of the complexity of the rack 

 Rack-scale resource management  


