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Abstract—The theory of arrays is ubiquitous in the con-

text of software and hardware verification and symbolic

analysis. The basic array theory was introduced by Mc-

Carthy and allows to symbolically representing array up-

dates. In this paper we present combinatory array logic, CAL,
using a small, but powerful core of combinators, and reduce

it to the theory of uninterpreted functions. CAL allows ex-

pressing properties that go well beyond the basic array the-

ory. We provide a new efficient decision procedure for the

base theory as well as CAL. The efficient procedure serves a

critical role in the performance of the state-of-the-art SMT

solver Z3 on array formulas from applications.

I. Introduction

As part of formulating a programme of a mathemati-
cal theory of computation McCarthy [1] proposed a ba-
sic theory of arrays. The basic theory characterizes func-
tions store and the binary selector [ ] using two ax-
ioms: ∀a, i, v . store(a,i,v)[i] ' v and ∀a, i, j, v . i '
j ∨ store(a,i,v)[j] ' a[j].

In this paper we develop an efficient saturation proce-
dure for the basic (extensional) array theory as well as
a powerful extension that we call combinatory array logic
(CAL). Besides the store combinator the extension uses two
new main combinators K (inspired by combinatory logic)
and mapf (that maps f on arrays1). They have the char-
acteristics:

K(v)[i] = v

mapf (a1, . . . ,an)[i] = f(a1[i], . . . ,an[i])

Ground satisfiability in the resulting theory is shown to be
NP-complete. Our procedures are presented as inference
rules. A useful contribution of this paper is strong filters
for restricting the application of these rules while retaining
completeness. The results are developed in the context of
strongly disjoint theories, where finite domains are easy
to handle. We show how default values of arrays can be
reflected back into the array theory, but this construction
is very sensitive to domain sizes. Appendix B develops a
variant calculus that supports the identity combinator I.

The ideas described in this paper were already imple-
mented in the version of the SMT solver Z3 submitted
to the SMT 2008 (http://www.smtcomp.org). Z3 won the
QF AUFLIA division (arrays, uninterpreted functions and
linear integer arithmetic), and was 25 times faster than
the second place (Barcelogic). In the QF A division, Z3
finished in second place, but this division consisted only of
trivial artificial problems. The winner (Barcelogic) total
runtime was 13.5 secs and Z3 was 17.3 secs. In Section VI,
we also compare the performance of Z3 with and without
using some of the proposed filters.
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1 It is similar to Schönfinkel/Curry’s B combinator, but not the
well-known S combinator.

A. Related Work

Decision procedures for non-extensional theories of ar-
rays with Presburger arithmetic constraints appeared in
the early 80’s [2], [3]. The theory remains important in
the context of formal verification of hardware [4], [5].

A decision procedure for the theory of extensional ar-
rays is given in [6]. It uses constrained equations between
arrays to capture when arrays are equal except possibly on
a finite set of indices. Rewriting approaches in the context
of super-position are presented in [7] and [8]. An approach
that also uses constrained equations is developed in [9].
It produces clauses with constrained equations, but a dis-
tinguishing feature of this system is that it uses the cur-
rent congruence closure model to guide the search, thereby
avoiding potentially redundant cases.

The theory of equality and uninterpreted functions is in
a sense a base theory for the theory of arrays. Array access
a[i] can be treated as a binary uninterpreted function, and
array updates can be compiled away using a finite set of
instances. This was recognized for the theory of arrays as
well as a number of other theories in [10]. The reduction
approach is the basis of several implementations of the the-
ory of arrays, including Yices [11], Z3 [12], and analyzed
in DPT [13]. STP [14] also uses a reduction approach,
and furthermore observes that it can be important to de-
lay rewriting array read/write terms into conditional state-
ments. As an alternative to eliminating array writes, [15]
considers eliminating reads in favor of writes. The result-
ing procedure handles especially well cases where arrays
obtained by multiple non-interfering overwrites are com-
pared. The map and array property fragments [16] are
classes of first-order formulas that can express array prop-
erties involving some arithmetic. Extensions are studied
in [17], including a unary map operator. An entirely dif-
ferent approach to arrays represents models of arrays as
regular automata [18]. They can decide formulas that use
offset arithmetic on array indices.

In comparison our paper offers a general setting for op-
timized array decision procedures based on inference rules.

II. Preliminaries

We consider a many-sorted language. A signature Σ is a
triple (ΣS ,ΣF ,ΣP ) where ΣS is a set of sorts, ΣF is a set
of function symbols, and ΣP is a set of predicate symbols
(each endowed with the corresponding arity and sort). We
assume that, for each sort σ, the equality 'σ is a symbol
that does not occur in Σ and that is always interpreted as
the identity relation over (the interpretation of) σ. As a
notational convention, we will always omit the subscript.
We call 0-arity function symbols constant symbols, and 0-
arity predicate symbols propositions. Σ-atoms, Σ-literals,
Σ-clauses, and Σ-formulas are defined in the usual way. A
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set of Σ-literals is called a Σ-constraint. Terms, literals,
clauses and formulas are called ground when no variable
appears in them. A sentence is a formulas in which free
variables do not occur. A CNF formula is a conjunction
C1∧ . . .∧Cn of clauses. We will write CNF formulas as set
of clauses. We use a, b, i, j, v and w for constants, where
a and b are used for array constants, i and j for array
indices, and v and w for array values. We use f for function
symbols, p and q for predicate symbols, σ and τ for sorts,
C for clauses, and ϕ for formulas. We use v:σ to denote
that constant symbol v has sort σ, and f : (σ1, . . . ,σn) → τ

to denote that function symbol f has arity n, argument
sorts σ1, . . . , σn, and result sort τ . Given two signatures
Σ1 and Σ2, Σ1 ∪Σ2 and Σ1 ⊆ Σ2 are defined as usual, we
say Σ1 and Σ2 are disjoint if ΣF

1 ∩ΣF
2 = ∅ and ΣP

1 ∩ΣP
2 = ∅,

and strongly disjoint if they are disjoint and ΣS
1 ∩ΣS

2 = ∅.
We use the standard notion of a Σ-structure M . It con-

sists of a non-empty pairwise disjoint domains |M |σ for
every sort σ, and a sort and arity-matching interpretation
of the function and predicate symbols in Σ. We use ι and
ν for elements of a domain |M |σ. We use M(f) (resp.
M(p)) to denote the interpretation of the function (resp.
predicate) symbol f (resp. p). The interpretation of an
arbitrary term t is denoted by M [[t]], and is defined in the
standard way. The truth of a Σ-formulas ϕ, denoted by
M [[ϕ]], is also defined in the standard way. If Σ0 ⊆ Σ and
M is a Σ-structure, the Σ0-reduct of M is the Σ0-structure
M↓Σ0

obtained from M by forgetting the interpretation of
the symbols from Σ \Σ0.

A collection of Σ-sentences is a Σ-theory. The free the-
ory T∅ over a signature Σ is the first-order theory with
an empty set of Σ-sentences. Let T1 be a Σ1-theory and
T2 be a Σ2-theory. Then, T1 and T2 are disjoint (resp.
strongly disjoint) if Σ1 and Σ2 are disjoint (resp. strongly
disjoint). The combined theory T1 ⊕ T2 is a (Σ1 ∪ Σ2)-
theory composed by the union of the Σ1 and Σ2-sentences.
The constraint satisfiability problem for a theory T , also
called the T -satisfiability problem, is the problem of de-
ciding whether a Σ-constraint is satisfiable in a model of
Σ-theory T . The constraint may contain variables, since
these variables may be replaced by fresh constants, we can
define the constraint satisfiability problem as the problem
of deciding whether a finite conjunction of ground liter-
als, in an expanded signature Σ?, is true in a Σ?-structure
whose Σ-reduct is a model of T . The satisfiability problem
can be similarly defined for ground CNF formulas.

III. A Simple Core Solver

The array theory decision procedures, proposed in this
paper, are defined on top of a core solver as a set of in-
ference rules. The basic architecture of the core solver is
the usual one used in state-of-the-art SMT solvers, where a
SAT solver is integrated with a decision procedure for the
constraint satisfiability problem for a Σ-theory T [19]. In
our core solver, the core theory Tcore is the combined the-
ory T∅⊕T1⊕ . . .⊕Tk, where for each i,j ∈ {1, . . . ,k}, Ti and
Tj are strongly disjoint, and T∅ and Ti are disjoint. This re-
striction admits a very simple combination method where

the theories Ti’s can be non-stably infinite and non-convex.
Our combination method uses the model-based theory com-
bination [20]. In the rest of the paper, we assume that one
of the theories Ti’s is the Σb-theory Tb of Boolean terms,
where ΣS

b = {bool}, ΣF
b = {>:bool,⊥:bool}, ΣP

b = ∅, and
it contains the following two axioms:

> 6' ⊥, ∀x: bool . x ' > ∨ x ' ⊥

In our actual solver, the other theories in Tcore are: arith-
metic, bit-vectors and scalar values. For each i ∈ {1, . . . ,k},
let Σi be the signature of theory Ti, and let Σ∅ be the sig-
nature of T∅. Recall that the signature of T∅ is not fixed
a priori, and w.l.o.g. we assume ΣS

1 ∪ . . .∪ΣS
k ⊆ ΣS

∅ . We
say a function (resp. predicate) symbol f (resp. q) is
interpreted if f ∈ ΣF

1 ∪ . . .∪ΣF
k (resp. q ∈ ΣP

1 ∪ . . .∪ΣP
k ).

Otherwise, we say the symbol is uninterpreted. We also as-
sume uninterpreted predicates q(v1, . . . ,vn) are represented
as fq(v1, . . . ,vn) '>. In the core solver, CNF formulas are
represented in flattened form. A CNF flattened formula
comprises of a sequence of definitions of the form:

v ≡ f(v1, . . . , vn), p ≡ q(v1, . . . , vn), p ≡ v ' w

and clauses of the form l1 ∨ . . .∨ ln, where f is a function
symbol, p is an uninterpreted proposition, q is a predicate
symbol, v,w,v1, . . . ,vn are uninterpreted constants, each v

is never defined after it is used, and each li is of the form
p or ¬p. The constant v and proposition p, above, should
be viewed as names for terms and atoms respectively. In
an actual implementation, they are essentially pointers to
these terms and atoms.

Example 1: The CNF formula v ' w ∧ (v ≥ w ∨ f(v −
w) ' 0) can be represented in flattened form as:

p1 ≡ v ' w, p2 ≡ v ≥ w, v1 ≡ v−w,

v2 ≡ f(v1), v3 ≡ 0, p3 ≡ v2 ' v3,
; p1, p2 ∨ p3

The SAT solver, in our core solver, uses a DPLL based
algorithm to build an assignment for all propositions. For
each i ∈ {1, . . . ,k}, let Si be a decision procedure for the-
ory Ti, and let S∅ be a decision procedure for the free
theory T∅. In our implementation, S∅ is based on the con-
gruence closure algorithm described in [21]. The state Γ
of the core solver is composed by a propositional assign-
ment, a set of definitions and clauses F (Γ), and the states
of procedures Si’s and S∅. We use Γ(p) to denote the
assignment of proposition p in state Γ. When the SAT
solver assigns a proposition p ≡ q(v1, . . . , vn) and q ∈ ΣP

i ,
then procedure Si is notified. If p ≡ v ' w, then S∅ is no-
tified, and if v has sort σ ∈ ΣS

i , then procedure Si is also
notified. The procedure S∅ maintains an equivalence re-
lation ∼Γ, which is the smallest equivalence relation that
contains {(v,w) | p ≡ v ' w ∈ Γ, and Γ(p) = true}. As
usual, the relation ∼Γ can be implemented using a union-
find data-structure. The procedure S∅ also maintains the
relation 6∼Γ defined as {(v,w) | p ≡ v′ ' w′ ∈ Γ, Γ(p) =
false, v ∼Γ v′, w ∼Γ w′}. As a notational convention we
will always omit the subscript in ∼Γ and 6∼Γ. Inference
rules are written as:

α1, . . . ,αn

C1, . . . ,Cm



GENERALIZED, EFFICIENT ARRAY DECISION PROCEDURES 3

where α1, . . . ,αn are the antecedents, and should be viewed
as queries to the current state Γ of the core solver. We use
antecedents of the form: a ≡ f(v1, . . . , vn) (meaning: the
definition is in Γ), v ∼ w (meaning: v and w are equivalent
in Γ), v:σ (meaning: Γ contains a constant v of sort σ), and
Γ(p) = false. The consequents C1, . . . ,Cn are clauses, not
necessarily in flattened form, that should be added to the
next state. For example, if the consequent is of the form
a[i] ' v, it should be interpreted as v′ ≡ a[i], p ≡ v′ ' v; p.
Note that new definitions are not created if they already
exist in current state Γ. We use Γ1 `γ Γ2 to denote that
inference rule γ was applied to state Γ1 producing a new
state Γ2. We say an inference rule γ is sound with respect
to a theory T if for all states Γ1 and Γ2 such that Γ1 `γ Γ2,
we have F (Γ1) is equisatisfiable to F (Γ2) modulo theory
T . A inference rule γ is saturated at state Γ if Γ already
contains any consequent of γ, or if the consequents are
already satisfied by the (partial) propositional assignment
in Γ. In our implementation, the procedure S∅ uses the
congruence inference rule:

w1 ≡ f(v1, . . . ,vn), w2 ≡ f(v′1, . . . ,v
′
n), v1 ∼ v′1, . . . ,vn ∼ v′n

w1 ' w2

Each procedure Si builds an interpretation (candidate
model) for each constant v:σ s.t. σ ∈ ΣS

i . The combina-
tion method requires that the procedures agree on equali-
ties between (uninterpreted) constants. For this purpose,
the model-based theory combination, uses the models Mi

that are built by each procedure Si. Given two constants
v and w, such that Mi(v) = Mi(w), the procedure creates
a definition pv,w ≡ v ' w (if it does not exist already), and
pv,w is assigned to true in the SAT solver. This assignment
is essentially a guess (i.e., decision), if this assignment trig-
gers an inconsistency, then backtracking is used to fix the
model. Many optimizations are possible [20] in the archi-
tecture described above, but they are beyond the scope of
this paper. We say Γ is a satisfiable final state if all infer-
ence rules are saturated, all propositions are assigned, all
clauses are satisfied, all constants v:σ have an interpreta-
tion when σ ∈ ΣS

i for some i ∈ {1, . . . ,k}, and none of the
procedures Si’s and S∅ detected an inconsistency.

Example 2: Consider the following CNF formula, where
f :bool → σ, v:bool and w:σ.

f(>) ' w ∧ f(⊥) ' w ∧ f(v) 6' w

This formula is unsatisfiable, and the core solver will detect
it. The procedure Sb will try to assign an interpretation for
v because it has sort bool, but an inconsistency is detected
(using the congruence rule) when it tries to assign v to >
or ⊥. Note that none of the procedures Si had to exchange
cardinality constraints.

IV. Array Theory

The array theory TA with signature ΣA is parametric
in the context of many-sorted logic. That is, given a non-
empty set of sorts S, ΣS

A is the least set such that:
1. S ⊂ ΣS

A

2. σ ∈ ΣS
A and τ ∈ ΣS

A implies (σ⇒τ) ∈ ΣS
A.

a ≡ store(b, i,v)
idx

a[i] ' v

a ≡ store(b, i,v), w ≡ a′[j], a ∼ a′

⇓
i ' j ∨ a[j] ' b[j]

a ≡ store(b, i,v), w ≡ b′[j], b ∼ b′
⇑

i ' j ∨ a[j] ' b[j]

a: (σ⇒τ), b: (σ⇒τ)
ext

a ' b∨ a[ka,b] 6' b[ka,b]

Fig. 1. Array theory basic inference rules.

We say sorts of the form (σ⇒τ) are array sorts with index
sort σ, and value sort τ . For each array sort (σ⇒τ), ΣF

A

contains the function symbols [ ]: ((σ ⇒ τ), σ) → τ , and
store: ((σ⇒ τ), σ, τ) → (σ⇒ τ). There are no predicates,
so ΣP

A = ∅. We say [ ] is the array read operation, and
store the array update operation. The following scheme
axiomatizes these two operators:

∀a: (σ⇒τ), i:σ, v:τ .store(a,i,v)[i] ' v

∀a: (σ⇒τ), i:σ, j:σ, v:τ . i ' j ∨ store(a,i,v)[j] ' a[j]

We say that the function symbol store is an array com-
binator, that is, operations that build new arrays. Later,
we define a richer set of array combinators. The following
scheme is called the extensionality axiom scheme. Infor-
mally, it states that if two arrays store the same value at
index i, for each index i, then they are equal.

∀a: (σ⇒τ), b: (σ⇒τ) . ∃i: σ . a[i] 6' b[i] ∨ a ' b

Fig. 1 contains a basic set of inference rules for the array
theory. Let us explain the first rules informally. Rule idx
adds the assertion a[i] ' v for every occurrence of a defini-
tion a ≡ store(b, i,v). Rule ⇓ propagates read over a store.
It fires if a is defined as a store and in the current state a is
equivalent to a′, where a′ occurs in a read. It adds a clause
forcing either the index j to be equal to the update index
i, or the contents of a to agree with b on j. The clause is
a tautology in the theory of arrays, it does not depend on
a ∼ a′. The other rules should be interpreted in a similar
way. Later, we propose many refinements.

Theorem 3 (Soundness) idx, ⇓, ⇑, ext are sound.
Proof: The rules idx, ⇓, ⇑ are just instantiating the ar-

ray axioms. The rule ext is instantiating the extensionality
axiom by using a fresh skolem constant ka,b.

Theorem 4 (Termination) idx, ⇓, ⇑, ext are terminating.
Proof: None of the rules create definitions of the form

a ≡ store(b, i, v). Thus, rule idx can only be applied once
for each occurrence of store in the input. Assume the input
formula has n array constants (a: (σ⇒ τ)), and m defini-
tions of the form v ≡ a[j]. Then, rule ext can be applied
at most n2 times, and at most n2 skolem constant ka,b

are created. The rules ⇓ and ⇑ can be applied at most
(n2 + m)n times.



4

Definition 5 (Map) Given sets Sσ and Sτ , a map from
Sσ to Sτ is a finite set of pairs (ι, ν) where ι ∈ Sσ and
ν ∈ Sτ . We say the map G is functional iff for all (ι1, ν1)
and (ι2,ν2) in G, ι1 = ι2 implies that ν1 = ν2.

Theorem 6 (Completeness) idx, ⇓, ⇑, ext are complete.
Proof: Assume all rules are saturated in the satisfiable

final state Γ, and let M be the model produced by the core
solver for this final state. Note that symbols store and [ ]
are considered to be uninterpreted in the core solver. The
core solver guarantees that for any pair of constants v1

and v2, v1 ∼ v2 iff M(v1) = M(v2). Our goal is to build a
model Mλ that satisfies Γ and the array axioms. For every
non array sort sort σ, |Mλ|σ = |M |σ. The domain for the
array sorts is defined inductively. Let σ′ be an array sort of
the form (σ⇒τ), then |Mλ|σ′ is the set of functions from
|Mλ|σ to |Mλ|τ . The interpretation for each [ ]: ((σ⇒
τ),σ) → τ is just the function application. More formally,
given ρ ∈ |Mλ|(σ⇒τ) and ι ∈ |Mλ|σ, Mλ( [ ])(ρ, ι) = ρ(ι).
The interpretation for each store: ((σ⇒τ),σ, τ) → (σ⇒τ)
is Mλ(store)(ρ,ι,ν) = ρ′, where ρ′ is the function:

ρ′(x) =

{

ν if x = ι,

ρ(x) otherwise.

It is easy to check that the interpretations for [ ] and
store satisfy the array axioms. Our next goal is to assign
an interpretation to all constants in Γ such that:

1. For any pair of constants v1 and v2 in Γ, M(v1) =
M(v2) iff Mλ(v1) = Mλ(v2). We say this is the equiv-
alence property.

2. The interpretation of constants satisfies all definitions
of the form a ≡ store(b, i,v) and v ≡ a[i] in Γ.

Let @ be a total order on sorts such that for all array
sorts (σ ⇒ τ), σ @ (σ⇒ τ) and τ @ (σ⇒ τ). We define
the interpretation for the constants using @. That is, if
σ1 @ σ2, then we define the interpretation for all constants
a1:σ1 before defining the interpretation for any constant
a2:σ2. Moreover, when we construct the interpretation
for a2:σ2 we assume that the equivalence property holds
for all constants a1:σ1 where σ1 @ σ2. The “base case”
is easy, for each constant v:σ in Γ, such that σ is not an
array sort, Mλ(v) = M(v). We also define Mλ(f) = M(f)
for every interpreted function symbol f . For each sort σ,
Let δσ be an arbitrary element of |Mλ|σ. Now, we define
an interpretation for an array constant a: (σ⇒τ) assuming
that the interpretation for all constants i:σ and v: τ was
already defined. First, we define a map graph(a) as the set
{(Mλ(i),Mλ(v)) | v ≡ a′[i] ∈ Γ, a ∼ a′}. The map graph(a)
is functional, because the equivalence property holds for all
constants i:σ and v:τ ; and for any two entries v1 ≡ a1[i1]
and v2 ≡ a2[i2] the core solver guarantees that M(a1) =
M(a2) and M(i1) = M(i2) implies that M(v1) = M(v2).
Then, we define Mλ(a) as:

Mλ(a)(ι) =

{

ν if (ι,ν) ∈ graph(a),

δσ otherwise.

Now, we show that for any array constants a: (σ⇒τ) and
b: (σ⇒τ), the equivalence property holds:

1. If a ∼ b, then by construction Mλ(a) = Mλ(b).
2. If a 6∼ b, then rule ext guarantees that graph(a)

contains (Mλ(ka,b), ν1) and graph(b) contains
(Mλ(ka,b), ν2) such that Mλ(ν1) 6= Mλ(ν2). There-
fore, Mλ(a) 6= Mλ(b).

It is easy to check that the definitions of the form v ≡ a[i]
are satisfied by Mλ. Now, we show that Mλ also satisfies
all definitions of the form a ≡ store(b, i,v). Recall that all
rules are saturated in the final state. First, rule idx guar-
antees that Mλ(a)(Mλ(i)) = Mλ(v). Now, let index(a) be
the set {ι | (ι, ν) ∈ graph(a)}. The rules ⇑ and ⇓ guar-
antee that index(a) = index(b)∪ {Mλ(i)}, and Mλ(a)(ι) =
Mλ(b)(ι) for every ι ∈ index(a)\{Mλ(i)}. Finally, we have
Mλ(a)(ι) = Mλ(b)(ι) = δσ for every ι 6∈ index(a). There-
fore, every definition of the form a ≡ store(b, i, v) is sat-
isfied. The construction of the interpretation Mλ(f), for
each uninterpreted function symbol f in Γ, is similar to
the one used for array constants. The only difference is
that graph(f) is a tuple of size arity(f) + 1 instead of be-
ing a pair. It guarantees that all definitions of the form
v ≡ f(w1, . . . ,wn) are satisfied by Mλ. Note that the equiv-
alence property guarantees that for every definition of the
form p ≡ v ' w in Γ, M [[v ' w]] iff Mλ[[v ' w]], and conse-
quently for every clause C in Γ, M [[C]] iff Mλ[[C]]. Thus,
Mλ satisfies all array axioms, definitions and clauses in Γ.

A. Redundant Axioms

The rules ⇓, ⇑, ext produce clauses of the form:

i ' j ∨ a[j] ' b[j] (1)

a ' b∨ a[ka,b] 6' b[ka,b] (2)

The proof of Theorem 6 makes it clear that it is unnec-
essary to add the clauses of the form (1) to Γ, when Γ
already contains a clause i′ ' j′ ∨ a′[j′] ' b′[j′] such that
a ∼ a′, b ∼ b′, i ∼ i′, and j ∼ j′. Similarly, it is unnec-
essary to add (2) to Γ, when Γ already contains a clause
a′ ' b′ ∨ a′[ka′,b′ ] 6' b′[ka′,b′ ] such that a ∼ a′ and b ∼ b′.
Thus, in our implementation, we use a data-structure for
storing a set of tuples (a,b, i,j) for (1), and a set of tuples
(a,b) for (2). Given a tuple t, this data-structure provides
a constant time function for checking whether the data-
structure contains a tuple congruent to t or not. Before
including (1) and (2) into Γ, we check whether the data-
structure already contains a congruent tuple. If it does,
we discard the new clause. Otherwise, we include it into Γ
and update the data-structure. This data-structure is sim-
ilar to the hashtable used to implement congruence closure
procedures [21].

B. Restricted Extensionality

In the proof of Theorem 6, rule ext is used to guarantee
that for all array constants a1 and a2:

M(a1) 6= M(a2) implies Mλ(a1) 6= Mλ(a2) (3)

when proving the equivalence property: for any pair of
constants v1 and v2 in Γ, M(v1) = M(v2) iff Mλ(v1) =



GENERALIZED, EFFICIENT ARRAY DECISION PROCEDURES 5

p ≡ a ' b, Γ(p) = false
ext 6'

a ' b∨ a[ka,b] 6' b[ka,b]

a: (σ⇒τ), b: (σ⇒τ), {a,b} ⊆ foreign
extr

a ' b∨ a[ka,b] 6' b[ka,b]

Fig. 2. Restricted extensionality inference rules.

Mλ(v2). We say an array constant a is foreign iff there
is a b such that a ∼ b, and b occurs as the argument of
an uninterpreted function symbol f , or as the index of an
array read v ≡ a′[b]. Observe that (3) is only needed for
showing that:

1. graph(a′) and graph(f) are functional when index(a)
and index(f) contain Mλ(a1) and Mλ(a2). That is,
a1 and a2 are foreign.

2. M [[a ' b]] = false implies Mλ[[a ' b]] = false.

So, this observation suggests a simple optimization where
ext is only applied to pairs of array constants a and b when:
a and b are foreign, or a ' b is assigned to false by the core
solver.

Definition 7 (Foreign) Given a state Γ, the set foreign
of foreign constants is the least set s.t.:

1. v ≡ f(. . . ,a, . . .) and a: (σ⇒τ) implies a ∈ foreign,
2. v ≡ a[b] and b: (σ⇒τ) implies b ∈ foreign,
3. a ∼ b and a ∈ foreign implies b ∈ foreign.

Fig. 2 contains the set of rules for implementing this re-
finement.

Theorem 8: The rules idx, ⇓, ⇑, ext 6' and extr are sound,
terminating and complete.

Another optimization is based on the observation that
it is unnecessary to add (2) to Γ, if a and b already store
different values at some index. More formally, we have:

Definition 9 (Already Disequal) Given a state Γ, (a,b) ∈
already-diseq iff there are two definitions v1 ≡ a1[i1] and
v2 ≡ a2[i2] in Γ such that v1 6∼ v2, a ∼ a1, b ∼ b1, and
i1 ∼ i2.

C. Restricted ⇑r

Definition 10 (Linearity) Given a state Γ, the set
non-linear of non-linear constants is the least set such that:

1. a1 ≡ store(b1, i1,v1), a2 ≡ store(b2, i2,v2), a1 is not a2

and a1 ∼ a2 implies {a1,a2} ⊆ non-linear,
2. a ≡ store(b, i, v) and a ∈ non-linear implies b ∈

non-linear,
3. a ∈ non-linear and a ∼ b implies b ∈ non-linear.

We say a is linear if a 6∈ non-linear.
In many software verification applications, we observed

that the set non-linear is very small. This observation
suggests a simple optimization, where rule ⇑ is only ap-
plied to array constants in the set non-linear. Given a
map m and a constant j, we use m \ {j} to denote the
set {(ι, ν) | (ι, ν) ∈ m, ι 6= Mλ(j)}. The basic idea is to
use graph(b) \ {i} to complete the map graph(a) whenever
Γ contains a definition of the form a ≡ store(b, i, v) and b

is linear. Fig. 3 contains the restricted version of ⇑.

a ≡ store(b, i,v), w ≡ b′[j], b ∼ b′, b ∈ non-linear
⇑r

i ' j ∨ a[j] ' b[j]

Fig. 3. Restricted ⇑r inference rule.

Theorem 11: The rules idx, ⇓, ⇑r, ext 6' and extr are
sound, terminating and complete.

Proof: The proof is similar to the proof of Theorem 6,
but we use the completion procedure described above be-
fore defining Mλ(a). The proof sketch is included in Ap-
pendix A.

V. Combinatory Array Logic

In this section, we consider the extended array theory
TCAL with signature ΣCAL. TCAL contains two new fami-
lies of combinators: the constant-value array combinators,
and the map combinators. For each sort (σ⇒ τ), ΣF

CAL

contains the function symbol K: τ → (σ⇒ τ). For each
function symbol f : (τ1, . . . , τk) → τ , interpreted or not, and
sort σ, ΣF

CAL contains the function symbol mapf : ((σ ⇒
τ1), . . . ,(σ⇒τk)) → (σ⇒τ). We say mapf is the pointwise
array extension of f . The following scheme axiomatizes
the new combinators:

∀v:τ, i:σ .K(v)[i] ' v

∀a1: (σ⇒τ1), . . . ,ak: (σ⇒τk), i:σ .

mapf (a1, . . . ,ak)[i] ' f(a1[i], . . . ,ak[i])

Similarly, given a predicate symbol p: (τ1, . . . , τk), we define
the pointwise extension combinator mapp for predicates as:

∀b1: (σ⇒τ1), . . . , bk: (σ⇒τk), i:σ .

(¬p(b1[i], . . . , bk[i])∨mapp(b1, . . . , bk)[i] '>) ∧

(p(b1[i], . . . , bk[i])∨mapp(b1, . . . , bk)[i] '⊥)

Due to space limitations, we only discuss combinators of
the form mapf . The extension to mapp is straight-forward.

From now on, for each sort τ , we assume the core theory
contains the if-then-else operator ite: (bool, τ, τ) → τ . The
following scheme axiomatizes ite:

∀x1,x2:τ. ite(>,x1,x2) ' x1 ∧ ite(⊥,x1,x2) ' x2

A. Versatility

The extended combinators allow to easily express some
functions over sets and bags. The idea is to represent a set
of elements of sort σ as an array of sort (σ⇒bool). We list
a few of these below.

∅ = K(⊥) a = map
ite

(a,K(⊥),K(>))

{v} = store(K(⊥),v,>) a∪ b = map
ite

(a,K(>), b)

v ∈ a = a[v] a∩ b = map
ite

(a,b,K(⊥))

Similarly, a bag (or multi-set) of elements of sort σ can be
encoded as an array of sort (σ⇒ int). Then, the empty
bag is encoded as K(0), the set of elements in a bag a

is map>(a, K(0)), the multi-set extension of a set a is
map

ite
(a,K(1),K(0)), and the join operation a]b on bags

is encoded as map+(a,b). On the other hand, the cardinal-
ity of a set/bag cannot be expressed. Thus, our methods
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a ≡ K(v), w ≡ a′[j], a ∼ a′

K⇓
a[j] ' v

a ≡ mapf (b1, . . . , bn), w ≡ a′[j], a ∼ a′

map⇓
a[j] ' f(b1[j], . . . , bn[j])

a ≡ mapf (b1, . . . , bn), w ≡ b′k[j],

bk ∼ b′k, for some k ∈ {1, . . . ,n}
map⇑

a[j] ' f(b1[j], . . . , bn[j])

v ≡ a[i], i:σ, i is not εσε 6'
εσ 6' i

a: (σ⇒τ)
εδ

a[εσ] ' δa

Fig. 4. Extended combinators inference rules.

do not cover the combinations of set and multi-set theories
with arithmetic. These have been studied in [22], [23].

Notice also that store(a, i, v) = map
ite

({i},K(v), a), so
we could use store as a derived combinator if we instead
assume ite and the singleton combinator.

B. Extended Inference Rules

Fig. 4 contains the inference rules for the new combina-
tors. In the proof of Theorem 6, for every array constant
a, we defined Mλ(a)(ι) = δσ if ι 6∈ index(a), where δσ is an
arbitrary value of |Mλ|σ. That is, δσ is the default value
of every array constant in Γ. This simple construction is
not possible when combinators K and mapf are used, be-
cause they constrain the default value of array constants.
Given an array constant a, we use the fresh constant δa:σ
to denote the default value for array a. The rule εδ exposes
the default value δa (of an array constant a) by accessing
a at an index εσ. We have a fresh constant εσ for each sort
σ. The rule ε 6' enforces that εσ is different from any other
index i of sort σ. Of course, in general, the rule ε 6' is not
sound if the interpretation of sort σ is finite. The following
example illustrates the problem.

Example 12: Let i be a constant of sort σ. Then, the
formula store(K(v1), i1,w1) ' K(v2), v1 6' v2 is satisfiable
in a structure where the interpretation of σ has only one
element. On the other hand, a procedure based on the
inference rules in Fig. 1 and 4 will return unsatisfiable.

Theorem 13: Considering the simplifying assumption
that the intended interpretation of every index sort σ is
infinite, then the rules idx, ⇓, ⇑, ext 6', extr, K⇓, map⇓,
map⇑, ε 6' and εδ are sound, terminating and complete.

Proof: The restricted version of the rule ⇑ is not consid-
ered here. We consider this optimization, in the context of
extended combinators, in Section D. The proof is similar
to the proof of Theorem 6, but the construction of Mλ is
slightly different. We define the map graph(a) as before,
but we define Mλ(a) as:

Mλ(a)(ι) =

{

ν if (ι,ν) ∈ graph(a),

Mλ(δa) otherwise.

Now, we show that Mλ satisfies all definitions of the form
a ≡ store(b, i, v), a ≡ K(v) and a ≡ mapf (b1, . . . , bk). Let

a: (σ⇒τ), size(σ) = k
blast

a[σ1] ' δa,1, . . . , a[σk] ' δa,k

Fig. 5. Blasting inference rule.

index(a) be the set {ι | (ι, ν) ∈ graph(a)}. First, let us
consider definitions of the form a ≡ store(b, i,v), The rule
idx guarantees that Mλ(a)(Mλ(i)) = Mλ(v). The rules
⇑ and ⇓ guarantee that index(a) = index(b) ∪ {Mλ(i)},
and Mλ(a)(ι) = Mλ(b)(ι) for every ι ∈ index(a)\ {Mλ(i)}.
Now, we just need to show that for every κ 6∈ index(a),
Mλ(a)(κ) = Mλ(b)(κ). This equality is a consequence of
the following observations:

Mλ(a)(κ)

= Mλ(δa) (by def. of Mλ)

= Mλ(a)(Mλ(εσ)) (by rule εδ)

= Mλ(b)(Mλ(εσ)) (by rule ε 6', Mλ(εσ) 6= Mλ(i))

= Mλ(δb) (by rule εδ)

= Mλ(b)(κ) (by def. of Mλ)

For definitions of the form a ≡ K(v), by rules K⇓ and
εδ, it is easy to see that Mλ(a)(ι) = Mλ(v) for all ι ∈
|Mλ|σ. Finally, we consider definitions of the form a ≡
mapf (b1, . . . , bk). The rule map⇓ guarantees that for all
ι ∈ index(a) the mapf axiom holds. The rule map⇑ guar-
antees that index(b1) ∪ . . . ∪ index(bk) ⊆ index(a). Hence,
if κ 6∈ index(a), then κ 6∈ index(b1)∪ . . .∪ index(bk). Then,
by rule εδ and the definition of Mλ, we have Mλ(a)(κ) =
Mλ(a)(Mλ(εσ)), and for each i ∈ {1, . . . , k}, Mλ(bi)(κ) =
Mλ(bi)(M

λ(εσ)). Since Mλ(εσ) ∈ index(a), the mapf ax-
iom is also satisfied for all κ 6∈ index(a).

A procedure using rule ε 6' may track how many times
this rule was used. Let num(σ) be the number of times rule
ε 6' was applied to εσ for indices of sort σ. Now, assume
the size size(σ) of the intended interpretation of a sort σ

is known. Then, it is sound to apply ε 6' when num(σ) <

size(σ). In practice, if size(σ) is very big (e.g., σ is the
sort of bit-vectors of size 32), then it is “sound” to apply
rule ε 6'. If size(σ) is small and num(σ) ≥ size(σ), then
instead of using rules ε 6' and εδ a procedure may use the
rule blast described in Fig. 5. In rule blast, each δa,i is a
fresh constant, and σi is an interpreted constant that is a
name for the i-th value in the intended interpretation of σ.
For example, if σ is the sort bool, then size(σ) = 2, σ1 is >
and σ2 is ⊥.

Finally, we consider the case where size(σ) is not known
(e.g., σ is an uninterpreted sort). Then, given a formula
ϕ, if a procedure using rules ε 6' and εδ returns unsatisfi-
able, then we know that ϕ is unsatisfiable in any structure
where the size of the interpretation of each index sort σ is
greater than num(σ). The value num(σ) gives us a bound
on the size of any interpretation of σ. A complete and
sound procedure can be implemented using these bounds
and the rule blast. This is essentially the equivalent of
a finite model finding procedure. In general, this pro-
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a ≡ store(b, i,v)
Uδ

δ(a) ' δ(b)

a ≡ K(v)
Kδ

δ(a) ' v

a ≡ mapf (b1, . . . , bn)
mapδ

δ(a) ' f(δ(b1), . . . ,δ(bn))

Fig. 6. Default value inference rules.

cedure is quite expensive. For example, if F contains n

uninterpreted sorts σ1, . . . , σn, then we have to consider
num(σ1)× . . .× num(σn) additional satisfiability subprob-
lems. If all of them are unsatisfiable, then F is indeed
unsatisfiable.

The constants δa enable another filter for the rule extr.
The idea is to only apply extr when δa ∼ δb. The basic
observation is that Mλ(a) 6= Mλ(b) if Mλ(δa) 6= Mλ(δb),
when the index sort σ has a sufficiently big interpretation.
This observation is equivalent to the filter used in [13]. The
filter is not sound if size(σ) is finite (and small) because we
might have index(a) = index(b) = |Mλ|σ and there is no ι ∈
|Mλ|σ s.t. Mλ(a)(ι) = Mλ(δa) and Mλ(b)(ι) = Mλ(δb).

C. Default Value Propagation

In this section, we use the simplifying assumption that
every index sort is infinite. A corollary of Theorem 8 is that
if a formula ϕ is satisfiable in the extended array theory,
then it is satisfied in a structure Mλ where for every array
constant a there is a value Mλ(δa) s.t. there is only a finite
number of indices ι such that Mλ(a)(ι) 6= Mλ(δa). Thus,
we say that every array constant a has a default value. This
observation suggests an alternative to rules ε 6' and εδ. The
idea is to propagate constraints about the default value
of each array constant a. We use distinguished function
symbols δ, and encode the default value of a as the term
δ(a). Fig. 6 contains the inference rules for propagating
default values.

The distinguished functions may be used to encode prop-
erties of arrays. If we want to force a set b to be finite, we
can assert δ(b) = ⊥ as part of the formula checked for sat-
isfiability.

D. Restricted ⇑r and map⇑r for Extended Combinators

Now, we consider the problem of restricting the infer-
ence rules ⇑ and map⇑. The construction used in Theo-
rem 11 does not work. For example, the extended array
theory has combinators that take many array arguments.
Given a definition of the form a ≡ C(. . . , b, . . .), where C
is an arbitrary combinator, the basic idea was to use (a
subset of) graph(b) to complete the map graph(a), when b

is linear. However, if a combinator contains many array
arguments b1, . . . , bk, then we may have ι ∈ index(bi), but
ι 6∈ index(bj) for some i and j in {1, . . . ,k}. It is incorrect
to assume Mλ(bj)(ι) = Mλ(bj)(M

λ(εσ)), because Mλ(bj)
may not have been defined yet when constructing Mλ(a).
The following example illustrates this problem.

Example 14: Let a, b and c be arrays (σ⇒bool). Let us
assume we are using a restricted version of map⇑ similar

to ⇑r. Now, consider the following formula:

a ' map
ite

(a, b, c) ∧ b[j] ' ⊥ ∧ c[j] ' >

The constant a is a linear parent 2, because its equivalence
class contains only one combinator map

ite
(a,b, c). There-

fore, the restricted version of map⇑ does not instantiate
the map axiom, and the unsatisfiability is not detected.
Note that if a[j] is >, then we have an inconsistency be-
cause b[j] '⊥. Similarly, if a[j] is ⊥, then we also have an
inconsistency because c[j] '>.

The example above suggests a simple solution based on
a total order ≺ on constants compatible with the order @

on sorts. By compatible, we mean that if v:σ, w: τ and
σ @ τ implies v ≺ w. The order ≺ allows us to define a
notion of stratification that complements the definition of
linearity defined in Section IV.C. We use a � b to denote
a ≺ b or a = b.

Definition 15 (Linear Stratification) Given a state Γ,
the set non-linear-stratified of non-linear-stratified constants
is the least set such that:

1. a1 ≡ C(. . .), a2 ≡ C′(. . .), a1 is not a2 and a1 ∼ a2

implies {a1,a2} ⊆ non-linear-stratified,

2. a ≡ C(. . . , b, . . .), b: (σ⇒ τ), b ∼ b′ and a � b′ implies
a ∈ non-linear-stratified,

3. a ≡ C(. . . , b, . . .), b: (σ⇒τ) and a ∈ non-linear-stratified
implies b ∈ non-linear-stratified,

4. a ∈ non-linear-stratified and a ∼ b implies b ∈
non-linear-stratified.

where, C and C′ are arbitrary combinators. We say a is
linear-stratified if a 6∈ non-linear-stratified.

Now, we restrict the application of the rules ⇑ and map⇑
using the non-linear-stratified instead of non-linear. Let ⇑r

and map⇑r be the restricted version of these rules. If a is
linear stratified and a ≡ C(. . . , b, . . .), then we can assume
that Mλ(b) was already defined when defining Mλ(a).

Theorem 16: Considering the simplifying assumption
that the intended interpretation of every index sort σ is
infinite, then the rules idx, ⇓, ⇑r, ext 6', extr, K⇓, map⇓,
map⇑r, ε 6' and εδ are sound, terminating and complete.

Proof: The proof is similar to the proof of Theorem 8.
Let a be the greatest constant, with respect to the order
≺, in the equivalence class containing a. Now, we define
Mλ(a) only after all constants b ≺ a were already defined.
Similarly, if f : (σ1, . . . , σk) → τ is uninterpreted, then we
define Mλ(f) after all all constants of sorts σ1, . . . ,σk and
τ were already defined. If a is linear-stratified and a ≡
mapf (b1, . . . , bk), then we define Mλ(a) as:

Mλ(a)(ι) =

{

ν if (ι,ν) ∈ graph(a),

Mλ(f)(Mλ(b1)(ι), . . . ,M
λ(bk)(ι)), otherwise.

The construction for definitions of the form a ≡ store(b, i,v)
is similar. If a is not linear-stratified, then we use the
same construction used in the proof of Theorem 8. After
defining Mλ(a), we make Mλ(a) = Mλ(a) for every a in
the equivalence class of a.

2 defined in the appendix
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The proof of Theorem 4 established that the reduction
from TA ⊕Tcore to Tcore required at most a cubic number
of new terms. The reduction of TCAL ⊕Tcore to Tcore can
also be bounded by a polynomial number of new terms,
using a similar argument, and:

Theorem 17: If the satisfiability problem for Tcore is
NP-complete, then the satisfiability problem for Tcore ⊕
TCAL is also NP-complete.

VI. Experimental Results

First, let us describe implementation details that are rel-
evant for reproducing our results. Hence, we describe how
the proposed inference rules were implemented in the SMT
solver Z3. The rule idx is applied whenever a definition of
the form a ≡ store(b, i, v) is created. The rules ε 6' and εδ

are only used when the input formula contains the combi-
nators K and mapf . In this case, εδ is applied when an
array constant is created, and ε 6' is delayed. Actually, we
use model-based instantiation for guiding the application
of the rule ε 6'. The idea is to build a candidate model Mλ

without even using ε 6', if in this model Mλ(εσ) 6= Mλ(i) for
every i (6= εσ) used as an index, then we have a valid model.
Otherwise, we expand ε 6' and continue. The rule ext 6' is
applied when p is assigned to false, and the application
of extr is delayed. Before applying extr we build the set
already-diseq. We use a simple indexing technique, called
use-lists, for applying the remaining rules. Given a defini-
tion a ≡ C(. . . , b, . . .), we say a is a parent of b. The use-list
data-structure stores the parents of each array constant
a. Recall that we use an union-find data-structure for im-
plementing equivalence classes. Then, whenever the union
operation is performed we use the use-lists to find new
matches for the remaining inference rules. The sets foreign,
non-linear and non-linear-stratified are implemented as map-
pings from equivalence class representatives to Booleans.

Fig. 7 contains two scatter-graphs 3 comparing the per-
formance of Z3 with and without the rule ⇑r in all 2244
benchmarks in the QF AUFLIA division of SMT-LIB.
Each point on the plots represents a benchmark. On each
plot the x-axis is the CPU time, in seconds, taken by Z3
using ⇑r, and y-axis in the first graph is for Z3 using ⇑, and
in the second graph is for Z3 delaying the application of ⇑r.
Points above the diagonal are then benchmarks where Z3
with ⇑r is faster. The scatter-graphs clearly show that rule
⇑r increases Z3’s performance in hard instances. Note that
delaying the application of ⇑r increases the performance in
unsatisfiable benchmarks because most array constants are
linear, and, consequently, this rule is not needed. However,
in satisfiable instances the rule is eventually applied and
performance degrades.

VII. Conclusion

We described efficient and simple decision procedures
for the array theory and combinatory array logic. The
new combinators admit a simple theory of sets and bags.
The theory of sets has already been used in real applica-

3 Data available at http://research.microsoft.com/˜leonardo/fmcad09
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Fig. 7. Z3 on QF AUFLIA Benchmarks

tions at Microsoft (e.g., the program exploration tool Pex
and SpecExplorer). The decision procedure is presented
as a set of inference rules on top of a core solver which
provides basic capabilities. We also described the imple-
mentation techniques used to efficiently implement these
inference rules. Moreover, in our approach the index do-
main of an array can be finite (e.g., bit-vectors). We also
described several filters for minimizing the number of times
an inference rule needs to be applied while retaining com-
pleteness. In particular, our experiments show that rule
⇑r improves the performance of Z3.
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Appendices

A. Basic filtered upwards propagation

Theorem 11: The rules idx, ⇓, ⇑r, ext 6' and extr are
sound, terminating and complete.
Proof: The proof is similar to the proof of Theorem 6,
but the construction of Mλ is different. Recall that ∼ is
an equivalence relation on the constants in Γ. We use a

to denote the representative of the equivalence class con-
taining a. Given Γ, we say an array constant a is a linear
parent if there is a′ ≡ store(b, i,v) s.t. a ∼ a′ and b is linear.
By definition of non-linear, a is linear iff a is linear, and ev-
ery linear parent a is linear. In the proof of Theorem 6,
the rule ⇑ was used to show that for every definition of
the form a ≡ store(b, i, v), index(b) \ {Mλ(i)} ⊆ index(a),
and Mλ(a)(ι) = Mλ(b)(ι) for all ι ∈ index(b) \ {Mλ(i)}.
Clearly, this property does not hold for linear parents when
⇑r is used instead of ⇑. For each equivalence class repre-
sentative a we define the the map graph(a) as before. Be-
fore constructing Mλ(a) for any array constant a of sort
(σ⇒ τ), we compute new maps graphω(a), for each a of
sort (σ⇒τ), as the least fix point of the following system
of equations:

graph0(a) := graph(a)

graphk+1(a) :=











graphk(a)∪ graphk(b) \ {i} if

a is linear parent, and a ≡ store(b, i,v)

graphk(a) if a is not a linear parent

This system is well defined because if a is a linear parent,
then, by definition of non-linear, there is one and only one
definition of the form a ≡ store(b, i,v) s.t. a ∼ a. The least
fix point computation terminates because there is a finite
number of pairs (ι,ν). We define indexk(a) as usual. The
map graphk(a) is functional for every k and a. This is a
consequence of the following observation: rule ⇓ guarantees
that for every a ≡ store(b, i, v) s.t. b is linear, and for all
(ι,ν) ∈ graph(b) one of the following holds:

1. ι = Mλ(i), or
2. ι ∈ indexk(b) and ι 6∈ indexk(a), or
3. (ι,ν) ∈ graphk(a)

Finally, we define Mλ(a) as before, but using graphω(a) in-
stead of graph(a). Now, we have that indexω(b)\{Mλ(i)} =
indexω(a), and Mλ(a)(ι) = Mλ(b)(ι) for all ι ∈ indexω(b) \
{Mλ(i)}.

B. A Combinatory Array Logic with Identity

CAL is not an instance combinatory logic. It does not
contain the operator S (that satisfies S xy z = xz (y z)),
but it seems to be for a good reason: Undecidable higher-
order unification can be reduced to a satisfiability query
using only the combinators S and K. Instead of adding S,
let us here add just the identity operator I of sort (σ⇒σ).

If we don’t restrict mapf , this new innocent looking con-
struct allows encoding λ terms. An encoding takes the
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form:

[[λx.M ]] = abs(x, [[M ]])

[[(M N)]] = [[M ]][[[N ]]]

[[x]] = x

abs(x,x) = I

abs(x,M) = K(M) x 6∈ FV (M)

abs(x,M [N ]) = mapread(abs(x,M),abs(x,N))

Let us in the following restrict mapf to only be applied
to ' (equality) and ite. The identity combinator is char-
acterized using the following axiom:

∀i: σ . I[i] ' i

Consider now the inference rules from Fig. 1 and 4 together
with the rule

a ≡ I, v ≡ a′[i], a ∼ a′

Id
a[i] ' i

We then have:
Theorem 18: Assume the size of every index sort σ is

infinite, then the rules idx, ⇓, ⇑, ext 6', extr, K⇓, map⇓,
map⇑, ε 6' and εδ, Id are sound, terminating and complete.

Proof: Again, we are not considering any restricted
version of the rule ⇑. The proof is similar to the proof
of Theorem 13, but the construction of Mλ is different
again. Let us use the shorthand ε := Mλ(εσ). For the
array a : (σ⇒τ) we define the map graph(a) as before, and
define Mλ(a) as:

Mλ(a)(ι) =































ν if (ι,ν) ∈ graph(a),

ι if σ = τ and Mλ(a)(ε) = ε

ε if σ = τ and Mλ(a)(ε) 6= ε

and Mλ(δa) = ι

Mλ(δa) otherwise.

The peculiar construction for Mλ(a)(ι) deserves some in-
formal motivation before we dive into the detailed case
analysis in the proof. The construction says that Mλ(a)
behaves like the graph(a) whenever the argument ι is forced
by the graph. Otherwise, there are two cases. In the first
case, where Mλ(a)(ε) = ε is implied by the saturated con-
straints, Mλ(a) is the identity function outside of graph(a).
In the second case, where Mλ(a)(ε) 6= ε, we ensure that
Mλ(a) maps everything outside of graph(a) to Mλ(δa),
except for Mλ(δa) itself (δa can only be used as an argu-
ment to a uses the same domain and range sorts). For
ι = Mλ(δa) we set Mλ(ι) = ε. This construction ensures
that if Mλ(a) is not the identity on ε it will also not be the
identity on any other elements not included in the index
set.

Now, we show that Mλ satisfies all definitions of the
form a ≡ store(b, i, v), a ≡ map

ite
(b, c, d), a ≡ map'(b, c),

a ≡ K(v) and a ≡ I. The interesting cases are when

κ 6∈ index(a)∪ index(b)∪ index(c)∪ index(d), κ 6= Mλ(i), oth-
erwise the construction is as in the proof of Theorem 13.

When a ≡ store(b, i, v), the new case is when σ = τ

and Mλ(a)(ε) = ε. Then by construction Mλ(a)(κ) = κ =
Mλ(b)(κ) as well.

When a ≡ map
ite

(b, c, d), either Mλ(b)(ε) is true or is
false. When Mλ(b)(ε) is true saturation with respect to
Boolean values implies that also Mλ(a) = Mλ(c), and
therefore Mλ(a)(κ) = Mλ(c)(κ). Furthermore, since we
assume domain sorts are infinite, it is also the case that
σ is not the bool sort, so Mλ(b)(ε) = Mλ(b)(κ) by con-
struction. But then we have Mλ(a)(κ) = Mλ(c)(κ) =
Mλ(map

ite
(b, c, d))(κ). The case where Mλ(b)(ε) is false

is similar.
When a ≡ map'(b, c), the infinite domain assumption

ensures that σ 6= bool and therefore Mλ(a)(ε) = δa =
Mλ(a)(κ). So the equality predicate evaluates to the same
truth value on ε and κ. We will now go through the cases
for Mλ(b)(ε) and Mλ(c)(ε).

• Mλ(b)(ε) = Mλ(c)(ε) = ε, then by the second case of
the definition of Mλ it follows that Mλ(b)(κ) = κ =
Mλ(c)(κ).

• Mλ(b)(ε) = Mλ(c)(ε) 6= ε, then it is still the case that
Mλ(δb) = Mλ(δc). Then either the third or fourth
case of the definition of Mλ applies to κ.

• Mλ(b)(ε) 6= Mλ(c)(ε) = ε, then the second case of the
rule for Mλ implies that Mλ(c)(κ) = κ. There are two
cases for b:

Mλ(b)(κ) =

{

ε if Mλ(δb) = κ

Mλ(δc) otherwise

Both ε and Mλ(δc) will have to be different from κ.
• ε 6= Mλ(b)(ε) 6= Mλ(c)(ε) 6= ε. Then it cannot be

the case that both Mλ(δb)(= Mλ(b)(ε)) and Mλ(δc)
are equal to κ because we assumed these values
were different. Therefore it cannot be the case that
Mλ(b)(κ) = Mλ(c)(κ) = ε. At least one has to be
Mλ(δb) or Mλ(δc), they are all different and different
from ε.

When a ≡ K(v) or a ≡ I, then saturation under the rules
and the model construction directly enforces the right in-
terpretation.


