

gNOSIS: Mining FPGAs for Verification

Mehrdad Majzoobi, Richard Neil Pittman, Alessandro Forin

Microsoft Research

August 2011

Technical Report

MSR-TR-2011-141

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

gNOSIS: Mining FPGAs for Verification

Mehrdad Majzoobi, Richard Neil Pittman, Alessandro Forin

Microsoft Research

Abstract

Hardware verification on FPGAs runs more than
three orders of magnitude faster than software
simulations, however with much lower visibility
into the design under test. To expedite the task
of debugging and specification verification, we
propose a tool framework that automates many
tedious aspects of the process. We provide
tools to mine assertions either from simulation
or hardware traces, to generate assertion
checking engines implemented as efficient
Verilog state machines, to rewrite the user’s
Verilog code inserting probes to the relevant
signals, and to dynamically vary the operating
clock frequency of the design under test.
During implementation, we ensure that the
layout of the original design is preserved as
much as possible by automatically generating
placement constraints, and thereby minimizing
the uncertainty introduced by other on-chip
debugging techniques.

This continues the work of the gNOSIS project
to explore new techniques for FPGA verification
and debugging by leveraging features of the
FPGA chips and tools. This work draws upon
previous works in specification mining and
synthesis and combines it with new techniques
for automated verification in hardware.

1 Introduction

It is critical to validate the correctness of any
system prior to in-field utilization. Any errors

during operation may lead to fatal or disastrous
financial outcomes. For instance, in 1995, an
error in the FDIV (floating-point division)
instruction of an early Intel Pentium processor
[5] resulted in a charge to Intel of
approximately $500M. NASA lost a 125 million
Mars orbiter in 1999 loss of the MCO spacecraft
was the failure to use metric units in the coding
of a ground software file, “Small Forces,” used
in trajectory models.

Checking the correctness of the underlying
system versus the intended functionality and
the expected behavior is called verification. In
many fields of engineering, the designed system
has to be verified under various inputs and
operating conditions. In integrated circuit and
hardware design, the debugging and
verification becomes even more challenging.
Unlike software that runs on fixed processor
architecture, every hardware design can require
a different circuit structure and architecture,
making it more difficult to provide a one-size
fits-all solution. In addition, signals are often
buried under the device package and devices
typically have limited access I/O pins. As a
result, the designer will be faced with limited
observability and controllability of the system
under test. Furthermore, hardware synthesis
and mapping tools often require a much longer
time to recompile the system as opposed to
software design. It is desired to avoid
recompiling the whole system as much as
possible. Last but not least, the increasing
complexity of systems is adding an extra level of
effort in verification and debugging.

The state-of-the-art in hardware debugging and
verification can be divided into three main
categories. The first category is the simulation-
based methods, which involves simulating the
behavior of the hardware under design. The
simulation requires writing test benches and
input test vectors. Self-checking test benches
and transaction based test benches are
common ways of simulating the hardware. The
second category is based on monitoring the
design behavior during runtime by probing
pertinent signals using either integrated or
external logic analyzer. Thirdly, Formal
mathematical methods are used to verify the
system behavior against an abstract
mathematical model of the system often
described using FSMs, labeled transition
systems, Petri nets, timed automata, hybrid
automata, and/or process algebra.

In this paper, we introduce an assertion-based
software-hardware hybrid method to verify the
system functionality. The introduced
methodology attempts to pin point bugs mainly
introduced post synthesis and mapping. The
framework learns and mines assertions from
signal traces obtained by functional simulations.
The mined assertions are then combined with
user-applied assertions. These assertion which
are specified in a standard linear temporal logic
(LTL) language, Property Specification Language
(PSL), are then synthesized into Verilog finite-
state machines (FSMs). Next the original system
is fed into a probe-insertion tool to
automatically provide interconnection between
the verification units (VUNITs) containing the
assertions checking state machines and signals
to be monitored. The debugging interface
communicates with the VUNIT assertion-
checking engine through an Ethernet link. The
user can control which assertion to be checked
and check which assertion has failed at what
clock cycle. The tool flow is shown in Figure 1.

2 Background

The goal of the gNOSIS project is to advance the
state of the art in FPGA hardware debugging
and verification. The gNOSIS project
investigates new techniques that leverage
features of the FPGA and manufacturer’s tools
that most hardware developers are not aware
or do not regularly use.

2.1 State of the Art in
Industry

Both major manufacturers of FPGAs provide on-
chip infrastructure for debugging and
verification on the hardware. These are
Chipscope for Xilnix [7] and SignalTap for Altera
[1]. Both these tools insert probes to signals
into the design under test and capture their
states using a sampling clock and storing them a
buffer. When the limit of the buffer is reached
or after a configurable number of samples have
been taken, the contents of the buffer is
transmitted to a host PC and displayed in logic
analyzer software GUI to be analyzed by the
testing engineer. These tools have some
advantages and disadvantages.

Both these tools allow hardware engineers to
debug their designs on the device in a way
similar to the bench logic analyzer. Hardware
engineers can select signals to monitor and
view cycle by cycle traces of these signals in
their design. Tools are provided to insert the
infrastructure for this trace capture post
synthesis at the netlists level. This relieves the
task of modifying the design source for
debugging and limits the chances of the
hardware designer introducing new bugs in the
process. The debugging infrastructure
communicates to the host over boundary scan
using the same JTAG cable used for configuring
the device.

The logic for capturing, storing and sending the
traces back the host are implemented using the

FPGA resources including logic, routing, and
memory. This strategy consequently limits the
length and number of the traces that can be
captured and analyzed. The Xilinx Chipscope
debugger limits the number of signals per logic
analyzer to 256. This is adequate for most
design needs. However more complex designs
with wide data widths can quickly exceed this
limit. The additional logic added to the design
also changes how the design is implemented on
the device. The debugging infrastructure
increases the fanout of probed signals. In
addition, it requires the design logic to be
placed and routed differently. These changes to
the design implementation can potentially alter
the behavior being observed making replication
of error conditions under observation more
challenging.

Since the design under test is augmented with
the debugging infrastructure post-synthesis and
pre-implementation, the design
implementation must be repeated to add the
debugging infrastructure or to change it. These
implementation steps on average take 10 min
to several hours depending on the complexity
of the design. This leads to a much longer
debugging cycle as opposed to software
debugging. In many cases it can require
multiple debug cycles selecting different signals
to trace and re-implement the design in order
to observe the incorrect behavior responsible
for the bug. For this reason, it can take several
hours to diagnose and correct a single bug.

2.2 gNOSIS Project

The gNOSIS project explores new techniques for
FPGA verification and debugging by leveraging
features of the FPGA chips and tools. Using
these manufacturer features the gNOSIS tools
mine information about the behavior of a
design from simulation and hardware. The
gNOSIS tools are designed to increase the
faculty available to hardware developers while

minimizing the impact and potentially changing
the behavior being observed.

The first gNOSIS tools attempted to address the
issues of the existing manufacturer tools related
to selection or number of signals that can be
observed without re-implementing the design.
These tools were able to observe the entire
state of the design running on a FPGA using the
CAPTURE and READBACK features of the FPGAs.
The design tools provided the locations of the
state of the registers stored in the FPGA
configuration after a CAPTURE is asserted. The
configuration memory was read using the
Internal Configuration Access Port (ICAP). Only
the logic required to assert the CAPTURE and
read back the configuration memory are added.
There were no probes inserted into the design
itself. Thus, entire design visibility is achieved
with minimal impact to the design under test
that will not change as the traces of interest
change. However, the bandwidth out of the
ICAP severely limits the sampling rate of the
traces of the design under test. A cycle by cycle
observation was not possible.

This next generation of tools approaches the
problem from a different direction by
performing self-checking on the device using
model data extracted from simulation traces.
The tool flow summarized in Figure 1, is based
on assertions mined from simulation traces
synthesized into hardware cores.

Figure 1. gNOSIS Assertion Based Tool Flow

Spec Mining

Simulation

Hardware Assertion
Checker Engine

(HACE)

Merge Implementation

Verilog

Design (HDL)

Synthesis

Debug
Interface

User Specs

Verilog

3 Static Mining from
Traces

3.1 Assertion Based
Verification (ABV)

An assertion is a statement about a specific
functional characteristic or property that is
expected to hold for a design. Assertion-based
verification increases observability in simulation
while providing targets for formal verification,
which increases controllability. Furthermore,
assertions facilitate design reuse through self-
checking code.

In assertion-based verification, RTL assertions
are used to capture design intent in a verifiable
form as the design is created. Assertions
enhance observability coverage, making it
easier to spot the source of an error. Debug
time is greatly reduced in this way. Assertions
improve controllability coverage with formal
verification. When verifying assertions, formal
verification algorithms explore the equivalent of
billions of input patterns without requiring test
vector creation.

Assertion-based verification is a multi-faceted
approach to verifying a collection of partial
specifications more efficiently. Assertions
enable capabilities for both simulation and
formal verification and, in the case of open
standard assertions, a common method of
capturing intimate design knowledge for both.

These assertion based methods can be
implemented in the hardware device to allow
for the design to perform self-checking at
operational speeds in a semi-autonomous
manner only sending back to the host incidence
of assertion violations over a simpler and lower
bandwidth interface. However, in order to use
assertions to perform this self-checking, it is
necessary to have assertions to test against the
design under test. Unfortunately, most

developers do not elect to write these assertion
models when they design their modules.

3.2 Specification Mining

In principal, the assertions and specifications
have to be written by the designer. However,
typically because of tediousness of the task, and
the fact the set of provided assertions may not
provide a complete coverage, the process of
property specification is often not properly
done if it is done at all. In some cases the effort
to write complete specifications is equivalent to
the effort of implementation of the design. So
why not implement the design and extract the
specification as you verify the design. This is
called specification mining.

The specification mining refers to the process of
machine learning the specifications from circuit
execution traces. In this approach, the
specifications are generated automatically
instead of being written by the designer.
Mining specifications while debugging assumes
there are likely bugs present in the design.
Assertions mined from a design containing bugs
will yield incorrect assertions. During the
specification mining execution patterns that
repeat with higher frequency in the signals
traces represent the correct functionality. In
other words, it is assumed that the abnormal
behavior is represented by the outliers that
don’t appear as frequently. Thus bugs can be
identified by these outliers and corrected.

Figure 2. Specification Mining Flow

During specification mining, the system is
simulated given a set of input vectors. The
signal traces along with a set of patterns to look
for are then fed to a mining machine, as shown
in Figure 2. The patterns are in form of Linear
Temporal Logic (LTL). The specification mining
engine searches for occurrence of the specified
patterns. The matching patterns are then
combined into more concise properties by
merging and chaining the logic expressions. In
addition, the matched patterns are ranked
based on the frequency they occur in the traces.
The LTL expressions are described using
Property Specification Language (PSL). The
details of spec mining system are given in [6].

As development of the hardware system
continues, the designers can test these
assertions against each iteration of the design
to ensure that design continues to meet the
mined specifications. However, running traces
against assertions in software is
computationally intensive and time consuming.
It is possible to quickly and more efficiently
verify a subset of assertions at operational
speeds on the hardware device.

4 Dynamic Mining from
Probes

4.1 Specification Synthesis

After a hardware designer has performed
specification mining on a design under test,
there are a set of assertions expressed in Linear
Temporal Logic (LTL) associated with the design.
These can be analyzed against simulation and
hardware traces in software tools but this
requires a significant amount of time and
computational resource. This is especially true
when compared to the run time of the
implemented hardware system. Testing these
assertions against the hardware system at
operational speeds would be several orders of

magnitude faster and with higher fidelity.
However, while software tools can analyze
traces and evaluate assertions in their LTL state,
to perform run-time verification during system
execution, the extracted properties and the
ones specified by the user must be synthesized
into a hardware core or verification unit
(VUNIT).

The VUNIT performs assertion checking on the
design at speed with the system clock. The
process of synthesizing the properties involves a
transformation from LTL into a finite state
automata/machine (FSM), and each atomic
expression is written in combinational logic. The
FSM and the combinational logic are both
written in Verilog HDL. Efficient synthesis of the
LTL properties is tackled in [2,3].

The synthesis procedure is based upon the idea
of rewriting the properties given an input value.
After rewriting the properties under a large
enough number scenarios and inputs, a
transition chain as shown in Figure 3 can be
constructed:

Figure 3. Transition Chain generated from LTL assertion.

The transition chain represents the captured
behavior of the design under tests as a series of
states that can be translated into a FSM. This
can make for a very large state space and can
result in large hardware blocks. For very large
chains the same state may appear multiple
times. By combining these into the state, the
chain can be wrapped into a more compact
FSM, such as that represented by Figure 4.

Figure 4. FSM of LTL assertion after state optimization.

For each assertion, an observation unit (OU)
and verification unit (VU) are generated in
Verilog HDL. The OU combines the traces of the
probed signals and tests for the occurrence of
transition events. The VU contains the FSM
that encodes the behavior represented by the
assertion from which it was generated. The VU
transitions through the states of the asserted
behavior. If the OU identifies an event that is
not allowed by the assertion in the VU, a
violation is triggered. If not the VU continues to
transition normally.

4.2 Automated Probe
Insertion

The assertions being used in this self-checking
verification system are based on the interaction
of signals in the design captured from
simulation traces. The specification mining
tools have access to all the signals in these
traces in a dump file regardless of their location
in the design. However, connecting to all these
signals to probe them and connect them to
their assertion checking cores is not as simple.
Some signals that are ports of the top level
modules are easy to access but others may be
buried deeper in the design hierarchy.

Figure 5. Probing signals within the design hierarchy.

Current industry tools for hardware debugging
attach probes to the signals post synthesis at
the netlists level. This prevents the hardware
designer from having to alter his code but the
synthesis process performs some optimizations
that result in signal combination, signal loss and
some name changing. This makes probing some
signals difficult. Since signal name resolution
from synthesis is beyond the scope of this
experiment, it was decided to insert assertion
checking cores and probe connections in
modified HDL source.

However, previously it was expressed that
manually modifying code to add debugging
infrastructure was tedious and prone to error.
For this reason, we introduce a tool for parsing
the system Verilog code and prepare it for
hardware assertion checking using the assertion
based VUNIT cores. The tool written in Python
parses the Verilog design source searching for
signals in the hierarchy from a list provided by
the hardware designer. The tool then rewrites
the Verilog sources and automatically inserts
wire and extends module ports to route these
signals to the top level model, represented by
Figure 6. This way they can be accessed
through the interface bus and connected to the
OU of the VUNIT.

OU OV

System ACE

Probe

Figure 6. Passing internal signals to top level for probing.

4.3 Placement
Enforcement

Using the VUNIT, it is possible to verify the
behavior of the design under test at operating
speed with minimal human interaction.
However this still suffers from the same
problems the manufacture debugging tools do
as a result of inserting probes and additional
logic into the design. This is undesirable
because in some cases such as timing,
placement and routing it can change the
behavior of the design in subtle ways. To
address this, when the design is re-
implemented with the VUNITs and probes
inserted, it will be constrained to be
implemented as close to the original design
implementation as possible.

To achieve this, we developed a script written in
Python that extracts the original placement of
the design from Xilinx Description Language
(XDL) file generated during the implementation
of the system-on-chip. XDL is a proprietary
Xilinx low level netlist format. There is no
official documentation for XDL but it is fairly
easy to understand its syntax by just looking at
a sample XDL file. Also the XDL file contains
comments that provide syntactical information
as well. The extracted placement is written as
constraints in a user constraint file (UCF). This
UCF is provided as input to the tool flow when
the design is re-implemented with the VUNIT
and probes. Using these constraints the

placement is enforced to follow the same
behavior as in the original design.

Figure 7. Placement of SIRC with different quantities of assertion

cores (VUNIT).

Figure 7 shows the placement of SIRC (Simple
Interface for Reconfigurable Computing) circuit
before and after enforcing physical constraints
with zero, one, and three inserted VUNITS. As it
is shown in Figure 7, the original placement is
retained when the constraints are enforced on
the top rows. However, the placements on the
bottom row, where no constraints are enforced,
follow a drastically different pattern.

Table 1. Delay along Critical Path

 0 vunit 1 vunit 3 vunits

PCF

enforced 8.160ns/

122.549MHz

8.664ns /

115.420MHz

8.242ns /

121.33MHz

No PCF

enforced

7.852ns /

127.356MHz

7.985ns /

125.235Mhz

The delay of the critical path for each
corresponding implementation of Figure 7 is
shown in Table 1. As expected, the maximum

Top Module

SubModule
1,1

SubModule
1,2

SubModule
2,1

SubModule
2,2

SubModule
3,1

clock frequency is slightly reduced when
constraints are applied.

Figure 8. AES placement Strategies

The result of the same study on an AES core is
shown in Figure 8. The leftmost plot shows the
placement of a stand-alone AES core. The
placement of the same AES module is shown
when attached to the debugging SIRC interface
along with 10 VUNITS. We study four different
scenarios. In this first case, the placement
constraints are extracted from the original run
(module) and enforced on the second run
(module+debug). Since the names of some
components and nets change in the second
implementation - due to randomized arbitrary
naming done by the tool – some of the
constraints are not properly enforced. As a
result, these components don’t follow the
expected placement. An alternative solution is
instead enforcing component wise placement,
we extract the box coordinates that encompass

the module and enforce the box area instead. In
addition, Xilinx has its own “smartguide”
proprietary algorithm to guide the placement.
However, as it appears the algorithm is not
highly effective here.

In addition, often it is needed to perform
verification on individual module separately
when dealing with system-on-chips. In this case
as well, the designer would like to have the
least possible impact on the module under test
when verifying its functionality. Again, one of
the important properties that need to be
preserved for the module is its placement in the
main system. Therefore, using this same setup
it is possible to enforce its placement and
routing of this module as if it was deployed in
the actual system. Debugging infrastructure,
including test stimulus and communication to
host may be placed around the module under
test.

5 Summary

This paper has presented a prototype
framework for an automated self-checking
hardware debugging infrastructure and tools for
applying it to a design under test. A diagram of
the flow is presented in Figure 9.

Figure 9. Detailed gNOSIS assertion based tool flow.

The hardware designer begins development of
the design under test in a simulated

environment. As development progresses the
hardware designer submits traces of the design
to a specification mining tool to extract the
behavior of the design. Infrequent events in the
specifications are flagged as possible bugs and
further investigated. When design and
verification under simulation is complete, the
design is implemented in hardware. At this
point, the design should work correctly as it did
in the simulator but as is often the case, there is
some error causing behavior in the hardware
implementation that did not appear in the
simulation.

In this case, the placement of the original
implementation is extracted and placement
constraints are generated from it. A subset of
the constraints used to verify the design in
simulation is synthesized into VUNITs. The
design Verilog sources are augmented by the
probing tool to pass all the signals needed for
the assertion checkers to the top level where
they are connected. The design is re-
implemented with the VUNITs using the
placement constraints to enforce the original
implementation the manifested the incorrect
behavior.

The SIRC interface was extended in order to
allow the hardware designer to interface to the
assertion checking cores implemented in the
design under test. From SIRC, the hardware
engineer could run his application in addition to
activate and deactivate VUNITs and check for
violations.

6 Software Controlled
Clocking

When working to extract that last level of
performance from a design it would desirable to
be able to dial up and down clock frequency on
the fly and without having to resynthesize and
recompile the design. This could further used
to perform timing tests and pinpoint timing
violations. For this reason we propose using the

dynamic reconfiguration port available on the
Xilinx PLLs and modify the PLL attributes
through the debugging interface. The Xilinx PLL
is presented in Figure 10.

Figure 10. Virtex PLL Structure.

However, the PLL attributes D (divide), M
(multiply), O (divide) cannot take any values.
Their values are constrained by maximum and
minimum phase/frequency detector input
frequency as well as VCO output frequency. We
have developed a tool that given a target clock
frequency it searches for optimal PLL setting
that achieves the closet output frequency. For
instance, the plot in Figure 11 shows 11,000
unique frequencies that can be synthesized
with one single PLL sorted in ascending order.

Using this tool to search for the optimum
parameters for achieving a given frequency the
hardware design could use debugging facilities
provided in the system to adjust the clock
frequency to the desired level. This
functionality would further augment the
amount and type of information available to
hardware designers about their designs as they
work to debug them and push for greater
performance. At this time the hardware facility
for this feature are still under development.

M

D
PFD CP LF VCO O

CLKIN
CLKOUT

Figure 11. Possible Synthesizable Frequencies with a single PLL.

7 Future Work

The flowing list highlights possible revision,
expansion, improvement of each subsystem
and codes written:

 The conversion from specification mine
tool output to Linear Temporal Logic
(LTL) constructs is not completely in
place. The main reason is that the
output of the specification mine has
changed in the latest version, which
requires another parsing to be done.

 The automated connection between
VUs and the design after probe
insertion has still not been finalized.
Ideally the names of the signals to be
probed have to extract from LTL
constructs, observation units (OU) have
to be generated that connect the VUs
to the design probes.

 Placement extraction tool can be
improved by making it output
geometrical boundaries for sub-module
(to avoid the problem of component
name change during Mapping).

 The placement tool currently only
supports Virtex 5 families and it can be
expanded to support Virtex 6 devices.

 Dynamic reconfiguration of the PLL
attributes is still on the to-do list,
however the algorithm that searches

for the optimal PLL setting is fully
developed and working.

8 References

1. Altera, Inc. “Design Debugging Using
the SignalTap II Logic Analyzer.” 2012.
http://www.altera.com/literature/hb/q
ts/qts_qii53009.pdf

2. Grigore Rosu, Klaus Havelund.
“Rewriting-Based Techniques for
Runtime Verification.” Journal of
Automated Software Engineering. Vol.
12 (2). pp 151-197. 2005.

3. Hong Lu, Alessandro Forin. “Automatic
Processor Customization for Zero-
Overhead Online Software
Verification.” IEEE Transactions on VLSI.
November 2008.

4. Md. Ashfaquzzman Khan, Richard Neil
Pittman, Alessandro Forin. “gNOSIS: A
Board-Level Debugging and Verification
Tool.” Proceedings of the IEEE
Conference on ReConFigurable
Computing and FPGAs (ReConFig). pp.
43-48. 2010.

5. V.R. Pratt. Anatomy of the Pentium
Bug., TAPSOFT, V. 915. pp 97-107.
1995

6. Wenchao Li, Alessandro Forin, Sanjit A.
Seshia. “Scalable Specification Mining
for Verification and Diagnosis.”
Proceedings of the Design Automation
Conference (DAC). pp. 755-760. June
2010.

7. Xilinx, Inc. “Chipscope Pro and the
Serial I/O Toolkit.” 2012.
http://www.xilinx.com/tools/cspro.htm

http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.xilinx.com/tools/cspro.htm

