
1 Fast Radiosity Using A Data Parallel Architecture

Steven M. Drucker, Peter Schr�oder

ABSTRACT
We present a data parallel algorithm for radiosity. The algorithm was designed to take
advantage of large numbers of processors. It has been implemented on the Connec-
tion Machine CM2 system and scales linearly in the number of available processors
over a wide range. All parts of the algorithm | form-factor computation, visibil-
ity determination, adaptive subdivision, and linear algebra solution | execute in
parallel with a completely distributed database. Load balancing is achieved through
processor allocation and dynamic data structures which recon�gure appropriately to
match the granularity of the required calculations.

1.1 Introduction

One goal of Computer Graphics has been the generation of realistic pictures quickly and
accurately. To this end local, heuristic shading models have been replaced by more and
more sophisticated techniques such as ray tracing [32] and radiosity [14]. With the advent
of a number of sophisticated global, physically based shading models interest in speedup
techniques has increased and a number of those can be found in the literature [8], [10],
[12], [13], to name just a few. While some of these techniques attempt to, for example
in the radiosity case, speed up convergence to the correct solution, or in the raytracing
case, optimize sampling patterns [22] to minimize the cost of computing a picture, another
major thrust has been to parallelize the basic algorithms [6], [11], [26], [23], [25], [2], [24],
[5], [16]. In the present paper we discuss a new method for the computation of radiosity on
a massively parallel architecture. A particular goal of our work was an algorithm which
scales favorably over large ranges of input data sizes as well as numbers of available
processors. We put special emphasis on the load balancing problem to allow for the use of
acceleration techniques that scale for large numbers of processors and enable the ability
to perform adaptive, dynamic meshing of the environment.

The algorithm has been implemented on a Connection Machine CM2 system [20]. The
CM2 is a SIMD computer with between 4096 and 65536 bit slice processors running at
7MHz in which each group of 32 processors shares one
oating point chip. The memory
is distributed, thus speci�c attention must be devoted to keeping o�-processor memory
references to a minimum.This is a particular challenge in the context of global illumination
models such as radiosity. In any parallel algorithm, load balancing among processors is
extremely important. Since the algorithm was designed for a SIMD architecture in which
all processors follow a single thread of execution load balancing presents itself as the
challenge to have the largest number of processors participate at each step. We will show
below how data parallel computation primitives such as processor allocation and parallel
pre�x operators [3] can be used to meet these challenges.

In the following sections we will give a brief review of the radiosity formulation and pre-
vious acceleration methods. This is followed by a detailed description of our data parallel
algorithm. Section 1.4 contains a discussion of adaptive Patch-Element subdivision, in

2 Steven M. Drucker, Peter Schr�oder

which we examine the problem of dynamic subdivision on data parallel hardware which
has not been examined in the existing literature. Section 1.5 will brie
y discuss render-
ing the resulting radiosity scene. We �nish with a discussion of the performance of our
algorithm and suggestions for further work.

1.2 Radiosity Formulation

Our formulation for radiosity follows the recent literature, speci�cally [9] and [31]. Ra-
diosity (Intensity per unit projected area per solid angle) is found for all the surfaces in
the environment assuming only di�use emittance and re
ectance. Once the radiosities for
the surfaces of a scene are known, they may be rendered directly using fast z-bu�er hard-
ware or by ray tracing to include specular e�ects. The formulation is based on an energy
balance argument and describes the radiosity at a surface as the sum of its emittance and
the di�usely re
ected contributions of all other surfaces in the environment:

BdAdA = EdAdA+ �dA

Z
2�

BL cos �Ld!L
�

Where dA is a di�erential surface, E is the emittance at that surface, � is the di�use
re
ectance constant, and the integral is taken over the entire solid angle for a unit hemi-
sphere around the surface. For purposes of solving this equation the integral is discretized
into �nite patches for which the radiosity is assumed to be constant over the patch, turning
the above integral equation into a linear problem:

BAi
= EAi

+ �Ai

X
j

BAj
FAj�Ai

where FAj �Ai, called the Form-Factor from Aj to Ai, represents the fraction of energy
leaving Aj and arriving at Ai. Since for all practical purposes we may assume that not all
energy received by a patch is reemitted the spectral radius of this operator is strictly less
than 1, allowing us to solve for the radiosities through a von-Neumann series (e.g. Gauss
Seidel iteration). The latter may be interpreted as the computation of successive bounces
of energy in the environment. Cohen, et al [7] suggested a faster approach. Instead of
calculating the e�ects of all the patches on a single patch at a time|as a Gauss-Seidel
approach e�ectively does|one can consider the e�ect of a single patch on the entire
environment. Each patch in turn distributes its energy to the other patches scaled by the
form factor. This process is called Progressive Radiosity. If the patches with the highest
amount of undistributed energy are chosen �rst, the solution will converge rapidly to the
end result, and far less computation needs to be done before a visually accurate picture
is rendered.

Finding the form factors is the most time consuming part of the radiosity process since
it involves �nding the visibility between all patches in the environment. In order to speed
up the visibility determination, Cohen, et al [8] proposed the hemicube method. For each
patch the environment is scan-converted onto a hemicube above the given patch, deter-
mining both visibility and projected area of all other patches in the environment. This

1. Fast Radiosity Using A Data Parallel Architecture 3

method can be parallelized by distributing the calculation of form-factors to several pro-
cessors, each of which computes the form-factors from a given patch to all other patches
in the environment [23], [25]. Bottlenecks result when the main processor cannot com-
municate quickly enough with the processors computing the form factors, as the results
of the form factor computations arrive. Furthermore each one of the processors needs to
have access to the entire database, forcing the user to either duplicate the entire database
at each processor|which becomes less and less acceptable as the number of objects in
the scene increases|or accept another potential bottleneck, the concurrent access of a
central database by all processors. Duplication of the database at each processing node is
not a viable option for large numbers of processors, since the amount of wasted memory
increases as a linear function of the number of processors. In other approaches networks
of transputers have been used in a variety of con�gurations [5], [24], [16]. Although the
latter methods scale somewhat better than sets of networked workstations used by [23],
[25], they still result in bottlenecks for more than 20 or so processors. For example, Pur-
gathofer and Zeiller [24], use a ring of 28 transputers and their e�ciency dropped to 48%
when all processors were used.

An alternate approach is to let a single graphics processor, such as an SGI GTX, use its
already parallel geometry pipeline to calculate the form factors via the hemicube method,
while the linear algebra part of the computation is parallelized onto several general purpose
CPUs. This too su�ers from bottlenecks since the geometry pipeline can only handle a
limited number of patches at once [2]. Notice that these approaches are MIMD in nature
and use message passing to coordinate the various components of the algorithm.

In the present algorithm we exploit parallelism throughout and structure the entire algo-
rithm in a data parallel way. Since our goal was to use general purpose parallel processors,
the hemicube approach, whose power is mainly derived from the available scan conver-
sion hardware, was not as attractive as the use of ray casting to estimate visibility [31].
Furthermore, all rays arising from a given patch can be processed in parallel and various
acceleration schemes from the raytracing literature can be applied. This approach also
gives users a �ner level of control over the necessary precision through the use of adaptive
sampling. The iterative solution of the associated linear system runs in parallel as well,
allowing us to use the progressive radiosity techniques of Cohen, et al. for further speed
improvements. Adaptive subdivision of patches between iterations of the linear solver, is
accommodated in our data parallel framework with the use of processor allocation.

1.3 Parallel Form Factor Calculation

We make use of parallel computation in several areas of the overall radiosity calculation;
simultaneous form factor calculation, visibility determination during form factor calcula-
tion, adaptive patch-element subdivision, and weighted averaging of element radiosities
to determine patch radiosities. In Section 1.4, we direct our attention to patch-element
and adaptive subdivision techniques (substructuring) and how they can be parallelized
while maintaining good processor utilization overall.

Wallace, et al [31] discuss several problems inherent in using a hemicube to calculate
form factors between patches including the aliasing due to the sampling resolution of the
hemicube. As an alternative, they use raytracing between patches as a way to estimate

4 Steven M. Drucker, Peter Schr�oder

visibility. A single patch is sampled at various points from all the vertices in the environ-
ment to determine the visibility between that patch and all vertices. This can be expressed
by the following equation:

FdA1�A2
=

A2

n

nX
k=1

vis(k)
cos�ik cos�jk
�r2 +A2

where patch 2 is sampled n times from vertex 1, and vis(k) is 1 when the patch is visible
and 0 when it is occluded. The angles represent the orientation of each patch with respect
to a vector connecting the centers of each, and r represents the distance between the two
patches. This calculation can be made from all vertices in the environment at the same
time on a data parallel architecture. The algorithm proceeds in the standard progressive
radiosity manner. The patch with the highest undistributed radiosity is found and its
radiosity is distributed to all other patches in the environment, by calculating the form
factor between that patch and the rest of the vertices in the environment. The radiosity
for each patch is then determined from the patch vertices and another patch is selected.
This process continues until the amount of undistributed radiosity present in any patch
is below a speci�ed threshold.

1.3.1 Object-Serial/Ray-Parallel Raytracing

Solving the visibility problem in parallel however is not necessarily straightforward. Ini-
tially, an object-serial/ray-parallel algorithm was used. Rays from all the vertices to a
single patch are generated. All rays are then intersected at the same time with each of the
objects in the database in turn. For small numbers of objects this is a viable approach,
however, its disadvantages are as follows:

� All objects must be intersected with all rays, thus none of the spatial subdivision
methods that are so successful at accelerating ray tracing are applied.

� Since every object must be intersected with every ray, the time it takes to calculate
the intersections is independent of the number of rays (to within the number of
available processors). Under certain circumstances|incremental radiosity update,
for example|it is desirable to only calculate intersections for a few rays.

� The algorithm is linear in the number of objects, so as the database grows larger,
it takes that much longer to compute visibility.

Spatial partitioning techniques allow a better matching of rays and candidate objects (for
intersection purposes). This is particularly helpful in a distributed memory paradigm such
as ours, since it takes advantage of the spatial locality and regularity of the underlying
problem.

1.3.2 Object-Parallel/Ray-Parallel Raytracing

Since the visibility problem is one of the most time consuming parts of the radiosity cal-
culation, a more e�cient method must be used. An alternative strategy for solving the

1. Fast Radiosity Using A Data Parallel Architecture 5

visibility problem was therefore developed. This method addresses several of the draw-
backs listed above. It is important to note that in the following algorithm, we are always
discussing a processor set at the �nest granularity of parallelism possible for the algorithm,
without regard to how the actual hardware is maintaining that processor set. In the case
of the Connection Machine System, a mapping from the processor set that we are using to
the underlying physical processors is done either by the compiler or the operating system,
thus the algorithm can be formulated independent of the number of physical processors
that are actually in the system. This allows us to achieve the desired scalability properties
in terms of any number of available processors.

The visibility algorithm uses a technique called processor allocation. Before proceeding
with the description of the visibility algorithm we brie
y discuss processor allocation.
Consider for example, a ray which is to be intersected against a candidate list of objects.
All rays, stored in their own processors, typically need to be intersected against di�er-
ent numbers of objects. In order to exploit ray/object parallelism, each ray allocates a
number of object-processors. This is accomplished by allocating a new processor set with
enough processors to hold the sum total of requested processors. See Figure 1.1. This new
processor set is segmented so that each segment consists of as many processors as the
associated requesting processor required. The allocating processors receive a pointer (pro-
cessor address) to the segment allocated to them, which can be used to move data between
the allocating and allocated processors. Though this requires general communication, if a
large amount of computation is performed between allocation steps, the overhead can be
amortized over the duration of the subsequent calculation. The segment bit can be used
in segmented-scan operations (a parallel pre�x operation) to execute instructions on a per
segment basis. For example, propagating (segmented-copy-scan) ray data to all objects
which need to be intersected with the given ray. Another typical use is the segmented-
downward-min-scan, which can be used to �nd the minimum intersection distance along
a ray.

number of processors to allocate (alloc_size)

address = sum_scan(alloc_size)

4 09 1 3 0 4

0 134 13 14 17 17

new_processors

segment_bit

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 161718 19 20

FIGURE 1.1. Processor Allocation: Each box corresponds to a processor in a 1 dimensional processor set.

The parallel variable alloc size holds the number of processors to allocate. The address of each allocated

segment is given by the sum scan of alloc size. The segment bit delineates actual segments.

The processor allocation paradigm provides a general way to implement algorithms which
dynamically require new resources of uneven length. Another advantage of this approach

6 Steven M. Drucker, Peter Schr�oder

is the implied load balancing. Since each processor allocates as many new processors as
it needs, there are no idle processors in the new processor set (though there can be idle
processors if the total number of processors requested is not some integer multiple of the
number of physical processors).

With processor allocation in mind, a naive strategy to solve a multiple ray/multiple object
problem would be to simply allocate a processor for every possible ray/object intersection
and have all the processors compute the intersections simultaneously and then extract the
closest intersections. Essentially this implies computing the full cross-product between
the objects and rays; even on modest size databases, this would require far too many
resources. This cross product can be reduced signi�cantly by observing that most rays
can only potentially intersect a small fraction of the entire object database. Thus the
main task is to derive a small list of candidate objects which might be intersected by a
given ray.

Our raytracing visibility estimation is similar to the DDA algorithm of Fujimoto, et al
[12] and the shaft culling technique of Haines and Wallace [17]. All of world space is

A B

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20
ray A

ray B

rays

4 7

extent_in_x

chopped_in_x_rays

A0 A1 A2 A3 B0 B1 B2 B3 B4 B5 B6

extent_in_y

1 1 2 1 1 2 1 1 1 2 1

allocation

chopped_in_x_and_y_rays

A00 A10 A20 A21 A30 B00 B10 B11 B20 B30 B40 B50 B60B51

allocation

FIGURE 1.2. A 2D example `chopping lines' to the voxel grid along the two dimensions in turn. In the real

visibility algorithm, a further chop along the z axis occurs, and then, based on which voxels each chopped

segment is in, the number of objects is retrieved and a �nal processor set is allocated which contains ray

segments with candidate objects. Intersection is then calculated and the minimum intersection for each

ray is found. If this intersection is between a sending patch and a receiving vertex, then occlusion takes

place.

1. Fast Radiosity Using A Data Parallel Architecture 7

�rst discretized during a parallel preprocessing phase into constant sized voxels. Each
voxel | in its own processor |maintains a list of objects that intersect it. To �nd the
candidate objects along the rays, every ray enumerates the voxels through which it passes.
This is accomplished by successively allocating new processor sets based on the number
of divisions through which every ray passes in each of the x, y, and z directions (see
Figure 1.3.2). Processors are now allocated so that every processor contains a ray/voxel
pair. Each of these processors in turn �nds the number of objects contained in a given
voxel and allocates that many more processors. In this way we now have a processor for
each candidate object along a given ray. Intersection calculations can now be performed
simultaneously at every ray/object pair. The minimum intersection distance along a ray
is then found and returned for every ray in the initial set. Note that any voxel which
contains no objects is immediately disregarded and no intersection calculations occur.
When considering processor utilization the important measure is not the number of rays
or the number of objects, but rather the product of rays and objects to be intersected.
Hence, intersecting a small number of rays against a large numbers of objects is equally
well accommodated as intersecting a large numbers of rays against a small set of objects.

There are still some disadvantages in the algorithm. Unnecessary work is performed since
intersection calculations along the entire length of a ray are done in parallel precluding
the early termination of such computations if a close object intersects a given ray. This
is mostly due to the SIMD nature of the underlying hardware. On a more
exible MIMD
hardware such as the CM5 this handicap could be removed easily. Timings on even small
databases however show an improvement in visibility testing of more than 60 fold over
object-serial/ray-parallel visibility testing.

1.4 Substructuring

Cohen, et al [9] introduced the concept of patch element subdivision. This was based on
the observation that it is often su�cient to use relatively large patches when emitting
energy while small patches must be used to gather energy so that shadow boundaries can
be accurately rendered.

Brie
y, the algorithm proceeds as follows. Patches are divided into elements and form fac-
tors are computed from patches to element vertices. For an unsubdivided patch, radiosity
is calculated at each vertex and averaged to �nd the total radiosity for the given patch. If
a patch is subdivided into elements, radiosities are calculated at each element vertex, and
an area weighted average over all the elements is calculated to yield the total radiosity
for the subdivided patch.

In the parallel implementation of this operation, patches and elements are laid out in a
linear processor array. This corresponds to a linear vector model of the underlying (quad)
tree data structure (using the inorder numbering of the nodes and leaves of the tree).
Notice that this tree is typically not balanced. The radiosity computations simply move
up and down the tree. These operations can be expressed in terms of segmented scan
operators (see [3]), which execute in time logarithmic in the number of data items.

This so called substructuring can either be speci�ed with the initial database, or de-
termined adaptively based on criteria such as radiosity gradients. Speci�cation with the

8 Steven M. Drucker, Peter Schr�oder

initial database requires a preprocessing step which considers size and possible shadow
boundaries [15]. Notice that this preprocessing has to be very conservative|keeping the al-
gorithm from fully realizing the savings potential|since the energy distribution is not yet
known. Baum et al [1] discuss in detail pre-meshing requirements for radiosity databases.

More accurate subdivisions, which take into account the actual distribution of light in the
scene, can only be found dynamically, as the radiosity computation proceeds. Adaptive
subdivision was �rst proposed by Cohen et al in 1988 [7]. Later, Campbell et al used
BSP trees to mesh polygons along shadow boundaries, though currently this method can
produce a prohibitive number of polygons [4]. Hanrahan et al [18] have used dynamic
subdivision along with concepts borrowed from n-body algorithms to produce signi�cant
speedups in addition to well subdivided scenes. [29] discuss a testbed for adaptive subdi-
vision techniques to determine what criteria should be used for subdivision.

downward sum scan (results deposited at segment boundaries: S's)

A DCB

initial patch numbering

1 555

number to allocate (num_alloc)

0 1161

address = sum_scan(num_alloc)

new processors (and segment bits)

new processors with new numbering filled in

processor types: U = unsubdivided, S=subdivided, E=element

area of patch or element in each processor

hypothetical radiosity received (only at U's and E's)

area x radiosity (for computing weighted average at subdivided patches)

result divided by area to give weighted average at patches (ready to shoot)

A

B C

D

(not shown)

A B C D

A B BA BB BC BD C CA CB CC CD D DA DB DC DD

4 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1

R R R R R R R R R R R R R

4R

4R 4R 4R 4R

R R R R R R R R R R R R

R R R R

U S E E E E S E E E E S E E E E

FIGURE 1.3. The process of adaptive patch element subdivision is detailed here. All processors compute

whether they need to subdivide and allocate the proper number of processors. Data is sent from the

allocating set to the newly allocated set. Radiosity is gathered only at unsubdivided processors and at

elements. The diagram shows how a weighted average of element radiosities is gathered at the patches

using a downward sum scan.

1. Fast Radiosity Using A Data Parallel Architecture 9

In our algorithm we use a criterion based on the di�erence in radiosity received at each
of the vertices of a patch. During each iteration of the solution algorithm all elements
evaluate in parallel the radiosity di�erence across their respective surface. Based on this
information patches are adaptively subdivided. Since the tree data structure which en-
codes the relationship between sub elements and patches has been mapped onto a linear
array of processors those patches/elements that require subdivision allocate new proces-
sors according to the number of child elements generated. When a leaf node in this tree is
expanded, processor allocation e�ectively inserts the necessary number of processors into
the linear vector model of the tree data structure at that node. This allocation operation
can be expressed in terms of parallel pre�x operators as well (see [3]). The re�nement
process can continue until a prespeci�ed threshold is reached. Thresholds can be based
either on the magnitude of the radiosity gradient, lower limits on patch area, or a lower
limit on the projected area of a patch from a particular viewpoint [19].

An alternative to calculating the radiosity at the new vertices is to use an averaged value
from the neighboring vertices. Signi�cant artifacts can result from this approach if the
radiosity gradient is not a monotonic function along the surface of a patch. In other
words, if subdivision causes a newly created vertex to be in shadow when none of the
patch vertices was in shadow before, the value of the radiosity at that vertex based on
the averages of the radiosities at adjoining vertices would be greatly overestimated.

On the average, only a small percentage of a scene needs to be subdivided and only the
form factors between the patches that have previously shot and the newly created vertices
need to be recalculated. Hence our desire to use a visibility module which works equally
well with few rays as with many rays. The object-parallel/ray-parallel algorithm achieves
this, making the recalculation process very fast.

The
attened quad-tree representation can be augmented to implement the hierarchical
radiosity described in [18]. Already the representations are quite similar, however Han-
rahan et al keep track of which patches have contributed to which elements and do not
need to reshoot to them.

1.5 Rendering

Once the radiosity has been calculated, or even partially calculated, the scene can be ren-
dered by using Gouraud shading to interpolate the radiosity values at the patch vertices.
This is accomplished most e�ciently with modern graphics hardware. Our implementa-
tion communicates the computed radiosity values to an SGI graphic workstation via a
high bandwidth channel for subsequent rendering.

Several methods have recently been introduced in the literature to include specular e�ects
in the radiosity solution [30], [28]. Although specular e�ects are currently not incorporated
into the radiosity pass, a second view dependent pass is included to render re
ections
and other specular e�ects. Ray tracing using the same ray tracing kernel discussed in
Section 1.3.2 is used and the color values for the rays are determined for di�use surfaces
by interpolating the radiosity values from the vertices. Specular surfaces re
ect the rays
until the ray reaches a di�use surface or some other termination criteria is reached.

10 Steven M. Drucker, Peter Schr�oder

1.6 Performance

It is always a di�cult task to compare computation times for radiosity problems. Since
databases tend to di�er as do overall methods, there can only be approximate performance
comparisons. The following table compares recent algorithms and the performance of this
algorithm (labeled SIMD) on di�erent sized machines. Note the linear scaling with the
number of processors which our algorithm exhibits.

TABLE 1.1. Performance Comparison

Algorithm/Machine No. Patches in Scene Time / 1 Shoot (secs) patches / sec. / shoot

Wallace (HP835) 903 34 26

Recker (6-10 HP835/325s) 1386 5.4 282

SIMD (8K CM2) 5761 3.4 1694

SIMD (16K CM2) 5761 1.7 3388

SIMD (32 K CM2) 5761 0.9 6401

1.7 Conclusion

This paper presents an algorithm on a general purpose parallel computer that can be used
to calculate radiosity e�ciently. More processors can be exploited without any bottlenecks
resulting from the algorithm. Performance scales linearly with the number of processors.
The algorithm spends most of its time computing form factors between patches and thus
particular attention has been paid to the visibility problem. In addition, subdivision can be
performed adaptively based on radiosity di�erences. Adaptive subdivision is very e�cient
due to the ability to exploit fast parallel operators for accumulating radiosity information
at element vertices. The ray tracing kernel used in this algorithm is currently exploited
both to test visibility and as a second pass to add specular information to the scene. It
can also be used as a standard ray tracer [27].

Further work could incorporate the subdivision criteria of Hanrahan et al and/or use
extended form factors [28]. With the current algorithm the ground work is laid to use the
available compute power of massively parallel architectures for the huge computational
needs of more complete solutions to the rendering equation [21]. Visibility computations
still consume the largest part of the overall execution time. In this area in particular we
expect major improvements since the current visibility module does not yet incorporate
many of the customary optimizations known from the raytracing literature.

Acknowledgements:

Special thanks to Lew Tucker and Jim Salem who provided the atmosphere for this
research to occur at Thinking Machines and to Matt Fitzgibbon who has been a constant
source of help and suggestions. The rest of the Viz Team including Karl Sims, Gary
Oberbrunner and Michael Johnson were inspiring friends and co-workers, and this work
could never have been done without them.

1. Fast Radiosity Using A Data Parallel Architecture 11

1.8 References

[1] Daniel Baum and J.Winget S. Mann, K. Smith. Making Radiosity Usable: Automatic
Preprocessing and Meshing Techniques for the Generation of Accurate Radiosity
Solutions. ACM Computer Graphics, 25(4):51{60, 1991.

[2] Daniel Baum and James Winget. Real Time Radiosity through Parallel Processing
and Hardware Acceleration. Proceedings of the ACM 1990 Symposium on Interactive
3D Graphics, 24(2):67{75, 1990.

[3] Guy Blelloch. Vector Models for Data Parallel Computing. Arti�cial Intelligence
Series. MIT Press, Cambridge, Massachusetts, 1990.

[4] A. Campbell and D. Fussel. Adaptive Mesh Generation for Global Di�use Illumina-
tion. ACM Computer Graphics, 24(4):155{163, 1990.

[5] Alan Chalmers and D. Paddon. Parallel Processing of Progressive Re�nement Ra-
diosity Methods. Proceedings of Second Eurographics Workshop on Rendering, May
1991.

[6] John Cleary, Brian Wyvill, Graham Birtwistle, and Reddy Vatii. Multiprocessor
Ray-tracing. Computer Graphics Forum, 5:3{12, 1986.

[7] Michael Cohen, Eric Chen, John Wallace, and Don Greenberg. A Progressive Re-
�nement Approach to Fast Radiosity Image Generation. ACM Computer Graphics,
22(4):75{84, 1988.

[8] Michael Cohen and Don Greenberg. The Hemi-cube: A Radiosity Solution for Com-
plex Environments. ACM Computer Graphics, 19(3):31{40, 1985.

[9] Michael Cohen, Don Greenberg, D. Immel, and P. Brock. An E�cient Radiosity
Approach for Realistic Image Synthesis. IEEE Computer Graphics and Applications,
January 1986.

[10] S. Coquillart. An Improvement of the Ray-tracing Algorithm. Proceedings Euro-
graphics, pages 77{88, 1985.

[11] Hubert C. Delaney. Ray Tracing on a Connection Machine. Proceedings of the 1988
ACM/INRIA. International Conference on Supercomputing, pages 659{667, 1988.

[12] A. Fujiomoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray Tracing System.
IEEE Computer Graphics and Applications, April 1986.

[13] Andrew Glassner. Space Subdivision for Fast Ray Tracing. IEEE Computer Graphics
and Applications, October 1984.

[14] Cynthia Goral, Ken Torrance, Don Greenberg, and B. Battaile. Modeling the Inter-
action of Light between Di�use Surfaces. ACM Computer Graphics, 18(3):213{222,
1984.

[15] Don Greenberg, Michael Cohen, and Ken Torrance. Radiosity: A Method for Com-
puting Global Illumination. The Visual Computer, 2:291{297, 1986.

12 Steven M. Drucker, Peter Schr�oder

[16] P. Guitton, J. Roman, and C. Schlick. Two Parallel Approaches for a Progressive
Radiosity. Proceedings of Second Eurographics Workshop on Rendering, May 1991.

[17] Eric Haines and John Wallace. Shaft Culling for E�cient Ray-traced Radiosity.
Proceedings of Second Eurographics Workshop on Rendering, May 1991.

[18] Pat Hanrahan, David Salzman, and Larry Aupperle. A Rapid Hierarchical Radiosity
Algorithm. ACM Computer Graphics, 25(4):197{206, 1991.

[19] Paul S. Heckbert. Adaptive Radiosity Textures for Bidirectional Ray Tracing. ACM
Computer Graphics, 24(4):145{154, 1990.

[20] Danny W. Hillis. The Connection Machine. MIT Press, Cambridge, Massachusetts,
1985.

[21] James T. Kajiya. The Rendering Equation. ACM Computer Graphics, 20(4):143{
150, 1986.

[22] Don P. Mitchell. Spectrally Optimal Sampling for Distribution Ray Tracing. ACM
Computer Graphics, 25(4):157{164, 1991.

[23] Claude Puech, Francois Sillion, and C. Vedel. Improving Interaction with Radiosity-
based Lighting Simulation Programs. Proceedings of the ACM 1990 Symposium on
Interactive 3D Graphics, 24(2):51{58, 1990.

[24] W. Purgathofer and M. Zeiller. Fast Radiosity by Parallelization. Proceedings Euro-
graphics Workshop on Photosimulation, Realism, and Physics, pages 173{185, 1990.

[25] R. Recker, D. George, and D. Greenberg. Acceleration Techniques for Progressive
Re�nement Radiosity. Proceedings of the ACM 1990 Symposium on Interactive 3D
Graphics, 24(2):59{64, 1990.

[26] I. Scherson and E. Caspary. Multiprocessing for Ray Tracing: a Hierarchical Self-
Balancing Approach. The Visual Computer, 4, 1988.

[27] Peter Schr�oder and Steven Drucker. A Data Parallel Algorithm for Raytracing of
Heterogenous Databases. Proceedings of Graphics Interface '92, pages 167{175, May
1992.

[28] Francois Sillion and Claude Puech. A General Two-Pass Method Integration Specular
and Di�use Re
ection. ACM Computer Graphics, 23(3):335{344, 1989.

[29] C. Vedel and C. Puech. A Testbed for Adaptive Subdivision in Progressive Radiosity.
Proceedings of Second Eurographics Workshop on Rendering, May 1991.

[30] John Wallace, Michael Cohen, and Don Greenberg. A Two Pass Solution to the
Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods. ACM
Computer Graphics, 21(4):311{320, 1987.

[31] John Wallace, K.A. Elmquist, and Eric Haines. A Raytracing Algorithm for Pro-
gressive Radiosity. ACM Computer Graphics, 23(3):315{324, 1989.

[32] Turner Whitted. An Improved Illumination Model for Shaded Display. Communica-
tions of the ACM, 23(6):343{3349, 1980.

