
ar
X

iv
:q

ua
nt

-p
h/

05
08

17
6v

2
 1

2
Ja

n
20

06

Quantum Information and Computation, Vol. 0, No. 0 (2005) 000–000
c© Rinton Press

A flow-map model for analyzing
pseudothresholds in fault-tolerant quantum computing

Krysta M. Svore

Columbia University, Dept. of Computer Science, 1214 Amsterdam Ave. MC:0401

New York, NY 10027

Andrew W. Cross

Massachusetts Institute of Technology, Dept. of Electrical Engineering, 77 Massachusetts Ave.

Cambridge, MA 02139

Isaac L. Chuang

Massachusetts Institute of Technology, Dept. of Electrical Engineering, 77 Massachusetts Ave.

Cambridge, MA 02139

Alfred V. Aho

Columbia University, Dept. of Computer Science, 1214 Amsterdam Ave. MC:0401

New York, NY 10027

Received (received date)
Revised (revised date)

An arbitrarily reliable quantum computer can be efficiently constructed from noisy com-
ponents using a recursive simulation procedure, provided that those components fail with
probability less than the fault-tolerance threshold. Recent estimates of the threshold are

near some experimentally achieved gate fidelities. However, the landscape of threshold
estimates includes pseudothresholds, threshold estimates based on a subset of compo-
nents and a low level of the recursion. In this paper, we observe that pseudothresholds are
a generic phenomenon in fault-tolerant computation. We define pseudothresholds and
present classical and quantum fault-tolerant circuits exhibiting pseudothresholds that
differ by a factor of 4 from fault-tolerance thresholds for typical relationships between
component failure rates. We develop tools for visualizing how reliability is influenced by
recursive simulation in order to determine the asymptotic threshold. Finally, we conjec-
ture that refinements of these methods may establish upper bounds on the fault-tolerance
threshold for particular codes and noise models.

Keywords: Fault-Tolerance

Communicated by : to be filled in by the Editorial

1 Introduction

A quantum computer can potentially solve certain problems more efficiently than a clas-
sical computer [1, 2, 3]. However, quantum computers are likely to be engineered from inher-
ently noisy components, so any scalable quantum computer system will require quantum error
correction and fault-tolerant methods of computation. As candidate quantum device tech-
nologies mature, we need to determine component failure probabilities necessary to achieve
scalability. The fault-tolerance threshold for gate and memory components is particularly in-
teresting because arbitrarily reliable computations are possible if the circuit components have
failure rates below the threshold. Given detailed knowledge of the fault-tolerance thresh-

1

http://arXiv.org/abs/quant-ph/0508176v2

2 A flow-map model for analyzing pseudothresholds . . .

old and its associated trade-offs, proposals for fault-tolerant quantum computation can be
critically evaluated.

The concept of a fault-tolerance threshold has its origins in the classical theory of compu-
tation. In the 1950’s, von Neumann showed that it is possible to achieve a reliable classical
computation with faulty components provided that the failure probability of each component
is below some constant threshold probability that is independent of the circuit size and the
desired noise rate [4]. Similarly, concatenated coding and recursive error correction can be
used to achieve reliable quantum computation. Concatenation is the process of encoding
physical bits of one code as logical bits of another code. It is now well-known that using a
single-error-correcting concatenated coding scheme with L levels of recursion, the maximum
failure probability γcircuit of a fault-tolerant circuit can be estimated as a function of the max-
imum failure probability γ of a basic component using the fault-tolerance threshold inequality

γcircuit(γ)

γth
≤

(
γ

γth

)2L

, (1)

where γth is the asymptotic threshold [5]. When Eq (1) holds with equality, we call it the
fault-tolerance threshold equation. The final circuit failure probability γcircuit decreases as a
doubly exponential function of L if γ < γth.

1995 2000 2005
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Year

E
st

im
at

e

Fig. 1. Plots of quantum threshold estimates for stochastic noise models between the years 1996
and 2004 [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Stars denote numerical estimates and circles denote
all others. Most of these estimates apply to the [[7, 1, 3]] code, though the pair of thresholds at
and above 10−2 apply to surface code memories and post-selected quantum computation. The
networks vary over unitary networks, nearest-neighbor networks, and various optimized networks.
Some estimates apply only when there are no memory errors, and others apply only for the Clifford-
group gates. The dark swath designates the large interval that contains all of these estimates.

One branch of fault-tolerant quantum computing research has focused on estimating the
fault-tolerance threshold in the fault-tolerance threshold inequality. Figure 1 shows the range
of quantum threshold estimates reported in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The estimates,
which vary between 10−6 and 10−2, include numerical and analytical results for varying
networks for the [[7, 1, 3]] code, such as optimized networks, unitary networks, and nearest-
neighbor networks. They also include results for surface code memories and post-selected
quantum computing models that yield thresholds above 10−2. Numerical estimates tend to
be more optimistic than their analytical counterparts.

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 3

γ

γ ci
rc

ui
t

L = 0
L = 1
L = 2
L = 3
L → ∞

γ

γ ci
rc

ui
t

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 2. (a) An ideal threshold reliability information plot (TRIP) follows Eq (1). The crossing
point between the L = 0 line and the L = 1 curve, marked by the asterisk on the thick vertical
line, is the fault-tolerance threshold. All of the curves cross at the same point. (b) A real TRIP
does not follow Eq (1). The crossing points between the L = 0 line and the other curves are
all different. These points, marked by circles, correspond to a sequence of pseudothresholds that
converges to the real fault-tolerance threshold marked by the asterisk on the thick vertical line.

If there is a single type of component that is replaced using the same rule each time,
the fault-tolerance threshold inequality, Eq (1), becomes an equality. This leads to a very
simple prediction shown in Figure 2(a): if γ = γth, then γcircuit = γth. This fact is taken
as the basis of several numerical analyses of the fault-tolerance threshold today. Specifically,
this simplification is attractive for computationally expensive numerical simulations because
it implies that the threshold can be determined by finding the smallest nonzero value of γ
that solves γcircuit(γ) = γ.

Realistically, however, there are multiple types of components that are each replaced using
different rules, so the first crossing point does not accurately indicate the fault-tolerance
threshold. Figure 2(b) more accurately portrays the effect of recursive simulation. As the
recursion level increases, for example, an exponentially growing number of wires must be
introduced between gates. When these wires are unreliable, as they likely will be in quantum
circuits, successive recursion levels can cause errors to increase even though γ is beneath the
apparent threshold. Thus, recursive simulation changes the relative proportions of each type
of component and what appears to be the threshold at one level of recursion may be far
from the asymptotic threshold. This sequence of crossing points cannot be used to describe
the proper conditions under which a system is scalable. Rather, these crossing points are
pseudothresholds [6].

When multiple types of components are replaced using different rules, each component
type must be parameterized by a separate failure probability. Hence, opportunity exists for
engineering trade-offs that still preserve scalability. These trade-offs can be quantified given
the asymptotic threshold, families of pseudothresholds, and their relation to the shape of the
set of subthreshold component parameters.

In this paper, we present practical methods for distinguishing pseudothresholds from
asymptotic thresholds. In particular, we explore the conditions under which pseudothresholds
exist and clarify their meaning. We embark on this exploration carrying two tools. The first
tool is a generalization of Figure 2(b), which we call the threshold reliability information plot
(TRIP). In a TRIP, each curve represents the failure probability of a particular component
at concatenation level L and crosses the L = 0 line once. The crossing of a level-L curve
and the level-(L = 0) line yields the rightmost edge of an interval on the γ–axis below which
reliability is improved by concatenation. The crossing point is a level-L pseudothreshold.

The second tool is a threshold information flow diagram (TIFD) that shows how recursive
simulation can change the reliability of a particular set of noisy components. A flow is
a normalized vector field that can be visualized as a collection of arrows. Each arrow’s
base is anchored to a point that represents the current failure probability of the (composite)

4 A flow-map model for analyzing pseudothresholds . . .

0 0.06 0.12 0.18 0.24 0.3
0

0.06

0.12

0.18

0.24

0.3

γ
u
0

γ v0

Fig. 3. Threshold information flow diagram (TIFD) corresponding to the following recursive
simulation procedure: gates u and v at level-(L − 1) are both replaced by fault-tolerant gates at
level L that can withstand a single level-(L − 1) gate failure. However, u and v compute different
functions, so their fault-tolerant implementations are different. In this example, the fault-tolerant
u contains two u gates and two v gates, and the fault-tolerant v contains three u gates and three v
gates. Arrows on this TIFD indicate how the recursive simulation procedure changes the effective
failure probabilities of u and v. For some failure probabilities, recursive simulation has no effect.
These fixed points are marked by circles, and one of them determines the fault-tolerance threshold,
indicated by a thick black line. Sample trajectories begin at the squares and flow along the thick
dashed lines, where the diamonds mark the sequence of points for each level L of concatenation.

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 5

components. The direction of each arrow indicates the direction the anchor point moves
at the next level of recursion. In contrast to the TRIP, the TIFD exposes how all of the
component failure probabilities change in a recursive simulation. If the recursive simulation
is self-similar, i.e., if the failure probability of a level-L component can be expressed in terms
of the failure probabilities of level-(L− 1) components, particularly with respect to the noise
model, then the TIFD indicates whether or not recursive simulation increases or decreases
each component’s failure probability, allowing us to compute and visualize the fault-tolerance
threshold.

For example, Figure 3 shows a TIFD for a hypothetical pair of faulty basic gates u and v.
Because u and v compute different functions, their fault-tolerant implementations use different
numbers of basic u and v gates. In this example, the fault-tolerant u contains two u gates and
two v gates, connected in some fashion so that the fault-tolerant u can withstand one internal
gate failure and still produce a “good” output. If basic gates u and v fail independently with
probabilities γu and γv, respectively, then the failure probability of the fault-tolerant u gate
is

1 − (1 − γu)2(1 − γv)2 − 2γu(1 − γu)(1 − γv)
2 − 2γv(1 − γv)(1 − γu)2. (2)

Similarly, the fault-tolerant v gate contains three u gates and three v gates and can withstand
any single failure, giving

1 − (1 − γu)3(1 − γv)3 − 3γu(1 − γu)2(1 − γv)
3 − 3γv(1 − γv)

2(1 − γu)3. (3)

There are many such hypothetical examples. In Section 3, we give a more realistic example
that demonstrates how a TIFD is calculated based on an actual circuit.

Continuing with this example, the effective failure probabilities of u and v after level-
1 recursive simulation both depend on the initial failure probabilities γ0

u and γ0
v of u and

v, shown on the horizontal and vertical axes of the TIFD. Consider the following scenario.
The v gate initially fails with probability 0.2 and the u gate does not fail at all. A square
marks this point on the TIFD. The arrow at this point on the TIFD points down and to the
right, indicating that a level-1 recursive simulation will improve v but make u worse. The
dashed line connects the initial failure probabilities to the failure probabilities of the level-
1 simulated gates (at about (0.04, 0.1)). The dashed path shows that subsequent recursive
simulation makes u and v arbitrarily reliable.

The TIFD in Figure 3 also indicates the set of initial failure probabilities that is below
threshold. The boundary of this set is determined by a fixed point of the recursive simulation
procedure. This fixed point is marked with a circle, and the thick dark line passing through
this circle is the invariant set that indicates the fault-tolerance threshold. For example, an
ideal v gate and a u gate that initially fails with probability 0.28 (marked by a square) is
above threshold. This point flows nearly parallel to the invariant line at first, but ultimately
escapes from the boundary of the TIFD after about 7 levels of recursive simulation.

We organize the paper as follows. In Section 2, we first define the fault-tolerance threshold
for concatenated flow maps, then we define pseudothresholds and describe their importance.
We calculate, in Section 3, a family of pseudothresholds and distinguish them from the fault-
tolerance threshold estimate for the classical repetition code. In Section 4, we study the
[[7, 1, 3]] CSS code, again comparing the fault-tolerance threshold against families of pseu-
dothresholds. We suggest techniques for finding the threshold in Section 5 that expand upon
our use of the TIFD. We conclude in Section 6 with open questions.

2 Pseudothresholds

In Section 1, we discussed the phenomenon of pseudothresholds without introducing many
mathematical concepts. In this section, we clarify what we mean by defining both the fault-
tolerance threshold and the pseudothreshold sequences for a set of flow maps.

2.1 The fault-tolerance threshold

The threshold is related to the number of “bad” fault paths through a circuit. Assume
faults occur at discrete locations and times with probability dependent on the location type.
The failure probability of the circuit can then be determined as a function of failure proba-
bilities of types of locations. For a code correcting t errors, the probability that one of these

6 A flow-map model for analyzing pseudothresholds . . .

bad fault paths occurs is no more than Cγt+1, where γ is the largest failure probability of
any type of location in the circuit and C is the number of ways to choose t+1 failed locations
out of N total locations. The fault-tolerance threshold satisfies

γth ≥

(
1

C

)1/(t+1)

, (4)

since γth is the fixed point of the map γcircuit(γ) = Cγt+1.
However, we must recognize that the fault-tolerant implementations of each location type

differ, so we must express the failure probability of each fault-tolerant location type as a
function of the location types it contains. In other words, we construct (approximations
to) the flow maps for the given fault-tolerant implementations and noise model [6, 9]. In
particular, if each type of location ℓ is assigned an initial failure probability γ0

ℓ and if there
are n different types of locations, the approximate failure probability of location type ℓ after
one level of recursive simulation is a function Γ1

ℓ of all n of the initial failure probabilities.
Therefore, Γ1

ℓ is called the flow map for location type ℓ.
Considering all types of locations l, the functions Γ1

ℓ are the coordinates of a flow map Γ1.
The flow map takes the failure probabilities of the n location types to their new values after
one level of recursive simulation. The failure probabilities of the L-simulated location types
are (approximately) related to the initial failure probabilities γ0

ℓ by the composed flow map,

ΓL ≈ Γ1 ◦ · · · ◦ Γ1
︸ ︷︷ ︸

L times

. (5)

Ideally, the replacements can be constructed so that Eq (5) is an equality. This is the case for
the example in Section 3 but not in Section 4. Let ΓL

ℓ denote the coordinate function of ΓL

associated with location ℓ, and let Γ0
ℓ be the initial function that selects the ℓ coordinate. In

other words, ΓL
ℓ is the failure probability of location ℓ after L levels of recursive simulation.

The function ΓL
ℓ is a concatenated flow map for location type ℓ because we can use Eq (5) to

derive (an approximation to) ΓL
ℓ . The map ΓL is the concatenated flow map.

A vector of failure probabilities ~γ for the n location types is below threshold if all n of the
failure probabilities approach zero as the concatenation level approaches infinity,

lim
L→∞

ΓL(~γ) = ~0. (6)

Let T be the set of these vectors that are below threshold, and let Cǫ be the n-dimensional
cube of edge length ǫ with one corner at the origin,

Cǫ ≡ {~γ ∈ [0, 1]n | γℓ < ǫ ∀ℓ, ǫ ∈ (0, 1]} (7)

The cube contains all of the vectors whose worst failure probability is less than ǫ. The fault-
tolerance threshold or asymptotic threshold is the size of the largest cube contained in T , i.e.,

γth ≡ sup{ǫ ≥ 0 | Cǫ ⊆ T }. (8)

If all component failure probabilities are beneath this probability, then composing the flow
maps reduces the failure probability arbitrarily close to zero.

2.2 Definition of pseudothresholds

Before we define pseudothresholds, we introduce the concept of a setting. Settings param-
eterize a set of location failure probabilities by a single parameter so that we can think of
ΓL

ℓ as a function of this parameter. A setting is a function from a single failure probability
parameter to a vector of n failure probabilities, one for each location. For example, the di-
agonal setting g(γ) = (γ, . . . , γ) is used in analyses that assign each location the same initial

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 7

failure probability. The Steane setting g(γ) is another setting that sets all location failure
probabilities to γ except for a waiting bit which is assigned γ/10 [14] (in this reference, a
waiting bit is assigned a failure probability of γ/100).

Suppose there are n types of locations. We define a pseudothreshold γL
ℓ,g for a fixed level

of recursion L > 0, a location ℓ, and a setting g as the least nonzero solution to

ΓL
ℓ (g(γ)) = γ, (9)

This definition presents the (L, ℓ, g)-pseudothreshold as a fixed-point calculation for a function
derived from the flow map Γ. The left-hand size of Eq (9) can be viewed as one of the curves
plotted in Figure 2(a), and the right hand size can be viewed as the L = 0 line. The point
where these curves intersect is a pseudothreshold.

For fixed location ℓ and setting g, the sequence γL
ℓ,g is not necessarily constant as a function

of L. In fact, the sequence is typically not constant, meaning that pseudothresholds are a
generic phenomenon. More specifically, let γ0 be any pseudothreshold of the flow map Γ
for a setting g, and let ~γ0 be the constant vector (γ0, . . . , γ0). The pseudothreshold γ0 is
independent of location type and recursion level only if the setting satisfies Γ(g(γ0)) = ~γ0 and
~γ0 is a fixed point of Γ.

Despite the fact that pseudothresholds are not thresholds, pseudothresholds are interesting
because only a fixed level of recursive simulation will be used in practice. If the goal is to
construct a reliable fault-tolerant location type ℓ, and all of the location types have the
same initial reliability (i.e., g(γ) = (γ, . . . , γ)), then choosing γ to be less than the (L, ℓ, g)-
pseudothreshold makes the L-simulated gate location type ℓ more reliable than the initial
gate. However, some caution must be applied to pseudothresholds as well because the (1, ℓ, g)-
pseudothreshold and the (2, ℓ, g)-pseudothreshold can be substantially different.

In the following sections, we present an illustrative example of classical pseudothresholds
followed by a more detailed example of quantum pseudothresholds. We show by means of
these examples that pseudothresholds are generic to all multiparameter maps. In addition,
we highlight that threshold estimates should account for multiple location types and higher
levels of code concatenation to achieve more realistic threshold results.

3 Classical Pseudothresholds for the [3, 1, 3] Code

In this section, we analyze a classical example to build intuition about the differences be-
tween pseudothresholds and thresholds. We study pseudothresholds for classical fault-tolerant
components based on the [3, 1, 3] repetition code. We use the threshold reliability information
plot (TRIP) of the [3, 1, 3] code to identify pseudothresholds. We then characterize the flow
map for this example using a threshold information flow diagram (TIFD).

3.1 The [3, 1, 3] code and its failure probability map

In this example, the classical single-error-correcting [3, 1, 3] repetition code, also called
triple modular rendundancy (TMR), is used to encode a single bit in three bits by copying
it three times. To make a fault-tolerant classical wire using this code, three location types
Ω = {w, v, f} are required, where

• w : {0, 1} → {0, 1} defined by w(a) = a is a wire.

• v : {0, 1}3 → {0, 1} defined by v(a, b, c) = ab ⊕ bc ⊕ ca is a voter.

• f : {0, 1} → {0, 1}3 defined by f(a) = (a, a, a) is a fanout.

The superscripts above indicate the Cartesian product. The wire w is analogous to a wait-
ing bit in a quantum fault-tolerance analysis, and the voter v and fanout f perform error
correction.

A noisy version of each location type is defined as follows. A noisy wire flips the output
bit with probability γw. A noisy voter incorrectly indicates the output bit with probability
γv. For simplicity, we choose to model the fanout gate to be noiseless.

8 A flow-map model for analyzing pseudothresholds . . .

To recursively construct a fault-tolerant wire, replacement rules are used. A replacement
rule is a pair (b, R(b)) where b ∈ Ω and R(b) is a circuit over Ω that specifies how to replace
a level-(L − 1) location at level L. R(b) is called the replacement of b and must preserve the
functionality of the original location b. We construct the replacement rules to mirror replace-
ment rules for quantum circuits, in which a circuit location is replaced by error correction
followed by a fault-tolerant implementation of the location.

The following steps suggest how to ensure proper component connectivity for a code
encoding a single bit. First, replace b directly by D⊗no ◦ R(b) ◦ E⊗ni where D and E are an
ideal decoder and encoder. We must have D ◦ E equal to the identity gate on a single bit,
where the open circle ◦ denotes function composition. The numbers ni and no are the number
of input and output bits of b, respectively. After replacing each component in this manner,
make a second pass over the circuit and replace all pairs D ◦ E by bundles of wires. Finally,
replace the remaining encoders and decoders by respective fault-tolerant implementations of
input preparation and output readout. The resulting circuit components will be properly
connected, and the circuit will not contain decoding and re-encoding components since these
components are not typically fault-tolerant.

For this example, a wire w is replaced by error correction followed by a transversal im-
plementation of the wire, i.e., a wire is applied to each bit of the encoded input, shown in
Figure 4. Note the first dashed box indicates the classical error correction, which involves w, v,
and f location types, and the second dashed box indicates the fault-tolerant implementation
of the original location. Similarly, Figures 5(a) and 5(b) show the fault-tolerant replacement
of v and f , respectively.

f

;;
;;

;;
;;

--
--

--
--

--
--

--
- v w

w // f

��������

;;
;;

;;
;;

v w

f

��������

���������������
v w

Fig. 4. Replacement rule for a wire w. The fanouts f and voters v perform error correction.
The first dashed box indicates classical error correction using fanouts f and voters v. The second
dashed box indicates the fault-tolerant implementation of the wire w.

Using the replacements R(w) and R(v), the failure probabilities Γ1
w(~γ) and Γ1

v(~γ) can be
found, where the initial vector of failure probabilities is ~γ = (γ0

w, γ0
v). Failure is defined to

occur when the component’s output does not decode to the correct value. The wire failure
probability is easily calculated by counting the number of ways each configuration of errors
occurs. For example, three voters fail in one way, three voters and one wire fail in three ways,
two voters fail in three ways, etc. Rewriting the resulting polynomial in distributed form gives

Γ1
w(~γ) = 6γvγw + 3γ2

v + 3γ2
w − 2γ3

v − 18γ2
vγw + 12γ3

vγw − 18γvγ
2
w

+ 36γ2
vγ2

w − 24γ3
vγ2

w − 2γ3
w + 12γvγ

3
w − 24γ2

vγ3
w + 16γ3

vγ3
w, (10)

where the superscript 0 has been dropped for notational convenience.
Replacing the wire failure probability γ0

w by γ0
v and the voter failure probability γ0

v by the
probability of error correction failure 3(γ0

v)2(1 − γ0
v) + (γ0

v)3 gives

Γ1
v(~γ) = 3γ2

v + 16γ3
v − 39γ4

v − 126γ5
v + 474γ6

v − 288γ7
v − 936γ8

v

+ 2080γ9
v − 1824γ10

v + 768γ11
v − 128γ12

v , (11)

where the superscript has been dropped again in the last expression.

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 9

f

;;
;;

;;
;;

--
--

--
--

--
--

--
- v

((
((

((
((

((
((

((
((

((
((

((

f

��������

;;
;;

;;
;;

v

((
((

((
((

((
((

((
((

((
((

((

f

��������

���������������
v

((
((

((
((

((
((

((
((

((
((

((

99
99

99
99

9 f

;;
;;

;;
;;

--
--

--
--

--
--

--
- v v

v // f

��������

;;
;;

;;
;;

v v
��������� f

��������

���������������
v v

f

;;
;;

;;
;;

--
--

--
--

--
--

--
- v

����������������������

f

��������

;;
;;

;;
;;

v

����������������������

f

��������

���������������
v

����������������������

f

����������������

�����������

��������

f

���������

77
77

77
77

7
// f

���������

77
77

77
77

7

f

++
++

++
++

++
++

++
++

00
00

00
00

00
0

==
==

==
==

Fig. 5. (a) Replacement rule for a voter v. The first dashed box indicates classical error correction

using fanouts f and voters v. The second dashed box indicates the fault-tolerant implementation
of the voter v. (b) Replacement rule for a fanout f . Because we assume fanouts are noiseless, the
replacement is just three fanout gates f .

The flow maps Eq (10) and Eq (11) are exact and satisfy Eq (5) with equality, so they
contain enough information to determine the asymptotic threshold. They can also be used
to determine a bound on the number of “bad” fault paths, as discussed in Section 2, by
considering only the low-order terms in the flow maps:

Γ1
w(~γ) ≤ 3γ2

w + 3γ2
v + 6γwγv (12)

Γ1
v(~γ) ≤ 3γ2

v + 16γ3
v = (3 + 16γv)γ

2
v . (13)

These bounds clarify the relative contribution each component makes to the failure probability
of a fault-tolerant component. They also suggest a conservative bound of 1/12 on γth. This
can be calculated by assuming that γv = γw, solving for the fixed point of the right hand side
of each inequality, and taking the least such fixed point.

3.2 TRIPs for the [3, 1, 3] code

What is the behavior of the wire and voter failure probabilities as the concatenation level
L increases? TRIPs based on Eqs (10)–(11) provide a visualization of each level crossing point
for the two types of locations.

Figures 6 and 7 are TRIPs for the voter and wire locations, respectively. From Figure 6,
it is clear the voter probability Γ1

v(~γ) is a one-parameter map, and thus should resemble the
TRIP for the fault-tolerance threshold equation (Figure 2(a)). Since Γ1

v(~γ) is a function of
only γ0

v for all L, each ΓL
v (~γ) intersects at the same fixed-point of the map. This fixed point

γth, indicated by a thick vertical line, is the L = ∞ pseudothreshold and the asymptotic
threshold. It occurs at approximately 0.246. Note that the L = ∞ pseudothreshold for a
particular location and the asymptotic threshold are not always equal, but they happen to
be in this example.

Even for a classical setting, there is a difference between pseudothresholds and the asymp-
totic threshold γth. Figure 7 shows the TRIP for the wire location at levels L = 0, 1, 2, 3,∞.
Here, unlike in the TRIP for the voter location, pseudothresholds appear in addition to an
asymptotic threshold. This is because the replacement R(w) for a wire includes locations of
type w, v, and f , creating a two-parameter map (fanouts are noiseless) that exhibits changing
behavior with each concatenation level L. The curves now cross the L = 0 line at differ-
ent points. Each of these crossing points in the TRIP is a level-L pseudothreshold. As we

10 A flow-map model for analyzing pseudothresholds . . .

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Γ
v
0

Γ vL

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 6. TRIP for a voter location for the [3, 1, 3] code for L = 0, 1, 2, 3,∞. Because ΓL
v is a function

of only γ0
v constructed by recursive application of R(v), all of the curves ΓL

v intersect at the same
point. This point is the fixed-point γth ≈ 0.246 of the map and is indicated by an asterisk.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Γ
w
0

Γ wL

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 7. TRIP for a wire location for the [3, 1, 3] code for L = 0, 1, 2, 3,∞ using the diagonal setting
γ0

w = γ0
v . Because ΓL

w is a function of both γ0
w and γ0

v constructed by recursive composition, the
curves ΓL

w cross the L = 0 line at different points. Each of these points is a level-L pseudothreshold
indicated by a circle, and the sequence of pseudothresholds γ1

w, γ2
w , . . . , converges to the fault-

tolerance threshold γth ≈ 0.246 indicated by an asterisk.

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 11

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

γ
w
0

γ v0

Fig. 8. TIFD for γw and γv for the [3, 1, 3] code. The fixed points are indicated by circles.
The region [0, 1/2) × [0, γth) enclosed by a thick line is the set of points below threshold, where
γth ≈ 0.246. Two sample trajectories begin at the squares and flow along the thick dashed lines,
where the diamonds indicate the sequence of points as L increases, toward (0, 0) and (1/2, 1/2).

repeatedly replace the wire using R(w), the number of voter locations begins to dominate,
so the crossing point approaches the voter threshold, which corresponds to the asymptotic
threshold. The difference between the asymptotic threshold γth ≈ 0.246 and the level-1 wire
location pseudothreshold γ1

w ≈ 0.129 is 0.117, or γth ≈ 1.9 × γ1
w.

3.3 TIFDs for the [3, 1, 3] code

Given that pseudothresholds can be so different from γth, can γth be determined from just
one application of the flow map? In Section 1, it was suggested that a TIFD provides an
informative view of the effect of recursive simulation. Although a TRIP provides a visualiza-
tion of the asymptotic behavior, it hides the fact that Γ1 acts on a multidimensional space.
When Γ1 is chosen such that Eq (5) is an equality, Γ1 contains all of the information about
the flow since ΓL can be expressed in terms of Γ1. A TIFD shows where each point flows
under repeated application of Γ1 without iterating the map explicitly.

In Figure 8, a TIFD for wire and voter failure probabilities on the unit half square is shown.
The arrows represent the vectors Γ1(~γ) − ~γ, which give the probability flow under recursive
simulation. There are five fixed points of the map: (0, 0), (1/2, 0), (1/2, γth), (1/2, 1/2), and
(1, 0), where γth ≈ 0.246 cannot be expressed in radicals. Circles mark four of these fixed
points. The subthreshold region T is [0, 1/2) × [0, γth), indicated by the thick black box.
Three corners of the subthreshold region are fixed points of the map. The fault-tolerance
threshold γth is the size of the largest “cube”, a square in this case, that is contained in the
subthreshold region.

First, if γ0
w = 0 and γ0

v > 0, then the flow draws these points off of the γ0
v–axis. This

occurs because the wire replacement rule R(w) contains both voter and wire locations, so the
failure probabilities “mix”. Second, if γ0

v = 0, then any point γ0
w < 1/2 flows to the origin

because the voters amplify any bias toward success. Third, the voter failure probability
Γ1

v(~γ) is independent of γ0
w, so the voter probability is a simple one-parameter map under

replacement. If γ0
v < γth, the map’s fixed point, then the voter probability flows toward the

γ0
w–axis. Finally, if γ0

v < γth and γ0
w < 1/2, then initially the wire failure probability may

12 A flow-map model for analyzing pseudothresholds . . .

increase because the voters are not reliably correcting errors. However, the voters improve
with each iteration, so eventually this trend reverses. The voters begin correcting more errors
than they introduce, and all of these points flow toward the origin.

For the classical [3, 1, 3] code, the TIFD fully characterizes the threshold set T for three
reasons. First, deviated inputs, i.e., inputs that are not codewords, are corrected before
faults are introduced by the simulated gate locations. Second, the flow maps are the precise
component failure probabilities. Third, there is no phase noise in classical fault-tolerance, so
the parameters of the noise channel only change in the trivial way. Furthermore, the entire
flow is easily visualized since the TIFD is two-dimensional. Under these conditions, the TIFD
is an ideal tool for understanding and visualizing the process by which recursive simulation
improves reliability and exhibits a threshold.

4 Quantum Pseudothresholds

We have seen that pseudothresholds exist even in a simple classical fault-tolerance scheme.
In a quantum fault-tolerance scheme, the tools we have developed can now be applied to
determine sequences of quantum pseudothresholds. In this section, we study thresholds for
quantum fault-tolerance using the [[7, 1, 3]] CSS code. We follow the circuit construction
given in [14]. As in the classical example, TRIPs are again used to identify pseudothresholds
for the given location types using particular settings, allowing us to determine the reliability
achieved with each level of concatenation. In addition, we characterize the failure probability
map using TIFDs.

4.1 The [[7, 1, 3]] code and its flow map

The [[7, 1, 3]] quantum code encodes a single qubit in 7 qubits with distance 3, meaning
it corrects a general quantum error on a single qubit. The set of location types ℓ involved in
the error correction routine is Ω = {1, 2, w, 1m, p}:

• ℓ = 1: one-qubit gate

• ℓ = 2: two-qubit gate

• ℓ = w: wait (memory) location

• ℓ = 1m: one-qubit gate followed by a measurement [6], since the replacement rule for a
measurement contains no error correction and since measurements in the networks for
the 7-qubit code only appear after one-qubit gates

• ℓ = p: ancilla preparation location, which we model as a one-qubit gate for simplicity
[6]

We consider the depolarizing error model, where a location ℓ fails independently with
probability γℓ. In our probabilistic error model, we assume for a location failure γℓ on a single
qubit, a X ,Y , or Z error occurs with probability γℓ/3. The distinction between X ,Y , and Z
errors is used in the approximation analysis.

As in the classical case, we define a replacement rule for each type of location. We use
the same replacement rules as given in [6], where we replace each location by error correction
followed by a fault-tolerant implementation of the location. For example, a one-qubit gate is
replaced by error correction and a transversal one-qubit gate, as shown in Figure 9.

We use the same approach to derive the failure probability map as in the classical example,
with the caveat that we do approximate counting of the ways in which two or more errors
occur on the data qubits during the execution of the concatenated circuit. The composition
of this map approximates the behavior of the concatenated circuit. This means that threshold
results derived from this map are also approximate. The map does not account for incoming
errors since when failure probabilities are below threshold, the probability of incoming errors
should typically be small, and thus should not greatly affect the probability of two or more
errors on the data qubits. The details of the failure probability map are given in Section IV
B of [6].

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 13

EC

U

U

U

U // U

U

U

U

Fig. 9. Replacement rule for a one-qubit gate U . The replacement includes error correction (EC)
followed by a fault-tolerant implementation of the one-qubit gate U , indicated by a dashed box.

4.2 TRIPs for the [[7, 1, 3]] code

To determine pseudothresholds, we plot the reliability of each component at each level of
concatenation using the flow maps. Figures 10–12 show TRIPs for wait, one-qubit, and two-
qubit locations for the Steane setting g(γ) = (γ, γ, . . . , γ, γ/10), where the last component is
the wait location failure probability.

These results in this section are obtained using a flow map, but they are verified using
a Monte-Carlo simulation for one level of code concatenation. The Monte-Carlo simulation
method randomly generates faults within the fault-tolerant circuit representing the original
location according to the failure probabilities γℓ. These faults create errors that propagate to
the output of the circuit. A particular set of faults may or may not create too many errors at
the circuit’s output. By running on the order of one million simulations, we can estimate the
failure probability of the original location. The particular Monte-Carlo simulation includes
the ancilla preparation networks but does not model input errors so as to agree with the
assumptions under which the flow map is derived.

Figure 10 shows the TRIP for a wait location at levels L = 0, 1, 2, 3,∞. Since the flow map
is a multi-parameter map, the crossing points no longer cross the line L = 0 at the same point
and thus pseudothresholds appear at each level. As L increases, the level-L pseudothreshold
approaches an asymptotic threshold that depends on the location and setting. Note that the
region between the L = 1 curve and the L = 0 line is quite small for these initial conditions,
smaller than the region considered to be below the asymptotic threshold. This is similar
to the behavior of the classical wait location. The behavior is largely due to the Steane
setting – the level-1 simulation of the wait location includes other location types that have
been set to fail with probability 10 × γ0

w. However, as the level of concatenation of the wait
location increases, the trade-offs between the failure probabilities of the location types begins
to stabilize causing the level-4 pseudothreshold, for example, to be much larger and closer
to the asymptotic threshold. The level-1 pseudothreshold as calculated from the flow map
is 2.2 × 10−5 and the corresponding value from Monte-Carlo simulation is approximately

14 A flow-map model for analyzing pseudothresholds . . .

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

Γ0
w

ΓL w

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 10. TRIP for a wait location for L = 0, 1, 2, 3,∞ for the initial setting γ0
w = 1/10(γ0

i
), where

i indicates all location types except for a wait location. Circles indicate pseudothresholds and an
asterisk marks the threshold for this gate and setting. The pseudothresholds occur at probabilities
2.2 × 10−5, 3.0 × 10−5, and 3.4 × 10−5. The wait threshold for this setting is 3.6 × 10−5. This
corresponds to γ = 3.6 × 10−4 in the Steane setting.

2.4 × 10−5.
Figure 11 shows the TRIP for the one-qubit location type for levels L = 0, 1, 2, 3,∞.

The level-1 pseudothreshold is about 4.6 times greater than the asymptotic one-qubit gate
threshold since the replacement R(1) includes many wait locations, whose initial setting is
one-tenth of the initial one-qubit gate failure probability. The Monte-Carlo simulation gives
a level-1 pseudothreshold of approximately 1.3 × 10−3 versus an estimate of 1.4 × 10−3 from
the flow map.

Similarly, for a two-qubit gate location, the level-1 pseudothreshold is a factor of 2 larger
than the asymptotic two-qubit gate threshold (Figure 12). Note that the level-1 two-qubit
gate pseudothreshold is about half the size of the level-1 one-qubit gate pseudothreshold.
This is because error correction is required on two logical qubits and thus there are twice
the number of locations in a one-qubit gate replacement. The level-1 pseudothreshold here is
about 7.3 × 10−4 versus a Monte-Carlo estimate of about 6.4 × 10−4.

From the threshold reliability information plots (TRIPs), it is apparent that multi-parameter
maps and higher levels of concatenation are required to determine a threshold result. Across
location types, the largest level-1 pseudothreshold is approximately 40 times larger than the
smallest asymptotic gate threshold. The smallest asymptotic gate threshold is the memory
threshold, so it is appropriate to scale this gate threshold by 10 to eliminate artifacts from
the setting. The pseudothreshold-threshold factor then becomes 4.6 for this example.

4.3 TIFDs for the [[7, 1, 3]] code

We use the TIFD to characterize the flow of the maps based on the semi-analytical methods
of [6]. By using a TIFD instead of the TRIP, the flow of the failure probabilities as well
as pseudothresholds can be visualized. In the quantum case, however, the TIFD is a 4-
dimensional flow that is challenging to visualize. Instead, we take 2-dimensional projections
to determine the flow.

Figures 13–14 show TIFDs involving location types l = 1, 2, w. Figure 13 shows the
vector field Γ1(~γ)−~γ projected onto the γ1–γw plane. Note that the flows are partitioned by

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 15

0 0.5 1 1.5

x 10
−3

0

0.5

1

1.5
x 10

−3

Γ0
1

ΓL 1

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 11. TRIP for a one-qubit gate location for L = 0, 1, 2, 3,∞ for the initial setting γ0
w =

1/10(γ0

i
), where i indicates all location types except for a wait location. Circles indicate pseu-

dothresholds and an asterisk marks the threshold for this gate and setting. The pseudothresholds
occur at probabilities 1.4 × 10−3, 6 × 10−4, and 5 × 10−4. The one-qubit gate threshold for this
setting is 3 × 10−4.

0 1 2 3 4 5 6 7 8

x 10
−4

0

1

2

3

4

5

6

7

8
x 10

−4

Γ0
2

ΓL 2

L = 0
L = 1
L = 2
L = 3
L → ∞

Fig. 12. TRIP for a two-qubit gate location for L = 0, 1, 2, 3,∞ for the initial setting γ0
w =

1/10(γ0

i
), where i indicates all location types except for a wait location. Circles indicate pseu-

dothresholds and an asterisk marks the threshold for this gate and setting. The pseudothresholds
occur at probabilities 7.3 × 10−4, 4.9 × 10−4, and 4.2 × 10−4. The two-qubit gate threshold for
this setting is 3.4 × 10−4.

16 A flow-map model for analyzing pseudothresholds . . .

0 1 2

x 10
−4

0

1

2
x 10

−4

γ
1
0

γ w0

Fig. 13. TIFD projected onto the γ1–γw plane, where γ0

l
= 0 for all l except γ0

w and γ0

1
. The

arrows represent the vector field flow Γ1(~γ) − ~γ. The thick lines illustrate the separatrices. The
horizontal separatrix appears to have zero slope, but it intersects the γ0

1
-axis at about 10−2. The

asterisk marks the wait gate asymptotic threshold for the setting in which γw = γ and γi = 0 for
all other location types.

separatrices shown by the thick black lines. The map is independent of concatenation level in
our approximation, so this flow fully characterizes the behavior of the map. The γw threshold
found by the horizontal separatrix appears around 1.1 × 10−4. The asymptotic threshold
for the map restricted to the γw–axis is indicated by an asterisk on the γw–axis. Note the
separatrix indicates a wait location pseudothreshold.

Figure 14 is the TIFD projected onto the γ1–γ2 plane. Again, the flows form a separatrix
around γ2 = 2 × γ1. This is because there are two error correction routines in a two-qubit
gate replacement, compared to only one error correction routine in the replacement for a
one-qubit gate. The γ2 threshold appears along the other separatrix around 2.3× 10−3. The
asymptotic threshold restricted to the γ2–axis, indicated by the asterisk, is a factor of 3.8
below the pseudothreshold.

In the classical setting, the TIFD indicated the asymptotic threshold, since the map was
exact and only two-dimensional. However, it is evident from the TIFDs for the [[7, 1, 3]]
code that 2-dimensional projections of the flow are insufficient to determine the quantum
fault-tolerance threshold set T . Since the threshold set is a multi-dimensional surface, the
two-dimensional projection fails to indicate flow in the other dimensions. Although it appears
the separatrices indicate a separation between points that flow to zero and those that flow to
one, it cannot be used to determine the threshold, but it may be used to determine an upper
bound on the threshold for this example.

5 Techniques for Determining the Asymptotic Threshold

In Section 4, low-dimensional projections of the flow using a TIFD were used to estab-
lish pseudothresholds. However, the TIFD could not be used to determine the asymptotic
threshold γth. It may be possible, though, to bound γth for a particular map by restricting
the map Γ to the axes. In this section, we describe a possible technique for upper bounding
the fault-tolerance threshold γth.

Consider the following setting, the axis setting, where every initial failure probability is

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 17

0 0.5 1 1.5 2

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

γ
1
0

γ 20

Fig. 14. TIFD projected onto the γ1–γ2 plane, where γ0

l
= 0 for all l except γ0

1
and γ0

2
. The arrows

represent the vector field flow Γ1(~γ)−~γ. The thick lines illustrate the separatrices. The horizontal
separatrix appears to have zero slope, but it intersects the γ0

1
-axis at about 10−2. We do not

show this intersection because the intersection with the γ0

2
-axis at about 2.3 × 10−3 has a more

significant role in determining the threshold. The asterisk marks the two-qubit gate threshold for
the setting in which γ2 = γ and γi = 0 for all other location types.

0, except for the axis of interest, i.e., g(γ) = (γ, 0, 0, . . . , 0), and γ is assigned to the location
axis of interest. We conjecture that the level-1 pseudothreshold for this setting upper bounds
γth.

Consider the plot shown in Figure 15 of the approximated γw pseudothresholds of the
[[7, 1, 3]] code for the axis setting. Note that the pseudothresholds for the wait location for
the axis setting are strictly decreasing toward a threshold. We find similar behavior for the
other location types as well. These pseudothresholds and the threshold found for the wait
location are lower than the pseudothresholds and thresholds for the other location types in
the axis setting. This suggests that the L = 1 wait location pseudothreshold for the axis
setting, the smallest level-1 axis pseudothreshold, is an upper bound on γth.

This conclusion that pseudothresholds with the axis setting provide an upper bound on
the fault-tolerance threshold is supported by numerical evaluation of the threshold set T in
Figure 16. This figure shows four convex hulls: one pseudothreshold hull and three threshold
hulls. The pseudothreshold hull is determined by the γ1

1 , γ1
2 , and γ1

w axis pseudothresholds,
which are plotted as circles, while the threshold hulls were determined numerically from the
flow map for a grid of parameters. The region of parameter space above the pseudothreshold
hull is strictly above threshold for any value of γ1m. The largest threshold hull corresponds
to γ0

1m = 0 and all points beneath it are below threshold. Similarly, the other two threshold
hulls correspond to γ0

1m = 1.5 × 10−3 and γ0
1m = 3.5 × 10−3.

Interestingly, as our choice of language indicates, T appears to be a convex set equal
to the convex hull of the axes thresholds and the origin. The edge length of the largest
cube in T is approximately γth ≈ 8.8 × 10−5. Furthermore, T appears to be contained
in the convex hull of the axes pseudothresholds and the origin. These pseudothresholds
are γ1

1 ≈ 4.4 × 10−2, γ1
2 ≈ 2.3 × 10−3, and γ1

w ≈ 1.1 × 10−4 for the corresponding axes
settings. The γ1

1m pseudothreshold is comparable to γ1
1 . The smallest level-1 pseudothreshold

is γ1
w ≈ 1.1 × 10−4, so this is an upper bound on γth for this example. Though the error

18 A flow-map model for analyzing pseudothresholds . . .

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

Γ0
w

ΓL w

L = 0
L = 1
L = 2
L = 3
L = 4
L → ∞

Fig. 15. TRIP for a wait location for L = 0, 1, 2, 3, 4,∞ for the axis setting. The pseudothresholds
are 1.1 × 10−4, 9.6 × 10−5, 9.2 × 10−5, and 9.0 × 10−5. The threshold for the wait location for
this setting is 8.8 × 10−5.

0
0.01

0.02
0.03

0.04

0
0.5

1
1.5

2x 10
−3

0

0.3

0.6

1

x 10
−4

γ
1
0

γ
1m
0 = 0

γ
1m
0 = 1.5e−3

γ
1m
0 = 3.5e−3

γ
2
0

pseudo

γ w0

Fig. 16. The set T for the [[7, 1, 3]] code together with a slice of the convex hull of the level-1 axis
pseudothresholds. The level-1 axis pseudothresholds are plotted with open circles and connected
with lines to illustrate their convex hull. The other three hulls are schematic representations of the
numerically computed boundary of the set T for varying values of γ0

1m
. All points beneath a given

hull are below threshold. The largest cube contained in T has edge length γth ≈ 8.8× 10−5. Note
that this does not contradict the wait location threshold in Figure 10 because the other locations
are 10 times less reliable in that calculation.

K. M. Svore, A. W. Cross, I. L. Chuang, and A. V. Aho 19

correction networks are slightly different, this upper bound does not contradict a rigorous
lower bound of 2.73 × 10−5 for the same code [16].

To further confirm the results found using the semi-analytical map, we use a Monte-
Carlo simulation to determine pseudothresholds for the [[7,1,3]] code. We find the following
pseudothresholds with the axis setting by fitting a quadratic to the numerical TRIPS: γ1

1 ≈
8.0×10−2, γ1

2 ≈ 1.7×10−3, and γ1
w ≈ 1.5×10−4. The γ1

1 pseudothreshold differs by a factor of
1.81 from the γ1

1 pseudothreshold found using the flow map. The γ1
2 and γ1

w pseudothresholds
found using the flow map differ by a factor of 0.73 and a factor of 1.36, respectively, from
numerical calculations based on a Monte-Carlo simulation. These differences could be reduced
by revisiting some of the approximations in the flow map derivation.

While we do not prove our conjecture, we offer two supporting observations. The first
is an observation that follows from the fact that the flow map has a threshold. There are
positive integers A and t such that Γ1

ℓ(~γ) ≤ Aγt+1
max for all ℓ, where γmax ≡ max γℓ. These

integers determine the well-known lower bound A−1/(t+1) ≡ γmin
th ≤ γth on the threshold.

The next observation is that if Γ causes all components of ~γ to increase or remain un-
changed, then ~γ is above the established lower bound γmin

th . More precisely, if Γ1
ℓ(~γ) ≥ γℓ

for all ℓ, then γℓ ≥ γmin
th for at least one ℓ. This is true because if γℓ < γmin

th for all ℓ, then
γmax < γmin

th . In particular, Γ1
ℓ((γmax, γmax, . . . , γmax)) ≤ Aγt+1

max < γmax.
A ~γ satisfying the second observation is not necessarily above threshold, but we conjecture

that this second observation remains true when γmin
th is replaced by γth for maps Γ describing

failure probabilities under independent stochastic error models. We know this to be the case
for one-dimensional maps. If the conjecture is true in general, then the level-1 pseudothreshold
for the axis setting upper bounds γth for a particular map.

6 Conclusions and Future Work

Pseudothresholds are the failure probabilities below which recursive simulation improves
the reliability of a particular component. Yet, pseudothresholds have been shown to be up
to a factor of 4 greater than the asymptotic threshold for the Steane setting and more than
a factor of 10 different for the axes settings. This behavior is a generic phenomenon in both
classical and quantum fault-tolerance. The tools we have presented provide a way to visualize
pseudothresholds and thresholds, and we conjecture that for a given setting, they may provide
an upper bound on the fault-tolerance threshold for a particular map.

Pseudothreshold behavior also influences the accuracy of some quantum threshold esti-
mates. If some of the reported threshold estimates are actually pseudothresholds, the ex-
amples we have given suggest that these estimates may be inaccurate by a factor of 4 or
more. These observations apply, in particular, to some numerical threshold estimates. How-
ever, other factors such as the noise model and circuit construction more greatly influence
the threshold value and by making a judicious choice of concatenation level and setting, the
difference between estimates and an asymptotic threshold can be reduced.

Although a fault-tolerance threshold for infinite scalability cannot be determined by low-
level pseudothresholds, pseudothresholds will become important design parameters in engi-
neering a quantum computer. In practice, quantum computers may operate very close to
threshold and require only a few levels of recursive simulation. If this is the case, then pseu-
dothresholds can help determine design trade-offs and the required relative reliability of circuit
components. In addition, the difference between pseudothresholds can be used to determine
an appropriate level of concatenation that is within current physical capabilities.

It is important to note that pseudothresholds can also be used to determine the frequency
of error correction required for certain location types. If, for example, a level-1 pseudothresh-
old for a wait location shows the failure probability worsens upon concatenation, then it may
be beneficial to not error correct each wait location, or to only error correct a wait location
at higher levels of concatenation. This scheme will still demonstrate a threshold; however the
failure probability map will have to take into account the differences between the replacement
rules for each type of location at different levels of concatenation. By optimizing the fre-
quency of error correction at different levels of concatenation and for different location types,
the fault-tolerance threshold can be improved.

20 A flow-map model for analyzing pseudothresholds . . .

This work can be extended in several directions. First, we have put forward a conjecture
that pseudothresholds may lead to upper bounds on γth. If this conjecture is true, then it
would be interesting to determine how the concatenated flow map formalism could be modified
to give rigorous bounds. It would also be useful to determine how much a pseudothreshold
can differ from the fault-tolerance threshold.

Second, the analyses presented here only account for Clifford-group gates. We did not
analyze a Toffoli, π/8, or other nontrivial gate needed for computational universality. It is
still possible to apply the methods in this paper to those gates, but the corresponding flow
map component is more difficult to estimate well. To determine a quantum fault-tolerance
threshold, it is necessary to evaluate a computationally universal basis. With a universal
basis, how much does the fault-tolerance threshold and sequence of pseudothresholds change?

7 Acknowledgements

We would like to thank one of our referees for suggesting the relationship between pseu-
dothresholds and the frequency of error-correction operations. Krysta Svore acknowledges
support from an NPSC fellowship, and Andrew Cross was supported by an NDSEG fellow-
ship.

References

1. P. W. Shor (1994), Algorithms for quantum computation: discrete logarithms and factoring, In the
35th Annual Symposium on Foundations of Computer Science, pp. 124–134.

2. L. K. Grover (1997), Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev.
Let., 79:325.

3. S. Hallgren (2002), Polynomial-time quantum algorithms for Pell’s equation and the principal ideal

problem, In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
pp. 653–658.

4. J. von Neumann (1956), Probabilistic logics and the synthesis of reliable organisms from unreliable

components, In Automata Studies, pp. 328–378, Princeton University Press.
5. J. Preskill (2001), Fault-tolerant quantum computation, In H. Lo, S. Popsecu, and T. Spiller,

editors, Introduction to quantum computation and information, World Scientific Publishing Com-
pany.

6. K. Svore, B. Terhal, and D. DiVincenzo (2005), Local fault-tolerant quantum computation, Phys.
Rev. A, 72:022317.

7. D. Aharonov and M. Ben-Or (1997), Fault-tolerant quantum computation with constant error,
Proceedings of the 29th Annual ACM Symposium on the Theory of Computation, pp. 176–188.

8. E. Dennis, A. Kitaev, A. Landahl, and J. Preskill (2002), Topological quantum memory, J. Math.
Phys 43, pp. 4452–4505.

9. D. Gottesman (1997), Stabilizer codes and quantum error correction, Doctoral dissertation, Cal-
tech.

10. E. Knill, R. Laflamme, and W. Zurek (1998), Resilient quantum computation: error models and

thresholds, Science 279(5349).
11. E. Knill (2005), Quantum computing with realistically noisy devices, Nature 434, pp. 39–44.
12. T. Ohno, G. Arakawa, I. Ichinose, and T. Matsui (2004), Phase structure of the random-plaquette

Z2 gauge model: accuracy threshold for a toric quantum memory, Nuc. Phys. B 697, pp. 462–480.
13. B. Reichardt (2004), Improved ancilla preparation scheme increases fault-tolerant threshold,

quant-ph/0406025.
14. A. M. Steane (2003), Overhead and noise threshold of fault-tolerant quantum error correction,

Phys. Rev. A 68(042322).
15. C. Zalka (1996), Threshold estimate for fault tolerant quantum computing, quant-ph/9612028.
16. P. Aliferis, D. Gottesman, and J. Preskill (2005), Quantum accuracy threshold for concatenated

distance-3 codes, To appear in Quantum Information and Computation.

http://arXiv.org/abs/quant-ph/0406025
http://arXiv.org/abs/quant-ph/9612028

	Introduction
	Pseudothresholds
	The fault-tolerance threshold
	Definition of pseudothresholds

	Classical Pseudothresholds for the [3,1,3] Code
	The [3,1,3] code and its failure probability map
	TRIPs for the [3,1,3] code
	TIFDs for the [3,1,3] code

	Quantum Pseudothresholds
	The [[7,1,3]] code and its flow map
	TRIPs for the [[7,1,3]] code
	TIFDs for the [[7,1,3]] code

	Techniques for Determining the Asymptotic Threshold
	Conclusions and Future Work
	Acknowledgements

