
Think outside the rack
2015-04-21 WRSC

john wilkes / johnwilkes@google.com, Parthasarathy Ranganathan, Steven Hand
Google Inc.

mailto:johnwilkes@google.com

Datacenter loads are not SPEC benchmarks
Single query across multiple racks of multiple servers: graph of one query and associated RPCs for work
distribution (only two levels shown); other queries going on, but not shown.

Graphic from Dick Sites

Good news! lots of new technologies

Silicon/hardware is getting ever more inventive
forced to move to parallelism to track Moore's "law"

Main memory: lots of volatile RAM, new non-volatile h/w
Computation: oodles of cores, specialized accelerators
Storage: flash/SSD, [magnetic disks still kicking]
Networking: high bandwidth + low latency + lossless(?)

Good news! resource disaggregation

Conceptually it's wonderful:
Build a "rack computer" from a kit of parts (*)
○ a single big, disaggregated machine
○ all the benefits of a unified OS

Build a "datacenter in a rack" (*)
○ a single, scaled-down distributed system, like the big guys use
○ all the benefits of shared-nothing distributed systems

(*) OK - build at least two, for reliability

Good news! a RackScale foo is both of these

Upsides:
○ meet all the needs of all but the largest organizations

○ buy just what you need (save money)
○ build just what you want (go fast)
○ tune for peak performance (go fast; save money)

○ conceptually similar to existing programming models

What could possibly go wrong?

An RSfoo breaks everything

An RSfoo is not the same as a computer
○ multiple internal failure domains
○ non-uniform resource access costs

An RSfoo is not the same as a datacenter
○ shared nothing => disaggregated resources
○ existing programming models don't work

Images by Connie Zhou

A 2000-machine service will
have >10 machine crashes per
day

DRAM errors (1% AFR)
Disk failures (2-10% AFR)
Machine crashes (~2/year)
OS upgrades (2-6/year)

 Datacenter experiences are relevant

This is not a problem because
of the shared-nothing model

RSfoo failures

If disaggregation is used
○ each component failure

 ⇒ partial system failure
 ⇒ visible at the app level

○ fault propagation at the speed of light

Apps aren't designed to handle this
today

RSfoo provisioning

How much of what to buy?
○ workload lifetime << hardware

depreciation cycle
○ multiple esoteric resources
○ requires (dynamic) hardware

evolution

Apps + planning tools aren't
designed to handle this today

RSfoo placement/scheduling

Avoid resource stranding
○ disaggregation helps …
○ but RSfoo has more resource types

Avoid bad placement
○ NUMA writ large
○ dynamic interference

Existing placement / scheduling
algorithms aren't good at this today

RSfoo inter-application interference

RSfoos are small-scale datacenters,
so will run multiple apps

Disaggregated resources make ...
○ performance isolation much harder
○ security isolation much harder
○ failure isolation much harder

Apps + systems aren't designed to
handle this today

RSfoo groups

You still need multiple RSfoos ...
○ control-plane failure
○ datacenter / network / environment failure
○ "big" workloads
○ end-user latency

Existing inter-datacenter solutions (e.g.,
full replication) probably aren't ideal

Good news!

We'll have job security ;-)

Good news!

The solutions are in sight.

The problems are just beginning.
○ Failures
○ Provisioning and configuration hassles
○ Interference
○ Multi-RSfoo support

One possible approach

For each feature/property/behavior, start by asking:
○ "is this a big computer, or a small datacenter?"
○ (distributed systems techniques go a long way)

Thinking about timescales may help:
○ seconds and up - datacenter control model
○ below that: application-level

Introduce a feature after addressing issues identified here
○ don't forget the programming model!

