Think outside the rack

2015-04-21 WRSC

john wilkes / johnwilkes@google.com, Parthasarathy Ranganathan, Steven Hand

Google Inc.

mailto:johnwilkes@google.com

Datacenter loads are not SPEC benchmarks

Single query across multiple racks of multiple servers: graph of one query and associated RPCs for work
distribution (only two levels shown); other queries going on, but not shown.

| | ' , /
3 o1 $ F
’ . - —_— \ —— - — e - — e e - —. -
: 4 4 ++—1 s
s y.

hsa hsad hsaw hsa h h h hsbx hsc
ir gl P iS00 $®*i.§hﬁ~___,§g__ hsce
3 . "' "A | .1 |

hsdb,
lztl »‘\?h i \.l'-‘:i] 1 % i": n ‘.',
| | N : .-."-._‘ ;] t 7 . "u ‘l_.
b VNS e o e A
',‘ \ ‘. { ~._“|' J :'L ! . It | ., .
) U1y £ & | I 7
- B 1 T i N AR g = =2/ ! 1S Y
l‘ ‘[S . i o ‘4 % o ” m;‘— Pod e v-;r .’" ; 1'
- { { { .? : + t ,’ l i x \ b: . g . ml
= { FLLE S) L, - ¥ J
1\ £ BIh
= |), s ' Y % 1
iy m A7 E
s AN | e o . ; i 19
hsdk hsdp hsdr hsdw h.'c.ec hsed hsqk hsel hseriw hsen Psqo g, h[s?p
A\ . ¥, V) } ' o

T TS TSR T R S i 1 A T et

Good news! lots of nhew technologies

Silicon/hardware is getting ever more inventive
forced to move to parallelism to track Moore's "law"

Main memory: lots of volatile RAM, new non-volatile h/w
Computation: oodles of cores, specialized accelerators
Storage: flash/SSD, [magnetic disks still kicking]
Networking: high bandwidth + low latency + lossless(?)

Good news! resource disaggregation

Conceptually it's wonderful:

Build a "rack computer" from a kit of parts (*)

o asingle big, disaggregated machine
o all the benefits of a unified OS

Build a "datacenter in a rack" (*)

o a single, scaled-down distributed system, like the big guys use
o all the benefits of shared-nothing distributed systems

(*) OK - build at least two, for reliability

Good news! a RackScale foo is both of these
Upsides:
o meet all the needs of all but the largest organizations

o buy just what you need (save money)
o build just what you want (go fast)

o tune for peak performance (go fast; save money)

o conceptually similar to existing programming models

What could possibly go wrong?

An RSfoo breaks

An RSfoo is not the same as a computer

o multiple internal failure domains
o non-uniform resource access costs

An RSfoo is not the same as a datacenter

o shared nothing => disaggregated resources
o existing programming models don't work

oF)Y,

This is not a problem because
of the shared-nothing model

RSfoo failures

If disaggregation is used

o each component failure

= partial system failure

= visible at the app level
o fault propagation at the speed of light

Apps aren't designed to handle this
today

RSfoo provisioning

How much of what to buy?

o workload lifetime << hardware
depreciation cycle
o multiple esoteric resources

o requires (dynamic) hardware
evolution
Apps + planning tools aren't
designed to handle this today

RSfoo placement/scheduling

Avoid resource stranding

o disaggregation helps ...
o but RSfoo has more resource types

Avoid bad placement

o NUMA writ large
o dynamic interference

RSfoo inter-application interference

RSfoos are small-scale datacenters,
so will run multiple apps

Disaggregated resources make ...

o performance isolation much harder
o Security isolation much harder
o failure isolation much harder

RSfoo groups =

You still need multiple RSfoos ... e L

o control-plane failure

o datacenter / network / environment failure
o "big" workloads

o end-user latency

Existing inter-datacenter solutions (e.g.,
full replication) probably aren't ideal

Good news!

We'll have job security ;-)

Good news!

The solutions are in sight.

The problems are just beginning.

o Failures

o Provisioning and configuration hassles
o Interference

o Multi-RSfoo support

One possible approach

For each feature/property/behavior, start by asking:

o "is this a big computer, or a small datacenter?"
o (distributed systems techniques go a long way)

Thinking about timescales may help:

o seconds and up - datacenter control model
o below that: application-level

Introduce a feature after addressing issues identified here
o don't forget the programming model!

