

### TORSTEN HOEFLER, MACIEJ BESTA Slim Fly: A Cost Effective Low-Diameter Network Topology

Images belong to their creator!



# Background

I'm an HPC (systems) guy



- New to the DC area but very interested and motivated!
  - Several projects (see last slide)



Message-Passing Interface

William Gropp Torsten Hoefler Rajeev Thakur Ewing Lusk



## NETWORKS, LIMITS, AND DESIGN SPACE

- Networks cost 25-30% of a large compute cluster
  - How much at rack-scale?









2014

### **A** BRIEF HISTORY OF NETWORK TOPOLOGIES

copper cables, small radix switches

fiber, high-radix switches









copper cables, small radix switches

fiber, high-radix switches





copper cables, small radix switches













### DESIGNING AN EFFICIENT NETWORK TOPOLOGY CONNECTING ROUTERS

- Intuition: lower average distance → lower resource needs
  - A new view as primary optimization target!
- Moore Bound [1]: upper bound on the number of routers in a graph with given diameter (D) and network radix (k).

$$MB(D, k) = 1 + k + k(k - 1) + k(k - 1)^{2} + \cdots$$

$$MB(D,k) = 1 + k \sum_{i=0}^{D-1} (k-1)^{i}$$



[1] M. Miller, J. Siráň. Moore graphs and beyond: A survey of the degree/diameter problem, Electronic Journal of Combinatorics, 2005.



### **DESIGNING AN EFFICIENT NETWORK TOPOLOGY** CONNECTING ROUTERS: DIAMETER 2

• Example Slim Fly design for *diameter* = 2: *MMS graphs* [1] (utilizing graph covering)







[1] B. D. McKay, M. Miller, and J. Siráň. A note on large graphs of diameter two and given maximum degree. Journal of Combinatorial Theory, Series B, 74(1):110 – 118, 1998



#### **CONNECTING ROUTERS: DIAMETER 2**



Groups form a fully-connected bipartite graph



**CONNECTING ROUTERS: DIAMETER 2** 

#### 1 Select a prime power q

 $q = 4w + \delta;$  $w \in \mathbb{N} \quad \delta \in \{-1, 0, 1\},$ 

A Slim Fly based on q: Number of routers:  $2q^2$ Network radix:  $(3q - \delta)/2$  2 Construct a finite field  $\mathcal{F}_q$ . Assuming *q* is prime:  $\mathcal{F}_q = \mathbb{Z}/q\mathbb{Z} = \{0, 1, \dots, q-1\}$ with modular arithmetic. **E** Example: q = 5

50 routers network radix: 7

 $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$ 





**CONNECTING ROUTERS: DIAMETER 2** 





**CONNECTING ROUTERS: DIAMETER 2** 



5 Build Generator Sets  

$$X = \{1, \xi^2, ..., \xi^{q-3}\}$$
  
 $X' = \{\xi, \xi^3, ..., \xi^{q-2}\}$ 

Example: q = 5  $\mathcal{F}_5 = \{0, 1, 2, 3, 4\}$   $\xi = 2$   $1 = \xi^4 \mod 5 =$   $2^4 \mod 5 = 16 \mod 5$   $X = \{1, 4\}$  $X' = \{2, 3\}$ 





**CONNECTING ROUTERS: DIAMETER 2** 

#### 6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

$$\begin{split} X &= \{1,\xi^2,\ldots,\xi^{q-3}\} \mbox{ (for subgraph 0)} \\ X' &= \{\xi,\xi^3,\ldots,\xi^{q-2}\} \mbox{ (for subgraph 1)} \end{split}$$

E Example: 
$$q = 5$$
  
Take Routers (0,0,.)  
 $X = (14)$ 







**CONNECTING ROUTERS: DIAMETER 2** 

#### 6 Intra-group connections

Two routers in one group are connected iff their "vertical Manhattan distance" is an element from:

 $\begin{aligned} X &= \{1, \xi^2, \dots, \xi^{q-3}\} \text{ (for subgraph 0)} \\ X' &= \{\xi, \xi^3, \dots, \xi^{q-2}\} \text{ (for subgraph 1)} \end{aligned}$ 

E Example: 
$$q = 5$$
  
Take Routers (1,4,.)  
 $X' = \{2,3\}$ 







**CONNECTING ROUTERS: DIAMETER 2** 

7 Inter-group connections Router  $(0, x, y) \leftrightarrow (1, m, c)$ 

iff y = mx + c

E Example: 
$$q = 5$$
  
Take Router (1,0,0)  
 $(1,0,0) \leftrightarrow (0, x, 0)$   
Take Router (1,1,0)  $m = 1, c = 0$   
 $(1,1,0) \leftrightarrow (0, x, x)$ 





ATTACHING ENDPOINTS: DIAMETER 2

- How many endpoints do we attach to each router?
- As many to ensure *full global bandwidth:* 
  - Global bandwidth: the theoretical cumulative throughput if all endpoints simultaneously communicate with all other endpoints in a steady state





## **COMPARISON TO OPTIMALITY**

• How close is the presented Slim Fly network to the Moore Bound?



#### ETHzürich



spcl.inf.ethz.ch

### **OVERVIEW OF OUR RESEARCH**

# Routing and performance

#### **Topology design**



Optimizing towards Moore Bound





of optimality

#### Cost, power, resilience analysis



Cost & power results Detailed case-st



#### **Comparison targets**

| STI |  |  |  | 11-1 |  |
|-----|--|--|--|------|--|
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |

#### Resilience



#### Routing

| PERFORMANCE &           | ROUTING                                                |                                                       |
|-------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Intra-group connections | Inter-group connections<br>(different brans of coupsi) | Inter-group connections<br>identical trans of arcural |
|                         |                                                        |                                                       |
|                         |                                                        |                                                       |



Performance, latency, bandwidth

| OTHER I |  |  |  |  |
|---------|--|--|--|--|
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |



# PHYSICAL LAYOUT



Mix (pairwise) groups with different cabling patterns to shorten inter-group cables













## PHYSICAL LAYOUT



Merge groups pairwise to create drawers















# COST COMPARISON

RESULTS

Assuming COTS material costs and best known layout for each topology!



**ETH** zürich



spcl.inf.ethz.ch

# COST & POWER COMPARISON DETAILED CASE-STUDY

A Rack-Scale Slim Fly with

- *N* = 1,296
- *k* = 22

•  $N_r = 162$ 



# COST & POWER COMPARISON

DETAILED CASE-STUDY: HIGH-RADIX TOPOLOGIES

|                    | Low-     | radix    | High-radix |        |         |         |       |
|--------------------|----------|----------|------------|--------|---------|---------|-------|
| Topology           | 3D Torus | 5D Torus | Fat tree   | Random | Dragfly | Dragfly | SF    |
| Endpoints $(N)$    | 1,200    | 1,280    | 1,024      | 1,296  | 1,056   | 1,200   | 1,296 |
| Routers $(N_r)$    | 1,200    | 1,280    | 320        | 260    | 264     | 240     | 162   |
| Radix $(k)$        | 7        | 11       | 16         | 22     | 15      | 20      | 22    |
| Electric cables    | 3,600    | 6,400    | 2,048      | 2,210  | 1,452   | 1800    | 1134  |
| Cost per node [\$] | 1,802    | 3,364    | 1,634      | 1,504  | 1,201   | 1,343   | 922   |
| Power per node [W] | 19.6     | 30.8     | 14.0       | 12.35  | 10.50   | 11.20   | 7.70  |

|                    | Low-     | radix    |          | High-1 | adix    |       |      |
|--------------------|----------|----------|----------|--------|---------|-------|------|
| Topology           | 3D Torus | 5D Torus | Fat tree | Random | Dragfly | Dfly  | SF   |
| Endpoints $(N)$    | 216      | 243      | 250      | 250    | 342     | 270   | 250  |
| Routers $(N_r)$    | 216      | 243      | 125      | 84     | 114     | 90    | 50   |
| Radix $(k)$        | 7        | 11       | 10       | 13     | 11      | 12    | 13   |
| Electric cables    | 648      | 1,215    | 500      | 419    | 456     | 405   | 200  |
| Cost per node [\$] | 1,802    | 3,364    | 1,466    | 1,366  | 1,094   | 1,224 | 797  |
| Power per node [W] | 19.6     | 30.8     | 14.0     | 12.23  | 10.26   | 11.20 | 7.28 |

#### ETHzürich



spcl.inf.ethz.ch

### **OVERVIEW OF OUR RESEARCH**

# Routing and performance

#### **Topology design**



Optimizing towards Moore Bound





of optimality

#### Cost, power, resilience analysis



Cost & power results Detailed case-st



#### **Comparison targets**

| STI |  |  |  | 11-1 |  |
|-----|--|--|--|------|--|
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |
|     |  |  |  |      |  |

#### Resilience



#### Routing

| PERFORMANCE &           | ROUTING                                                |                                                       |
|-------------------------|--------------------------------------------------------|-------------------------------------------------------|
| Intra-group connections | Inter-group connections<br>(different brans of coupsi) | Inter-group connections<br>identical trans of arcural |
|                         |                                                        |                                                       |
|                         |                                                        |                                                       |



Performance, latency, bandwidth

| OTHER I |  |  |  |  |
|---------|--|--|--|--|
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |



# **PERFORMANCE & ROUTING**

- Cycle-accurate simulations [1]
- Routing protocols:
  - Minimum static routing
  - Valiant routing [2]
  - Universal Globally-Adaptive Load-Balancing routing [3] UGAL-L: each router has access to its local output queues UGAL-G: each router has access to the sizes of all router queues in the network



- [1] N. Jiang et al. A detailed and flexible cycle-accurate Network-on-Chip simulator. ISPASS'13
- [2] L. Valiant. A scheme for fast parallel communication. SIAM journal on computing, 1982
- [3] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis, Stanford University, 2005



# **PERFORMANCE & ROUTING**

#### **RANDOM UNIFORM TRAFFIC**





#### ETHzürich



spcl.inf.ethz.ch

### SUMMARY

#### **Topology design**

Optimizing towards the Moore Bound reduces expensive network resources





Credits

Maciej Besta

(PhD Student @SPCL)

#### **Optimization approach**

Combining mathematical optimization and current technology trends effectively tackles challenges in networking

COMPARISON TO OPTIMALITY

How close is SlimEly MMS to the Moore Bound?

M. Besta, TH: "Slim Fly: A Cost Effective Low-Diameter Network Topology", SC15





# **Related projects at SPCL@ETH**

- DARE Fast RDMA replicated state machines [1]
  - Access latency: 6/9 us (22-35x faster than Zookeeper)
  - Request throughput : 720/460kreq/s (1.7x faster than Zookeeper)
  - Available within 30ms of leader crash no interruption for server failure
  - All strongly consistent (linearizable)



- HTM for distributed memory graph analytics [2]
  - Accelerates Graph500 & Galois by 10-50%, beats Hama by 100-1000x
- Ethernet routing for low-diameter topologies [in progress]
  - Make Slim Fly practical in Ethernet settings

[1]: M. Poke, TH: "DARE: High-Performance State Machine Replication on RDMA Networks", HPDC'15
 [2]: M. Besta, TH: "Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages", HPDC'15

#### ETHzürich



