
NETRA: Seeing Through Access Control

Prasad Naldurg
Microsoft Research India
Bangalore 560080, India

prasadn@microsoft.com

Stefan Schwoon∗

Universität Stuttgart
70569 Stuttgart, Germany

schwoosn@fmi.uni-
stuttgart.de

Sriram Rajamani
Microsoft Research India
Bangalore 560080, India

sriram@microsoft.com

John Lambert
Microsoft Corporation

Redmond, WA 98052, USA
johnla@microsoft.com

ABSTRACT
We present netra, a tool for systematically analyzing and
detecting explicit information-flow vulnerabilities in access-
control configurations. Our tool takes a snapshot of the
access-control metadata, and performs static analysis on
this snapshot. We devise an augmented relational calculus
that naturally models both access control mechanisms and
information-flow policies uniformly. This calculus is inter-
preted as a logic program, with a fixpoint semantics similar
to Datalog, and produces all access tuples in a given con-
figuration that violate properties of interest. Our analysis
framework is programmable both at the model level and at
the property level, effectively separating mechanism from
policy. We demonstrate the effectiveness of this modularity
by analyzing two systems with very different mechanisms
for access control—Windows XP and SELinux—with the
same specification of information-flow vulnerabilities. ne-
tra finds vulnerabilities in default configurations of both
systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, information flow controls; D.2.4 [Software
Engineering]: Software/Program Verification—validation,
formal methods

General Terms
Security, Design, Verification

Keywords
Vulnerability Reports, Privilege Escalation, Static Analysis

∗Work done while the author was a visiting researcher at Mi-
crosoft Research India, on leave from Universität Stuttgart.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-550-9/06/0011 ...$5.00.

1. INTRODUCTION
Modern operating systems (OSs) make access-control de-

cisions using configuration metadata such as access tokens,
security descriptors, capability lists, and access-control lists
(ACLs). The metadata are stored in different formats and
can be manipulated in a variety of ways, directly influencing
what is perceived as access control behavior. We argue that
existing interfaces to query and manipulate this information
are too low-level, and do not allow application and system
developers to specify information-flow goals and verify their
intent effectively. This is for a variety of reasons:

• In feature-rich operating systems such as SELinux (Se-
curity Enhanced Linux) or Windows XP, there is a
complex interplay between different access-control se-
curity mechanisms. For example, in Windows XP, ac-
cess checks based on a principal’s access token and
a resource’s security descriptor can be quite involved.
For instance, the token may contain group membership
information which is inherited from some parent ob-
ject, and could have various attributes that users may
not be aware of that influence the outcome of the de-
cision. Further complications arise because of imper-
sonation and privileges. SELinux, on the other hand,
mixes many different types of access-control mecha-
nisms (discretionary, role-based, and mandatory). It
is difficult for even a dedicated system administrator
to keep track of all these features, and an ordinary user
may not even be aware of them.

• Simple information-flow policies such as confidential-
ity, integrity and privilege-escalation cannot be spec-
ified and enforced directly. Typically, a system ad-
ministrator or developer wants to ensure certain prop-
erties such as integrity, where a lower-privileged pro-
cess/user should not be able to modify data used by
a higher-privileged process, or confidentiality, where
security-sensitive information should not be accessible
to lower-privileged processes. However, in order to en-
force these conceptually simple properties, a variety
of low-level settings need to be configured correctly.
Some security-related dependencies are not directly
visible. For example, in Windows XP the membership
of a user in the group “Interactive Users” is decided
implicitly during logon.

• The protection model underlying many OSs is rigid,
typically restricted to an all powerful kernel mode and
a lesser privileged user mode, and cannot be changed
easily. Thus, many applications run with far more
privileges than required to execute the task at hand [3].

As a result of these difficulties, system developers may
inadvertently create access vulnerabilities, e.g., by configur-
ing overly permissive ACLs and assigning higher privileges.
As we show in this paper, new OS versions are released rou-
tinely with vulnerable default configurations. Consequently,
when a new application is integrated with the rest of the
system, regardless of its protection level, it is difficult to
analyze the impact of its default permission and privilege
settings and choose a configuration that best minimizes the
risk of an information-flow vulnerability.

Our main contribution is a novel analysis framework for
organizing access-control metadata, and automatically de-
tecting information flow vulnerabilities. Our tool, netra,
performs static analysis on a dynamically generated snap-
shot of the access-control metadata. We represent both poli-
cies and mechanisms in an augmented relational calculus
with Datalog-like rules [15], and netra uses a custom-built
inference engine to compute least fixpoints and store all
derivation trees corresponding to violations of these prop-
erties.

Our framework is designed to be flexible and modular—
the architecture has two layers that effectively separate the
intended security policies from the mechanisms by which
these may be implemented. The mechanism layer consists
of a list of OS-specific access-control derivation rules that
take the metadata as inputs, and output simplified sets of
inferred permissions available to principals in our system,
masking model-specific implementation details. The policy
layer consists of queries which are interpreted over these
derived relations, and correspond to the information-flow
properties of interest. When a property violation is detected,
the derivation trees with the mechanism-level details can be
retrieved on-demand.

The policy layer is not OS-specific, but netra can ac-
commodate different underlying access-control models at the
mechanism layer, as long as these specifications eventually
generate the simplified relations used in the policies. We
demonstrate this by instantiating our framework for both
SELinux and Windows XP. In these examples, the same
policies can be queried independently on our models with-
out any modifications. Similarly, new queries can be inte-
grated into our framework with different underlying models
easily. We argue that this decoupling between the behav-
ioral model of the underlying access-control system and the
security policies it satisfies is extremely powerful. It pro-
vides us with a methodology for closing the gap between
mechanisms and policies.

Using this framework, we found security vulnerabilities in
both Windows XP and SELinux. In Windows XP we found
a number of world-writable resources whose contents were
used by admin processes. In SELinux we found processes
that were supposedly restricted to the least privileges nec-
essary to fulfill their tasks, but were in fact running with
rather larger privileges, thus defeating the purpose of con-
finement. Our tool also maintains and outputs the proof
trees for the vulnerabilities it finds, allowing the user to in-
spect the report (and possibly fix the underlying problem).
The separation of policy from mechanism also enables the

tool to present vulnerability reports hierarchically, starting
with the policy violation, adding more implementation de-
tails at each level, eventually leading to the corresponding
violations in the mechanisms. We demonstrate that this
leads to readable and understandable vulnerability reports.

The remainder of the paper is organized as follows: In
Section 2, we present an architectural view of our frame-
work and highlight its main components, and explain how
they provide the abstractions to specify and validate our
properties of interest. In Section 3, we describe the mecha-
nism layer of our framework in more detail, and present two
examples to illustrate the general nature of our framework
by modeling the access-control rules of both Windows XP
and SELinux. Section 4 describes the policy layer, where
we specify information-flow vulnerabilities concisely in our
specification language, specifically in terms of integrity, con-
fidentiality and privilege escalation vulnerabilities, and infer
the potential spread of a threat for a given configuration. In
Section 5, we present empirical results of running netra
on default Windows XP and SELinux configurations. In
Section 6, we present related work relevant to our method-
ology. We end with concluding remarks and discussion in
Section 7.

2. BACKGROUND AND OVERVIEW
Access control is typically defined as a relational model

over the following domains: the set of subjects S (or prin-
cipals), the set of objects O (or resources) and the set of
rights R (or permissions). Access control is a characteristic
function on the set A ⊆ S×O×R. A principal s is granted
permission r over resource o iff 〈s, o, r〉 ∈ A.

In operating systems, the access-control model is typically
implemented with a reference monitor using a data structure
called the access matrix. For efficiency and other reasons,
the access matrix is either stored as an access list, which is
associated with a resource and is the list of all principals and
their associated permissions on the given resource, or as a
capability list, which is the list of resources and associated
permissions a given principal is capable of accessing.

Most access-control models impose further restrictions or
constraints on the derivation of the characteristic function,
or the set of allowed access tuples. For instance, classical
access-control models include the concept of ownership. The
two most popular models, the Discretionary Access Control
(DAC) and the Mandatory Access Control (MAC), differ in
terms of who is allowed to change permissions associated
with a resource, with the DAC model deeming that it is the
discretion of the owner, whereas MAC stipulating a system-
wide policy to all principals and resources, which cannot be
changed by individuals. Most systems today are a combina-
tion of MAC and DAC, with resources that can be owned by
individual users, but with the system being able to override
any user permissions under special circumstances.

Though the mechanisms used to implement the charac-
teristic function can be different for different access-control
models, the function is derived from a (usually implicit)
higher level information-flow policy specification. These
policies that govern the flow of information in a system are
independent of the mechanisms used to implement the ac-
cess function. As mentioned earlier, typical information-
flow properties in this context are confidentiality and in-
tegrity, expressed in terms of desirable read-write and write-
read traces. We can also model some privilege escalation

Inference
Engine

Access control
metadata

Access control relations
for mechanismsscanner

Mechanism
model

Policy
model

Vulnerability Reports

Attack graph
viewer

Figure 1: Architecture of netra

vulnerabilities as information-flow properties. A privilege-
escalation attack that exploits a buffer-overflow vulnerabil-
ity takes advantage of an underlying coarse-grained protec-
tion model that grants access to protected system functions.
A more direct vulnerability is when a resource can be writ-
ten by an admin-user and subsequently executed by a lower-
privileged user. An attacker can take advantage of this vul-
nerability to introduce malicious code that will be executed
by the admin-user and as a consequence successfully mount
a privilege escalation attack.

Our tool netra, analyzes access-control systems and de-
tects such information-flow vulnerabilities.1 netra works by
statically analyzing a snapshot of the access-control meta-
data. The architecture of netra is shown in Figure 1. ne-
tra exaggerates the separation between policy and mecha-
nisms in access-control systems—the shaded boxes in Fig-
ure 1 remain unchanged when we apply netra to different
systems. Adapting netra to a specific system (say Win-
dows XP) requires writing a scanner that parses a dynamic
snapshot of the low-level access-control metadata, and con-
verts it into relational form. Next, a description of the
access-control mechanisms as a declarative set of rules is
required. Once these two steps are done, netra’s pol-
icy rules can be applied by its inference engine to look for
information-flow vulnerabilities.

The core of netra is a relational query-inference engine.
The metadata, the policy, and mechanism specifications
form a deductive database system. All the inputs to the
engine, including the access-control relations, the mecha-
nism specification and policy specification are given in the
form of declarative rules. These rules are similar to rules
in Datalog, with custom augmentations that do not impact
the decidability of query-satisfaction for their fixpoint se-
mantics. Each rule is of the following form:

L(X1, X2, · · ·) : − R1(Xi1 , Xi2 , · · ·), R2(· · ·), . . . ,
∼ F1(Xj1 , Xj2 , · · ·),∼ F2(· · ·), . . . ,
Xk = f(Vk1 , Vk2), . . .
(Vn1 ◦ Vn2), . . .

The right-hand side of each rule contains four kinds of
predicates: (1) positive predicates R1, R2 . . ., (2) negated

1netra means “eye” in Sanskrit.

predicates F1, F2, . . ., (3) functions Xk = f(Vk1 , Vk2), where
Vk1 and Vk2 are either variables or constants, and the func-
tion f is an arithmetic operator such as + or−, (4) relational
predicates such as (Vn1 ◦Vn2), where Vn1 and Vn2 are either
variables or constants, and ◦ is a relational operator such as
≥ or ≤. Rules can be recursive—the predicate L from the
left-hand side can also occur in the right-hand side.

In order to ensure that the fixpoint semantics of the rules
are well-defined, we impose the following two restrictions.
We note that we are able to specify access control models of
Windows XP and SELinux, as well as our information flow
properties in this language, in spite of these restrictions.

First, we require that occurrences of negations be “strat-
ified”. More precisely, we build a dependency graph with
a node for every predicate, and add an edge from every
predicate on the right-hand-side of each rule to the predi-
cate on the left-hand-side. An edge is marked as negated if
the right-hand-side predicate is negated. We require that
negated edges cannot occur within a strongly connected
component in the dependency graph. Our inference en-
gine first partitions predicates into strongly connected com-
ponents, based on their dependencies, and processes the
strongly connected components in reverse topological order.
Within each strongly connected component, the inference
engine runs the rules and generates new facts until a fix-
point is reached. Since negations occur only between, and
never within strongly connected components, the fixpoint
computation is well-defined.

Second, every variable used in a negated predicate, in the
right-hand-side of a function, or in a relational predicate,
also needs to be used in a positive predicate in the left-hand-
side of a function in the same rule. Due to this restriction,
each rule can be evaluated by first doing a “join” opera-
tion on the positive right-hand-side predicates, applying the
functions, and finally applying the negative predicates and
filters on the rows of the resulting tables.

We use a standard bottom-up fixpoint algorithm to eval-
uate our queries. netra’s inference engine is custom-built
and written in about 1800 lines of F# [19]. Every proof
found by the system as a counterexample to our safety prop-
erty corresponds to a (different) security vulnerability, there-
fore our engine maintains all possible proofs for every fact
it derives. The proofs are maintained along with the infer-

ences, taking care to maximally share sub-proofs. When a
vulnerability is discovered, netra can display every proof
as a DAG (directed acyclic graph), which represents the vul-
nerability in a graphical form. Due to our separation of rules
into policy and mechanism, the graphs can be read hierar-
chically, corresponding to different levels of abstraction.

In the next section, we show how we can use this formalism
to encode the access control functions in Windows XP and
SELinux.

3. MECHANISM SPECIFICATION
We explain how we can model Windows XP and SELinux

access control using the simple relational calculus introduced
in Section 2. We use these examples to demonstrate the ex-
pressive power of our language, as well as to highlight the
two-level abstraction framework that allows us to apply the
same vulnerability specification to analyze different access-
control models. In both cases, the input to the model is the
OS-specific access-control metadata, and the output is a set
of Read, Write, and Execute relations attesting which prin-
cipals in the systems can access which resources, consistent
with their respective model specifications.

3.1 Windows XP Access Control
Windows XP [16] implements the discretionary access

control (DAC) model, where only the owner of a resource
is authorized to change its access permissions.

Operationally, whenever a thread (of execution) within a
process wants to access a resource (such as a file, directory,
thread, kernel object, pipe, socket), a component of the ker-
nel called the Security Reference Monitor (SRM) is invoked.
The SRM uses an access-check algorithm to decide if the
entity can access the resource.

Each process in Windows XP has a token that describes
its security context. The token is assigned to a user during
logon, and its contents depend on the rights of the user. It
contains information about the owner of the process and its
groups. Owners and groups are represented by security iden-
tifiers (SIDs). An SID may be enabled or disabled for a par-
ticular context. In addition, an SID can be marked ‘deny-
only’ or ’restricted’, which is explained later. A token also
contains a list of privileges. Threads typically do not have
tokens. However, during impersonation, a thread inherits
the token of the process that it is impersonating. Token
attributes such as impersonation privileges and restricted
SIDs decide the eventual permissions that are granted to a
thread. For the sake of simplicity, we do not present all the
details of these token attributes in our model description in
this section.

Each resource in Windows XP has a Security Descriptor
(SD) object associated with it. An SD contains, among
other things, information about the owner of the object and
an entry for the discretionary access-control list (DACL).
This DACL can be either “null” (i.e. not present), or it
can be an ordered list of Access Control Entries (ACEs).
ACEs come in two types: (1) an “allow ACE” describes
which entities are allowed access to the resource, and (2) a
“deny ACE” describes which entities are denied access to
the resource.

Whenever any thread tries to get a handle to a resource,
the SRM invokes a function called AccessCheck to determine
if the access can be granted. The AccessCheck function takes
three inputs: (1) the SD for the object, (2) the token for the

requesting entity or principal, and (3) the type of access
requested (read, write, execute, etc). We give an informal
description of the access-check function, simplifying some of
the details that are not relevant for our presentation. Please
refer to [16] for more details.

If the DACL for that resource is missing (i.e. “null”), all
accesses to the resource are allowed. If a list of ACEs is
present, it will be evaluated to determine the permission.
The order of the ACEs matters: the first ACE that matches
the request determines the decision. Thus, a deny ACE pre-
ceding an allow ACE would mean that the access is denied
instead of being granted, and vice versa. Tokens can have
restricted SIDs, and if such restricted SIDs are present, then
AccessCheck runs the algorithm again with new information,
as described below.

1. A check is made if the DACL in the SD object is NULL.
If so, there are no conditions for access, and the access
is granted.

2. The ACEs in the SD object are examined in increas-
ing order of indices, and the following checks are per-
formed for each index i:

(a) If the ACE at index i is a deny ACE, and the
ACE matches an SID in the token presented and
the type of access requested, then the access is
denied and AccessCheck terminates.

(b) If the ACE at index i is an allow ACE, and the
ACE matches an SID in the token and the type
of access requested, then the algorithm proceeds
with Item 3.

3. If the token does not contain any restricted SIDs, then
access is granted and AccessCheck terminates. Other-
wise, a second pass is made through the ACL and a
similar check as Item 2 is made that operates only on
the restricted SIDs.

A simplified version of the mechanism layer for Windows
XP access control is given in Figure 2. The underlying meta-
data are obtained by a snapshot of running processes in
the system (see Section 7 for more discussion on this design
choice).

Given an SID sid and a resource rsrc, the first rule
says that Read(sid,rsrc) holds whenever there is a thread
owned by the SID sid with a token token, such that
AccessCheck(token,rsrc,’r’) holds. We represent tokens
by the process ID to which they are associated; the rela-
tion ProcessTokenUser relates tokens and the SIDs of their
owners. The variable rsrc can be thought of as a unique
reference to a resource.

The rules for AccessCheck declaratively describe the func-
tionality of Windows XP’s AccessCheck function. The
first rule says that in the case of a “null” DACL on
the resource, any access is allowed. The predicates
FirstPass and SecondPass model the two passes of the al-
gorithm. The rule for the predicate FirstPass states that
FirstPass(token,rsrc,t) holds whenever there is an allow
ACE at index i and no deny ACE up to index i for some
index i. The rule for the predicate DenyAce is recursive, and
states that if DenyAce holds at some index i, then it holds
at larger indices as well (up to num, which is the total num-
ber of ACEs for the resource). Thus, we faithfully model

Read(sid,rsrc) :- ProcessTokenUser(token,sid), AccessCheck(token,rsrc,"r").
Write(sid,rsrc) :- ProcessTokenUser(token,sid), AccessCheck(token,rsrc,"w").
Execute(sid,rsrc) :- ProcessTokenUser(token,sid), AccessCheck(token,rsrc,"e").

AccessCheck(token,rsrc,t) :- Token(token), NullDacl(rsrc), AccessType(t).
AccessCheck(token,rsrc,t) :- FirstPass(token,rsrc,t), SecondPass(token,rsrc,t).

FirstPass(token,rsrc,t) :- AllowAce(token,rsrc,t,i), ~DenyAce(token,rsrc,t,i).
AllowAce(token,rsrc,t,i):- Ace(rsrc,i,"allow",sid,t), HasEnabledSID(token,sid).
DenyAce(token,rsrc,t,i) :- Ace(rsrc,i,"deny",sid,t), HasEnabledSID(token,sid).
DenyAce(token,rsrc,t,i) :- Ace(rsrc,i,"deny",sid,t), HasDenyonlySID(token,sid).
DenyAce(token,rsrc,t,i) :- DenyAce(token,rsrc,t,d), NumAces(rsrc,num), i := d+1, i < num.

SecondPass(token,rsrc,t) :- NoRestrSIDs(token), FirstPass(token,rsrc,t).
SecondPass(token,rsrc,t) :- RestrAllowAce(token,rsrc,t,i), ~RestrDenyAce(token,rsrc,t,i).
RestrAllowAce(token,rsrc,t,i) :- Ace(rsrc,i,"allow",sid,t), HasRestrSID(token,sid).
RestrDenyAce(token,rsrc,t,i) :- Ace(rsrc,i,"deny",sid,t), HasRestrSID(token,sid).
RestrDenyAce(token,rsrc,t,i) :- RestrDenyAce(token,rsrc,t,d), NumAces(rsrc,num), i := d+1,

i < num.

Figure 2: Windows XP Access Control Algorithm

the order-dependent processing of ACEs in the algorithm.
The relation Ace is obtained by parsing the SD metadata,
and contains each ACE present in the SD, ordered by the
indices. The relations HasEnabledSID and HasDenyOnlySID

model the SIDs associated with a token and are obtained
from the token metadata.

The second pass is modeled using the predicate
SecondPass. The first rule for SecondPass says that if there
are no restricted ACEs, then the second pass is equivalent to
the first pass. The remaining rules for SecondPass are anal-
ogous to the rules for FirstPass with the difference being
that restricted SIDs are used.

In the next subsection, we show how to model SELinux
access control using our specification language.

3.2 SELinux Access Control
SELinux is an enhancement to the Linux kernel that intro-

duces mandatory access control (MAC) to standard Linux.
It is shipped with a number of Linux distributions, e.g. De-
bian and Fedora. In Fedora Core 5, the Targeted configu-
ration of SELinux is enabled by default. SELinux tries to
confine each system server and user process to the minimum
amount of privileges and rights required for their function-
ing. Thus, when one of these entities is compromised (e.g.,
through buffer overflows), their ability to cause damage to
the system is reduced or eliminated.

The security architecture of SELinux supports many un-
derlying policy abstractions. These include Type Enforce-
ment (TE), Role-Based Access Control (RBAC) and Multi-
Level Security (MLS), a type of MAC. The specific policy
enforced by a particular installation is governed by a con-
figuration file. The configuration is specified in a declar-
ative language called “SELinux policy”. While one would
hope that this policy language would provide higher level
abstractions, it is well known that it suffers from a granu-
larity problem and is considered too low-level [20, 7, 8] to
express information-flow goals effectively.

SELinux enforcement is built on top of the standard Unix
DAC model. In order to grant access, a request has to be
first allowed by this underlying model (except when an over-
ride option is set). The SELinux mechanisms are used to
typically restrict these permissions and refine accessibility

in terms of least privilege. The TE component defines an
extensible set of domains and types. Each process in an
SELinux installation has an associated domain and each ob-
ject an associated type. Objects types may be further aggre-
gated as classes. The configuration files specify how domains
can access types (as a set of access vector rules) and inter-
act with other domains. In addition, they specify transition
rules that govern what types can be used to enter domains,
as well as allowable transitions between domains, typically
by executing programs of certain types (and classes). This
ensures that certain programs can be placed in restricted
domains automatically, depending on what they execute.

In addition to TE, SELinux provides support for RBAC in
terms of an extensible set of roles. Each user in the system
can be associated with multiple roles. The configuration
specifies which users can enter what roles as well as the set
of domains that may be entered by each role. MLS is the
standard Bell-LaPadula lattice-based MAC model [17].

In the next subsection, we describe the SELinux configu-
ration language and model it in our notation.

3.2.1 SELinux Targeted Configuration
For the purpose of this paper, we focus on the stan-

dard distribution of SELinux that ships with Fedora Core 5.
Three different configurations are available: Strict, Targeted
and MLS. The Strict configuration was developed by NSA
and is meant for a controlled userspace that disallows DAC,
but is impractical for enterprise networks. The MLS config-
uration focuses on servers only. The Targeted configuration
that we analyze is intended to lock down specific daemons
or processes, based on their vulnerability. These daemons
run under the super-user account root that usually has full
control over the system, but SELinux adds mechanisms de-
signed to restrict them to the least privileges needed to ful-
fil their tasks. The rest of the system runs with original
Linux default permissions. Untargeted processes run in the
unconfined_t domain. The targeted processes switch to
their protected domains when they are executed in the sys-
tem. For example, initd runs as unconfined unless it exe-
cutes a program belonging to any of the targeted domains.

The Targeted configuration is a combination of RBAC and
TE. Its configuration files contain rules that form a declar-

Read(domain,resource):- ResourceType(resource,type), DomReadType(domain,type),
~NeverAllowRead(domain,type).

Write(domain,resource):- ResourceType(resource,type), DomWriteType(domain,type),
~NeverAllowWrite(domain,type).

Execute(domain,resource):- ResourceType(resource,type), DomExecType(domain,type),
~AnyTTR(domain,type), ~NeverAllowExecute(domain,type).

Execute(domainp,resource):- ResourceType(resource,type), ~NeverAllowExecute(domain,type),
TypeTransition(domain,type,domainp).

AnyTTR(domain,type) :- TypeTransition(domain,type,domain2).

DomReadType(domain,type) :- AllowRead(domain,type).
DomReadType(domain,type) :- AllowRead(domain,class), TypeClass(type,class).
DomWriteType(domain,type) :- AllowWrite(domain,type).
DomWriteType(domain,type) :- AllowWrite(domain,class), TypeClass(type,class).
DomExecType(domain,type) :- AllowExecute(domain,type).
DomExecType(domain,type) :- AllowExecute(domain,class), TypeClass(type,class).

Figure 3: SELinux Access Control Algorithm

ative mechanism specification. The rules define types, do-
mains, roles, associations between roles and domains, access
vectors, and domain-type transitions. We point the reader
to [18] for more details on SELinux configuration. For the
purposes of our analysis, these rules form the access-control
metadata that is analyzed by our tool.

From this metadata, we directly extract the following re-
lations:

• AllowRead, NeverAllowRead, and the analogous write
and execute relations: these specify the read, write,
and execute permissions that domains have over types
(or classes), where the NeverAllow... predicates are
used to deny permissions that would otherwise be
granted by Unix DAC settings.

• ResourceType and TypeClass: these provide the mem-
bership relations of resources in types and of types in
classes.

• TypeTransition: a fact of the form TypeTransition

(d1,t,d2) says that if a process of domain d1 creates
a new process by executing an object of type t, then
the new process will run under the domain d2. Note
that no new domains or types are created by this rule.

The goal of our analysis is to find whether the targeted
daemons in the given configuration run with unnecessary
privileges that could lead to vulnerabilities when a daemon is
compromised. Since the daemons are running as root, they
are unrestricted by the Unix DAC model, which we therefore
ignore. For the purposes of this presentation, our model
treats domains as subjects (processes with the same domain
have the same rights). To present this information more
meaningfully to developers, we can also look up the role-
user and user-domain associations to find vulnerable users,
which we omit here for sake of brevity.

The resulting access-control model is specified in Fig-
ure 3.2. The Read predicate specified on the first line pro-
ceeds as follows: (1) The type of the resource is found. (2)
We check if we can find an AllowRead association for the
domain-type pair, either directly, or by virtue of the type
being a member of a class for which this is allowed, as speci-
fied near the end of Figure 3.2. (3) We check if a never-allow
association exists for the same domain-type pair. Access is

denied if such an association is found, or if no allow rela-
tionship is found.

The rule for Write is similar to Read. For the Execute

predicate, in addition to checking membership in allow and
never-allow relations, we also check if there is a type transi-
tion rule triggering a transition to another domain where the
file will be executed. If there is a transition to another do-
main, the file will actually execute under the new domain.

4. VULNERABILITY SPECIFICATIONS
In this section, we describe how we can use the same

specification language to express information flow properties
of interest with respect to explicit flows (we do not model
covert channels). An interesting point to note here is that
this vulnerability analysis is independent of the underlying
implementation mechanisms. This specification of vulner-
abilities can be evaluated against different access control
models, as long as the metadata can be meaningfully ex-
pressed as the simplified read, write and execute relations.
Later, we show we can use the same specifications to analyze
vulnerabilities in both Windows XP and SELinux.

4.1 Information Flow Properties
Flow of information occurs from a resource to a user when

a user either reads or executes the resource, and from a user
to a resource when the user writes to the resource. While
many of these flows are by design, certain types of flows are
undesirable. For our analysis, we are primarily interested in
flows that go across what are called protection boundaries.

Information-flow analysis of this nature is most useful
when we start with susceptible programs, or have access
to very sensitive data. Ideally, it should be impossible for
susceptible programs that are run with lower privileges to
access the same data available to the sensitive programs
that run with higher privileges except in very constrained
circumstances. Our queries therefore are about flows be-
tween lower-privileged users through the set of susceptible
programs to the set of sensitive programs that can be ac-
cessed by users with higher privileges.

4.2 Vulnerability Specification
In Figure 4 we present specifications of information flows

that are undesirable. The variables in the relations specified
here will be interpreted in the context of specific models. For

WriteExecuteAttack(s1,s2,rsrc):- Write(s1,rsrc), ~Admin(s1), Execute(s2,rsrc), Admin(s2).

IntegrityAttack(s1,s2,rsrc):- Write(s1,rsrc), ~Admin(s1), Read(s2,rsrc), Admin(s2).

ConfidentialityAttack(s1,s2,rsrc):-Read(s1,rsrc), ~Admin(s1), Write(s2,rsrc), Admin(s2).

Tainted(s1,s2):- Write(s1,rsrc), ~Admin(s1), Read(s2,rsrc), ~Admin(s2).
Tainted(s1,s2):- Write(s1,rsrc), ~Admin(s1), Execute(s2,rsrc), ~Admin(s2).
Tainted(s1,s3):- Tainted(s1,s2), Tainted(s2,s3).

TransitiveAttack(s1,s3):- ~Admin(s1), Admin(s3), Tainted(s1,s2), WriteExecuteAttack(s2,s3,rsrc).
TransitiveAttack(s1,s3):- ~Admin(s1), Admin(s3), Tainted(s1,s2), IntegrityAttack(s2,s3,rsrc).

Figure 4: Specifications of Vulnerabilities

example, subjects in Windows XP are SIDs and domains
in SELinux. Our property specifications are very abstract
and simple. However, this does not imply that we do not
have control over the level of abstraction at which we can
manipulate queries using our tool. As we show in Section 5,
we can encode implementation-specific details as filters in
the mechanism-specification without changing our queries,
and nevertheless improve the relevance of our results.

1. Privilege Escalation (W-E Vulnerabilities): The first
rule in the specification is the Write-Execute (W-E)
privilege escalation vulnerability. In its simplest form,
a W-E vulnerability can be defined as one in which a
resource has a write permission by a non-admin user
and an execute permission by an admin user. Poten-
tially the non-admin user (by writing malicious code
into the resource) can make the admin user execute
dangerous code which gives the non-admin user ele-
vated privileges to the system. The rule states that
a W-E vulnerability exists between two subjects s1

and s2 if one of them, say s1 has write permissions
on the resource, and is not an administrative or high-
privileged user, and if the other user s2 has execute
privileges on the same resource. Later, we discuss how
not all W-E vulnerabilities can be exploited in the con-
text of specific models, and how we can refine our tool
to produce relevant vulnerability reports.

2. Integrity and Confidentiality Concerns: Similarly, we
specify an integrity vulnerability as a write-read flow
between a non-admin and an admin subject, and an
undesirable confidentiality flow as a read-write flow in
this context.

3. Taint Analysis: The next specification is for taint anal-
ysis. The first and second rules state that a non-admin
subject s1 can taint another non-admin subject s2 if
there is a possibility of a write-read or write-execute
flow between them. Furthermore, this relation is tran-
sitive if there is a third subject that is the destination
of one flow and the originator of another. Taint anal-
ysis is useful to explore the potential spread of com-
promised information (e.g., virus) in a system.

4. Transitive Vulnerabilities: Taint analysis forms the ba-
sis for the specification of a transitive vulnerability. A
possibility of a transitive vulnerability between a non-
admin s1 and an admin s3 exists if s1 can taint s2 and
there is a W-E vulnerability or a W-R vulnerability
between s2 and s3, as specified.

5. RESULTS
In this section, we discuss the results obtained by run-

ning netra on both Windows XP and SELinux. Note that
the vulnerability results our tool produces are only possi-
ble attacks. We show how we can refine our specifications
to improve the relevance of vulnerabilities found by adding
appropriate filters.

5.1 Results on Windows XP
We run netra for the Windows XP specification in Fig-

ure 2, together with the vulnerability specifications from
Figure 4 and for a test configuration the tool produced
4853 vulnerabilities over 1326 unique resources. Several of
these vulnerabilities are benign, and running the tool for the
model at this level of abstraction produced a large amount
of “white noise”. A typical vulnerability report was of the
form “User u has privileges to write into a resource r, and
an admin a has execute permissions on r.” However, even
if the admin can execute r, it might never actually do so.
To make the results of the tool more relevant, we need to
look at implementation details so as to produce more plau-
sible vulnerabilities. To do this, we refine the Execute rule
in Figure 2 to also add that for an admin user to be con-
sidered to have a chance of executing a resource rsrc, the
admin user should also have an open handle for rsrc. We
therefore push implementation details that improve the us-
ability of our tool to the model level, retaining the power of
abstraction at the property specification level. We believe
that this choice greatly improves the usability of our tool.

After this filtering, the tool produced 176 vulnerability re-
ports on 58 different resources (multiple attacks on the same
resource usually differed only in the identities of the admin
and non-admin user involved). Every report we looked at
was a plausible vulnerability. Several of these vulnerabili-
ties have been fixed and patched, but these patches may not
have been installed everywhere. We give examples of two of
these vulnerability reports in Figure 5.

The first vulnerability report (in the top portion of the
figure) says that: (1) the Admin user has administrative priv-
ileges, (2) the Admin user has both a handle and execute per-
missions on AttackedResource2, and (3) LS (or Local Ser-
vice, which is a group with low privileges) is running a pro-
cess with write permissions to AttackedResource. Now, if
we ask the question, “How does that process have write per-
missions to AttackedResource?”, we can descend down the

2The actual name of the resource and the AdminProcess
have been withheld to prevent exploitations on unpatched
machines.

Figure 5: Sample Windows XP Vulnerabilty Reports

Figure 6: Sample SELinux Vulnerabilty Report

node labeled Write(‘‘LS’’,’’AttackedResource’’) and
learn that this is due to a process that is owned by LS and
has the appropriate token. If we ask the question, “How
does this process have access to AttackedResource?”, we
can descend down the tree further, and locate the actual
ACE on the security descriptor for AttackedResource due
to which Windows XP’s AccessCheck granted this access.
The ACE in question actually makes the resource “world-
writeable” (denoted by WD in the graph), which allows any
user, not just LS, to write to the resource.

The second vulnerability report (in the bottom portion
of the figure) also shows a write-execute vulnerability, but
here the user gets access to the AttackedResource due to a
“null” DACL.

5.2 Results on SELinux
As mentioned in Section 3.2, we analyze the Targeted con-

figuration of the standard distribution that ships with Fe-
dora Core 5. To discover whether the targeted daemons run
with overly permissive rights, we check whether they can
compromise files used by an unrestricted root process. Since
such processes are not directly represented in the SELinux
configuration, we added an artificial, all-powerful ‘root’ do-
main to the configuration, which, for the purposes of the
vulnerability specification, was considered to be an admin.
Like in our experiments on Windows, we improve the usabil-
ity of our tool by adding a filter at the model level, i.e. we
specify that only vulnerability reports on certain files would
be considered interesting. For the purpose of our experi-
ments, we searched for attacks on the su binary that is used
for logging in as a super user. In general, a broader scope
for the search would be desirable, e.g., one could look for
attacks on all system executables whose ‘setuid’ attribute is
set.

With this configuration, netra reported 26 different do-
mains in the SELinux configuration that had write access
to the su binary. A sample vulnerability report is shown
in Figure 6. In this example, a process of type apmd_t can
write to a binary of type su_exec_t (which includes su) by

virtue of having write access to the class attrib_001, of
which su_exec_t is a member. An example of a process
running as apmd_t is the acpid daemon, whose purpose is
the management of Advanced Configuration and Power In-
terface (ACPI) events.

We believe that the permission to rewrite security-critical
binaries is not required for the operation of this daemon, and
that the same holds for almost all the 26 domains found by
netra. If a daemon running under any of the above domains
is compromised (e.g., by a buffer overrun), an attacker could,
e.g., trick the daemon into rewriting the su binary to remove
the password check, thus giving himself full access to the
system, a kind of vulnerability that SELinux was actually
designed to prevent.

To verify that our conclusions are correct, we conducted
a proof-of-concept experiment in which we simulated the ef-
fect that a compromised service would have. We modified
acpid so that it would replace su with a different binary
when starting and then carry on with its usual service. In-
deed, SELinux failed to prevent this attack. When we re-
peated the experiment with another daemon on which our
tool did not report a vulnerability (sdpd, a Bluetooth dae-
mon), SELinux did prevent the attack. These facts suggest
that the overly permissive rules were not given deliberately,
but indeed represent a configuration flaw.

6. RELATED WORK
Formal modeling and analysis of access-control properties

in operating systems has a long history [14]. The correspon-
dence between an access policy and the meaning of its asso-
ciated mechanisms is expressed as the access-control safety
property. This amounts to analyzing whether a user can
obtain a permission he/she was not authorized to obtain,
using the implementation mechanisms for a given model.
Validating access control safety in its most general sense is
undecidable [6]. However, there are restricted and abstract
models of access control such as [11, 2], where some prop-
erties can be validated efficiently.

In addition to access-control safety, researchers have also

looked at access control properties from the viewpoint of
users in a system. The three standard properties here are
confidentiality, integrity, and availability. These properties
are also referred to as explicit information-flow properties.
A variety of models with formal guarantees for confidential-
ity and integrity properties have been proposed. However,
such models, for instance, for preventing information dis-
closure in multi-level sytems [1, 13] are not very popular
outside constrained userspaces and have been shown to be
unachievable in practice [12] due to covert channels.

We note that explicit information-flow vulnerabilities are
not the only kinds of problems associated with access con-
trol systems. Other vulnerabilities include physical at-
tacks, covert channels, user negligence, programming lan-
guage safety, memory access safety, etc., that are beyond
the scope of this paper. Nevertheless, this is an important
class of vulnerabilities that we hope can be fixed by rigorous
design and analysis.

The simple access-control models of Unix and the original
Windows operating systems have evolved over time, in step
with a demand for flexible and finer-grained control over ac-
cess. As described in this paper, commercial operating sys-
tems as well as open-source systems now support a wealth of
mechanisms that allow policy engineers enormous flexibility
in expressing information-flow requirements. However, pol-
icy models seem to have lost their effectiveness as a useful
abstraction in this context.

In the context of SELinux, this is acknowledged as a se-
rious concern, and a number of researchers have studied
the problem of validating different SELinux configurations
against higher-level goals [20, 7, 9, 8]. Most of these tools
still present a low-level abstraction to their users and typi-
cally allow them to browse whether some permission or tran-
sition is allowed or not.

The work most closely related to our effort is [5], which
presents a formal framework for verifying information-flow
goals in SELinux. From a given SELinux configuration, they
construct a labeled transition system (LTS) with security
contexts as states and read, write, and execute actions as
transition labels. The policy is specified as a desirable prop-
erty of states (e.g., as an assertion that somebody running
a HTTP script file cannot become root). This specification
is checked against the LTS using the NuSMV model-checker
as the analysis engine. A counterexample gives a path that
leads to a state where this property is violated.

In contrast, our work is more general. We are able to spec-
ify information-flow goals at a higher level of abstraction
that is closer to human intuition. The specifications them-
selves are programmable, and we can produce all counterex-
amples. Furthermore, our two-layer framework also allows
us to plug in different access-control models and hide the
complexity of underlying implementation mechanisms from
a policy engineer.

This work was inspired by an internal tool used within Mi-
crosoft called XRay that analyzes privilege-escalation vul-
nerabilities [10]. In the original version of that tool, the
analysis was mechanism-driven and patterns of known vul-
nerabilities were matched against configuration information.
Our goal was to generalize this analysis to other information-
flow properties as well as to make it extensible and pro-
grammable in terms of mechanisms, models and queries. We
were able to add integrity checking, confidentiality, checking,
and taint-analysis by writing only a few lines of specification.

Another tool that has the same inspiration is [4], which is
implemented using a similar logic-programming framework,
but does not have the two-level abstraction, and uses only
known attacks to model vulnerabilities. Logic programming
is generally recognized as a natural way of expressing secu-
rity goals.

7. CONCLUDING REMARKS
The goal of any access-control model is twofold: (1) to

allow principals to share resources and communicate with
each other legitimately for their functionality requirements,
and (2) to disallow bad information flows that compromise
integrity and confidentiality.

Mechanisms that implement access control can be compli-
cated, and it is very easy to misconfigure a system with ex-
ploitable information-flow vulnerabilities. We have demon-
strated that it is possible to capture these implementation
details as well as desirable properties using our specifica-
tion language, and validate these properties in a platform-
independent fashion. We do this by demonstrating that
two disparate operating systems such as Windows XP and
SELinux can be analyzed using the same property specifi-
cations. Our tool netra successfully found vulnerabilities
in both systems. netra can be extended to validate other
access control models in a similar fashion.

Our analysis captures a dynamic snapshot of the access-
control metadata. For Windows XP, this snapshot give us
precise information only about the current state of the sub-
jects, objects and permissions in the system. For SELinux,
the configuration information also includes some assertions
about their future states. In both cases, this analysis is nei-
ther sound nor complete. For a given snapshot however, we
can argue that we find all information-flow vulnerabilities as
long as our model of the mechanisms is faithful to the actual
implementation. We believe the model can be validated over
time (by analyzing source code for instance) and a correct
specification can emerge by consensus.

Our current analysis is incomplete because the errors we
find are only possible vulnerabilities, which may not be ex-
ploitable. This analysis is useful only if it does not miss
important vulnerabilities and if it has a low false-error ra-
tio. With netra we have found that one way to reduce false
errors is to add filters to the rules that select specific tuples
with relevant attributes from the underlying implementation
relations. For example, for Windows XP we were able to re-
duce false errors drastically by adding that an admin process
that is the target of a bad information flow can also have an
open handle to the resource in question. Adding too much
precision would reduce the functionality of our tool to that
of a reference monitor. Using a purely static approach it
would be difficult, if not impossible, to enumerate all the se-
curity states of the system to guarantee completeness. Any
approach that is likely to be useful is therefore a combina-
tion of the two. Finding the right balance between static
and dynamic analysis is important, and running our tool as
a daemon that incrementally analyzes the configuration in-
formation whenever the state of the system changes is one
option. We plan to investigate these directions in future
work.

8. ACKNOWLEDGEMENTS
We thank Aditya Parameswaran, Aditya Nori, and Yamini

Kannan for their help with an earlier version of the netra
tool. We also thank Matt Thomlinson, Neill Clift, Rama-
rathnam Venkatesan, Venky Ganti, Jim Larus, and Chandu
Thekkath for helpful discussions. We thank Joseph Joy,
Aditya Nori, Avik Chaudhuri, and Chris Conway for their
comments on this paper.

9. REFERENCES
[1] Bell, D., and LaPadula, D. Secure computer

systems: Mathematical foundations. Tech. rep.,
MTR-2547, Volume I, Mitre Corporation, 1993.

[2] Bishop, M., and Snyder, L. The transfer of
information and authority in a protection system. In
Proc. SOSP (1979), ACM Press, pp. 45–54.

[3] Chen, S., Dunagan, J., Verbowski, C., and
Wang, Y.-M. A black-box tracing technique to
identify causes of least-privilege incompatibilities. In
Proc. NDSS (2005).

[4] Govindavajhala, S., and Appel, A. Windows
access control demystified. Tech. rep., Princeton
University, 2006.

[5] Guttman, J. D., Herzog, A. L., Ramsdell, J. D.,
and Skorupka, C. W. Verifying information flow
goals in Security-Enhanced Linux. J. Comput. Secur.
13, 1 (2005), 115–134.

[6] Harrison, M. A., Ruzzo, W. L., and Ullman,
J. D. Protection in operating systems. Commun.
ACM 19, 8 (1976), 461–471.

[7] Herzog, A., and Guttman, J. Achieving security
goals with Security-Enhanced Linux. Tech. rep., Mitre
Corporation, 2002.

[8] Hinrichs, S., and Naldurg, P. Attack-based
domain transition analysis. In 2nd Annual Security
Enhanced Linux Symposium (2006).

[9] Jaeger, T., Zhang, X., and Cacheda, F. Policy
management using access control spaces. ACM Trans.
Inf. Syst. Secur. 6, 3 (2003), 327–364.

[10] Lambert, J. Security analysis. Personal
communication.

[11] Lipton, R. J., and Snyder, L. A linear time
algorithm for deciding subject security. J. ACM 24, 3
(1977), 455–464.

[12] Loscocco, P. A., Smalley, S. D., Muckelbauer,
P. A., Taylor, R. C., Turner, S. J., and
Farrell, J. F. The inevitability of failure: The
flawed assumption of security in modern computing
environments. In Proc. NISSC (1998).

[13] McLean, J. A comment on the ‘basic security
theorem’ of Bell and LaPadula. Inf. Process. Lett. 20,
2 (1985), 67–70.

[14] McLean, J. The specification and modeling of
computer security. Computer 23, 1 (1990), 9–16.

[15] Ramakrishnan, R., and Gehrke, J. Database
Management Systems. McGraw-Hill
Science/Engineering/Math, 2002.

[16] Rusinovich, M. E., and Solomon, D. A. Microsoft
Windows Internals, Fourth Edition: Microsoft
Windows Server 2003, Windows XP, and Windows
2000. Microsoft Press, 2005.

[17] Sandhu, R. S. Lattice-based access control models.
Computer 26, 11 (1993), 9–19.

[18] Smalley, S. Configuring the SELinux Policy. NAI
Laboratories, 2005.

[19] Syme, D. F#. http://research.microsoft.com/
fsharp/fsharp.aspx.

[20] Tresys Technology. Apol:SE Policy Tools for
SELinux. http://www.tresys.com/selinux/
selinux policy tools.shtml.

