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Abstract 

Hardware verification on FPGAs runs more than 
three orders of magnitude faster than software 
simulations, however with much lower visibility 
into the design under test. To expedite the task 
of debugging and specification verification, we 
propose a tool framework that automates many 
tedious aspects of the process.  We provide 
tools to mine assertions either from simulation 
or hardware traces, to generate assertion 
checking engines implemented as efficient 
Verilog state machines, to rewrite the user’s 
Verilog code inserting probes to the relevant 
signals, and to dynamically vary the operating 
clock frequency of the design under test.  
During implementation, we ensure that the 
layout of the original design is preserved as 
much as possible by automatically generating 
placement constraints, and thereby minimizing 
the uncertainty introduced by other on-chip 
debugging techniques. 

This continues the work of the gNOSIS project 
to explore new techniques for FPGA verification 
and debugging by leveraging features of the 
FPGA chips and tools.  This work draws upon 
previous works in specification mining and 
synthesis and combines it with new techniques 
for automated verification in hardware. 

 

1 Introduction 

It is critical to validate the correctness of any 
system prior to in-field utilization. Any errors 

during operation may lead to fatal or disastrous 
financial outcomes. For instance, in 1995, an 
error in the FDIV (floating-point division) 
instruction of an early Intel Pentium processor 
[5] resulted in a charge to Intel of 
approximately $500M. NASA lost a 125 million 
Mars orbiter in 1999 loss of the MCO spacecraft 
was the failure to use metric units in the coding 
of a ground software file, “Small Forces,” used 
in trajectory models. 

Checking the correctness of the underlying 
system versus the intended functionality and 
the expected behavior is called verification. In 
many fields of engineering, the designed system 
has to be verified under various inputs and 
operating conditions. In integrated circuit and 
hardware design, the debugging and 
verification becomes even more challenging. 
Unlike software that runs on fixed processor 
architecture, every hardware design can require 
a different circuit structure and architecture, 
making it more difficult to provide a one-size 
fits-all solution. In addition, signals are often 
buried under the device package and devices 
typically have limited access I/O pins. As a 
result, the designer will be faced with limited 
observability and controllability of the system 
under test. Furthermore, hardware synthesis 
and mapping tools often require a much longer 
time to recompile the system as opposed to 
software design. It is desired to avoid 
recompiling the whole system as much as 
possible. Last but not least, the increasing 
complexity of systems is adding an extra level of 
effort in verification and debugging. 



The state-of-the-art in hardware debugging and 
verification can be divided into three main 
categories. The first category is the simulation-
based methods, which involves simulating the 
behavior of the hardware under design. The 
simulation requires writing test benches and 
input test vectors. Self-checking test benches 
and transaction based test benches are 
common ways of simulating the hardware. The 
second category is based on monitoring the 
design behavior during runtime by probing 
pertinent signals using either integrated or 
external logic analyzer. Thirdly, Formal 
mathematical methods are used to verify the 
system behavior against an abstract 
mathematical model of the system often 
described using FSMs, labeled transition 
systems, Petri nets, timed automata, hybrid 
automata, and/or process algebra. 

In this paper, we introduce an assertion-based 
software-hardware hybrid method to verify the 
system functionality. The introduced 
methodology attempts to pin point bugs mainly 
introduced post synthesis and mapping. The 
framework learns and mines assertions from 
signal traces obtained by functional simulations. 
The mined assertions are then combined with 
user-applied assertions. These assertion which 
are specified in a standard linear temporal logic 
(LTL) language, Property Specification Language 
(PSL), are then synthesized into Verilog finite-
state machines (FSMs). Next the original system 
is fed into a probe-insertion tool to 
automatically provide interconnection between 
the verification units (VUNITs) containing the 
assertions checking state machines and signals 
to be monitored. The debugging interface 
communicates with the VUNIT assertion-
checking engine through an Ethernet link. The 
user can control which assertion to be checked 
and check which assertion has failed at what 
clock cycle. The tool flow is shown in Figure 1. 

 

2 Background 

The goal of the gNOSIS project is to advance the 
state of the art in FPGA hardware debugging 
and verification.  The gNOSIS project 
investigates new techniques that leverage 
features of the FPGA and manufacturer’s tools 
that most hardware developers are not aware 
or do not regularly use. 

 

2.1 State of the Art in 
Industry 

Both major manufacturers of FPGAs provide on-
chip infrastructure for debugging and 
verification on the hardware. These are 
Chipscope for Xilnix [7] and SignalTap for Altera 
[1].  Both these tools insert probes to signals 
into the design under test and capture their 
states using a sampling clock and storing them a 
buffer.  When the limit of the buffer is reached 
or after a configurable number of samples have 
been taken, the contents of the buffer is 
transmitted to a host PC and displayed in logic 
analyzer software GUI to be analyzed by the 
testing engineer.  These tools have some 
advantages and disadvantages. 

Both these tools allow hardware engineers to 
debug their designs on the device in a way 
similar to the bench logic analyzer.  Hardware 
engineers can select signals to monitor and 
view cycle by cycle traces of these signals in 
their design.  Tools are provided to insert the 
infrastructure for this trace capture post 
synthesis at the netlists level.  This relieves the 
task of modifying the design source for 
debugging and limits the chances of the 
hardware designer introducing new bugs in the 
process. The debugging infrastructure 
communicates to the host over boundary scan 
using the same JTAG cable used for configuring 
the device. 

The logic for capturing, storing and sending the 
traces back the host are implemented using the 



FPGA resources including logic, routing, and 
memory.  This strategy consequently limits the 
length and number of the traces that can be 
captured and analyzed.  The Xilinx Chipscope 
debugger limits the number of signals per logic 
analyzer to 256.  This is adequate for most 
design needs.  However more complex designs 
with wide data widths can quickly exceed this 
limit.  The additional logic added to the design 
also changes how the design is implemented on 
the device.  The debugging infrastructure 
increases the fanout of probed signals.  In 
addition, it requires the design logic to be 
placed and routed differently.  These changes to 
the design implementation can potentially alter 
the behavior being observed making replication 
of error conditions under observation more 
challenging. 

Since the design under test is augmented with 
the debugging infrastructure post-synthesis and 
pre-implementation, the design 
implementation must be repeated to add the 
debugging infrastructure or to change it.  These 
implementation steps on average take 10 min 
to several hours depending on the complexity 
of the design.  This leads to a much longer 
debugging cycle as opposed to software 
debugging.  In many cases it can require 
multiple debug cycles selecting different signals 
to trace and re-implement the design in order 
to observe the incorrect behavior responsible 
for the bug.  For this reason, it can take several 
hours to diagnose and correct a single bug. 

 

2.2 gNOSIS Project 

The gNOSIS project explores new techniques for 
FPGA verification and debugging by leveraging 
features of the FPGA chips and tools.  Using 
these manufacturer features the gNOSIS tools 
mine information about the behavior of a 
design from simulation and hardware.  The 
gNOSIS tools are designed to increase the 
faculty available to hardware developers while 

minimizing the impact and potentially changing 
the behavior being observed. 

The first gNOSIS tools attempted to address the 
issues of the existing manufacturer tools related 
to selection or number of signals that can be 
observed without re-implementing the design.  
These tools were able to observe the entire 
state of the design running on a FPGA using the 
CAPTURE and READBACK features of the FPGAs.  
The design tools provided the locations of the 
state of the registers stored in the FPGA 
configuration after a CAPTURE is asserted.  The 
configuration memory was read using the 
Internal Configuration Access Port (ICAP).  Only 
the logic required to assert the CAPTURE and 
read back the configuration memory are added.  
There were no probes inserted into the design 
itself.  Thus, entire design visibility is achieved 
with minimal impact to the design under test 
that will not change as the traces of interest 
change.  However, the bandwidth out of the 
ICAP severely limits the sampling rate of the 
traces of the design under test.  A cycle by cycle 
observation was not possible. 

This next generation of tools approaches the 
problem from a different direction by 
performing self-checking on the device using 
model data extracted from simulation traces.  
The tool flow summarized in Figure 1, is based 
on assertions mined from simulation traces 
synthesized into hardware cores. 

 

 

Figure 1.  gNOSIS Assertion Based Tool Flow 
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3 Static Mining from 
Traces 

 

3.1 Assertion Based 
Verification (ABV) 

An assertion is a statement about a specific 
functional characteristic or property that is 
expected to hold for a design. Assertion-based 
verification increases observability in simulation 
while providing targets for formal verification, 
which increases controllability. Furthermore, 
assertions facilitate design reuse through self-
checking code. 

In assertion-based verification, RTL assertions 
are used to capture design intent in a verifiable 
form as the design is created. Assertions 
enhance observability coverage, making it 
easier to spot the source of an error. Debug 
time is greatly reduced in this way. Assertions 
improve controllability coverage with formal 
verification. When verifying assertions, formal 
verification algorithms explore the equivalent of 
billions of input patterns without requiring test 
vector creation.  

Assertion-based verification is a multi-faceted 
approach to verifying a collection of partial 
specifications more efficiently. Assertions 
enable capabilities for both simulation and 
formal verification and, in the case of open 
standard assertions, a common method of 
capturing intimate design knowledge for both. 

These assertion based methods can be 
implemented in the hardware device to allow 
for the design to perform self-checking at 
operational speeds in a semi-autonomous 
manner only sending back to the host incidence 
of assertion violations over a simpler and lower 
bandwidth interface.  However, in order to use 
assertions to perform this self-checking, it is 
necessary to have assertions to test against the 
design under test.  Unfortunately, most 

developers do not elect to write these assertion 
models when they design their modules. 

 

3.2 Specification Mining 

In principal, the assertions and specifications 
have to be written by the designer. However, 
typically because of tediousness of the task, and 
the fact the set of provided assertions may not 
provide a complete coverage, the process of 
property specification is often not properly 
done if it is done at all.  In some cases the effort 
to write complete specifications is equivalent to 
the effort of implementation of the design.  So 
why not implement the design and extract the 
specification as you verify the design.  This is 
called specification mining. 

The specification mining refers to the process of 
machine learning the specifications from circuit 
execution traces. In this approach, the 
specifications are generated automatically 
instead of being written by the designer.  
Mining specifications while debugging assumes 
there are likely bugs present in the design.  
Assertions mined from a design containing bugs 
will yield incorrect assertions.  During the 
specification mining execution patterns that 
repeat with higher frequency in the signals 
traces represent the correct functionality. In 
other words, it is assumed that the abnormal 
behavior is represented by the outliers that 
don’t appear as frequently.  Thus bugs can be 
identified by these outliers and corrected. 

 

 

Figure 2.  Specification Mining Flow 

 



During specification mining, the system is 
simulated given a set of input vectors. The 
signal traces along with a set of patterns to look 
for are then fed to a mining machine, as shown 
in Figure 2. The patterns are in form of Linear 
Temporal Logic (LTL). The specification mining 
engine searches for occurrence of the specified 
patterns. The matching patterns are then 
combined into more concise properties by 
merging and chaining the logic expressions. In 
addition, the matched patterns are ranked 
based on the frequency they occur in the traces. 
The LTL expressions are described using 
Property Specification Language (PSL).  The 
details of spec mining system are given in [6]. 

As development of the hardware system 
continues, the designers can test these 
assertions against each iteration of the design 
to ensure that design continues to meet the 
mined specifications.  However, running traces 
against assertions in software is 
computationally intensive and time consuming.  
It is possible to quickly and more efficiently 
verify a subset of assertions at operational 
speeds on the hardware device. 

 

4 Dynamic Mining from 
Probes 

 

4.1 Specification Synthesis 

After a hardware designer has performed 
specification mining on a design under test, 
there are a set of assertions expressed in Linear 
Temporal Logic (LTL) associated with the design.  
These can be analyzed against simulation and 
hardware traces in software tools but this 
requires a significant amount of time and 
computational resource.  This is especially true 
when compared to the run time of the 
implemented hardware system.  Testing these 
assertions against the hardware system at 
operational speeds would be several orders of 

magnitude faster and with higher fidelity.  
However, while software tools can analyze 
traces and evaluate assertions in their LTL state, 
to perform run-time verification during system 
execution, the extracted properties and the 
ones specified by the user must be synthesized 
into a hardware core or verification unit 
(VUNIT). 

The VUNIT performs assertion checking on the 
design at speed with the system clock.  The 
process of synthesizing the properties involves a 
transformation from LTL into a finite state 
automata/machine (FSM), and each atomic 
expression is written in combinational logic. The 
FSM and the combinational logic are both 
written in Verilog HDL.  Efficient synthesis of the 
LTL properties is tackled in [2,3]. 

The synthesis procedure is based upon the idea 
of rewriting the properties given an input value.  
After rewriting the properties under a large 
enough number scenarios and inputs, a 
transition chain as shown in Figure 3 can be 
constructed: 

 

 

Figure 3.  Transition Chain generated from LTL assertion. 

 

The transition chain represents the captured 
behavior of the design under tests as a series of 
states that can be translated into a FSM.  This 
can make for a very large state space and can 
result in large hardware blocks.  For very large 
chains the same state may appear multiple 
times.  By combining these into the state, the 
chain can be wrapped into a more compact 
FSM, such as that represented by Figure 4.  

 



 

Figure 4.  FSM of LTL assertion after state optimization. 

 

For each assertion, an observation unit (OU) 
and verification unit (VU) are generated in 
Verilog HDL.  The OU combines the traces of the 
probed signals and tests for the occurrence of 
transition events.  The VU contains the FSM 
that encodes the behavior represented by the 
assertion from which it was generated.  The VU 
transitions through the states of the asserted 
behavior.  If the OU identifies an event that is 
not allowed by the assertion in the VU, a 
violation is triggered.  If not the VU continues to 
transition normally. 

 

4.2 Automated Probe 
Insertion 

The assertions being used in this self-checking 
verification system are based on the interaction 
of signals in the design captured from 
simulation traces.  The specification mining 
tools have access to all the signals in these 
traces in a dump file regardless of their location 
in the design.  However, connecting to all these 
signals to probe them and connect them to 
their assertion checking cores is not as simple.  
Some signals that are ports of the top level 
modules are easy to access but others may be 
buried deeper in the design hierarchy. 

 

 

Figure 5.  Probing signals within the design hierarchy. 

 

Current industry tools for hardware debugging 
attach probes to the signals post synthesis at 
the netlists level.  This prevents the hardware 
designer from having to alter his code but the 
synthesis process performs some optimizations 
that result in signal combination, signal loss and 
some name changing.  This makes probing some 
signals difficult.  Since signal name resolution 
from synthesis is beyond the scope of this 
experiment, it was decided to insert assertion 
checking cores and probe connections in 
modified HDL source. 

However, previously it was expressed that 
manually modifying code to add debugging 
infrastructure was tedious and prone to error.  
For this reason, we introduce a tool for parsing 
the system Verilog code and prepare it for 
hardware assertion checking using the assertion 
based VUNIT cores.  The tool written in Python 
parses the Verilog design source searching for 
signals in the hierarchy from a list provided by 
the hardware designer.  The tool then rewrites 
the Verilog sources and automatically inserts 
wire and extends module ports to route these 
signals to the top level model, represented by 
Figure 6.  This way they can be accessed 
through the interface bus and connected to the 
OU of the VUNIT. 

 

OU OV

System ACE

Probe



 

Figure 6.  Passing internal signals to top level for probing. 

 

4.3 Placement 
Enforcement 

Using the VUNIT, it is possible to verify the 
behavior of the design under test at operating 
speed with minimal human interaction.  
However this still suffers from the same 
problems the manufacture debugging tools do 
as a result of inserting probes and additional 
logic into the design.  This is undesirable 
because in some cases such as timing, 
placement and routing it can change the 
behavior of the design in subtle ways.  To 
address this, when the design is re-
implemented with the VUNITs and probes 
inserted, it will be constrained to be 
implemented as close to the original design 
implementation as possible. 

To achieve this, we developed a script written in 
Python that extracts the original placement of 
the design from Xilinx Description Language 
(XDL) file generated during the implementation 
of the system-on-chip. XDL is a proprietary 
Xilinx low level netlist format. There is no 
official documentation for XDL but it is fairly 
easy to understand its syntax by just looking at 
a sample XDL file. Also the XDL file contains 
comments that provide syntactical information 
as well. The extracted placement is written as 
constraints in a user constraint file (UCF).  This 
UCF is provided as input to the tool flow when 
the design is re-implemented with the VUNIT 
and probes.  Using these constraints the 

placement is enforced to follow the same 
behavior as in the original design. 

 

 

Figure 7.  Placement of SIRC with different quantities of assertion  

cores (VUNIT). 

 

Figure 7 shows the placement of SIRC (Simple 
Interface for Reconfigurable Computing) circuit 
before and after enforcing physical constraints 
with zero, one, and three inserted VUNITS. As it 
is shown in Figure 7, the original placement is 
retained when the constraints are enforced on 
the top rows. However, the placements on the 
bottom row, where no constraints are enforced, 
follow a drastically different pattern.  

 

Table 1.  Delay along Critical Path 

 0 vunit 1 vunit 3 vunits 

PCF 

enforced 8.160ns/ 

122.549MHz 

8.664ns / 

115.420MHz 

8.242ns / 

121.33MHz 

No PCF 

enforced 

7.852ns / 

127.356MHz 

7.985ns / 

125.235Mhz 

 

The delay of the critical path for each 
corresponding implementation of Figure 7 is 
shown in Table 1. As expected, the maximum 

Top Module

SubModule 
1,1

SubModule 
1,2

SubModule 
2,1

SubModule 
2,2

SubModule 
3,1



clock frequency is slightly reduced when 
constraints are applied.  

 

 

Figure 8.  AES placement Strategies 

 

The result of the same study on an AES core is 
shown in Figure 8. The leftmost plot shows the 
placement of a stand-alone AES core. The 
placement of the same AES module is shown 
when attached to the debugging SIRC interface 
along with 10 VUNITS. We study four different 
scenarios. In this first case, the placement 
constraints are extracted from the original run 
(module) and enforced on the second run 
(module+debug). Since the names of some 
components and nets change in the second 
implementation - due to randomized arbitrary 
naming done by the tool – some of the 
constraints are not properly enforced. As a 
result, these components don’t follow the 
expected placement. An alternative solution is 
instead enforcing component wise placement, 
we extract the box coordinates that encompass 

the module and enforce the box area instead. In 
addition, Xilinx has its own “smartguide” 
proprietary algorithm to guide the placement. 
However, as it appears the algorithm is not 
highly effective here. 

In addition, often it is needed to perform 
verification on individual module separately 
when dealing with system-on-chips. In this case 
as well, the designer would like to have the 
least possible impact on the module under test 
when verifying its functionality. Again, one of 
the important properties that need to be 
preserved for the module is its placement in the 
main system. Therefore, using this same setup 
it is possible to enforce its placement and 
routing of this module as if it was deployed in 
the actual system.  Debugging infrastructure, 
including test stimulus and communication to 
host may be placed around the module under 
test. 

 

5 Summary 

This paper has presented a prototype 
framework for an automated self-checking 
hardware debugging infrastructure and tools for 
applying it to a design under test.  A diagram of 
the flow is presented in Figure 9. 

 

 

Figure 9.  Detailed gNOSIS assertion based tool flow. 

 

The hardware designer begins development of 
the design under test in a simulated 



environment.  As development progresses the 
hardware designer submits traces of the design 
to a specification mining tool to extract the 
behavior of the design.  Infrequent events in the 
specifications are flagged as possible bugs and 
further investigated.  When design and 
verification under simulation is complete, the 
design is implemented in hardware.  At this 
point, the design should work correctly as it did 
in the simulator but as is often the case, there is 
some error causing behavior in the hardware 
implementation that did not appear in the 
simulation. 

In this case, the placement of the original 
implementation is extracted and placement 
constraints are generated from it.  A subset of 
the constraints used to verify the design in 
simulation is synthesized into VUNITs.  The 
design Verilog sources are augmented by the 
probing tool to pass all the signals needed for 
the assertion checkers to the top level where 
they are connected.  The design is re-
implemented with the VUNITs using the 
placement constraints to enforce the original 
implementation the manifested the incorrect 
behavior. 

The SIRC interface was extended in order to 
allow the hardware designer to interface to the 
assertion checking cores implemented in the 
design under test.  From SIRC, the hardware 
engineer could run his application in addition to 
activate and deactivate VUNITs and check for 
violations. 

 

6 Software Controlled 
Clocking 

When working to extract that last level of 
performance from a design it would desirable to 
be able to dial up and down clock frequency on 
the fly and without having to resynthesize and 
recompile the design.  This could further used 
to perform timing tests and pinpoint timing 
violations. For this reason we propose using the 

dynamic reconfiguration port available on the 
Xilinx PLLs and modify the PLL attributes 
through the debugging interface.  The Xilinx PLL 
is presented in Figure 10. 

 

 

Figure 10.  Virtex PLL Structure. 

 

However, the PLL attributes D (divide), M 
(multiply), O (divide) cannot take any values. 
Their values are constrained by maximum and 
minimum phase/frequency detector input 
frequency as well as VCO output frequency.  We 
have developed a tool that given a target clock 
frequency it searches for optimal PLL setting 
that achieves the closet output frequency. For 
instance, the plot in Figure 11 shows 11,000 
unique frequencies that can be synthesized 
with one single PLL sorted in ascending order. 

Using this tool to search for the optimum 
parameters for achieving a given frequency the 
hardware design could use debugging facilities 
provided in the system to adjust the clock 
frequency to the desired level.  This 
functionality would further augment the 
amount and type of information available to 
hardware designers about their designs as they 
work to debug them and push for greater 
performance.  At this time the hardware facility 
for this feature are still under development. 
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Figure 11.  Possible Synthesizable Frequencies with a single PLL. 

 

7 Future Work 

The flowing list highlights possible revision, 
expansion, improvement of each subsystem 
and codes written: 

 The conversion from specification mine 
tool output to Linear Temporal Logic 
(LTL) constructs is not completely in 
place. The main reason is that the 
output of the specification mine has 
changed in the latest version, which 
requires another parsing to be done. 

 The automated connection between 
VUs and the design after probe 
insertion has still not been finalized. 
Ideally the names of the signals to be 
probed have to extract from LTL 
constructs, observation units (OU) have 
to be generated that connect the VUs 
to the design probes. 

 Placement extraction tool can be 
improved by making it output 
geometrical boundaries for sub-module 
(to avoid the problem of component 
name change during Mapping). 

 The placement tool currently only 
supports Virtex 5 families and it can be 
expanded to support Virtex 6 devices. 

 Dynamic reconfiguration of the PLL 
attributes is still on the to-do list, 
however the algorithm that searches 

for the optimal PLL setting is fully 
developed and working. 
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