
1

Visual GEC Manual

User manual version 0.10 beta Michael Pedersen & Andrew Phillips

Introduction
Visual GEC is a tool for the design and simulation of transcriptional genetic circuits, or devices. The

tool is based on GEC, a language for Genetic Engineering of Cells, which is described in detail in the

following paper:

GEC builds on previous research in the field of synthetic biology, including the notion of a Registry of

Standard Parts (partsregistry.org, henceforth referred to as the Registry) together with experimental

techniques for combining these parts into higher-level devices.

A range of related software tools have recently been developed. The main innovation behind GEC is

to take the design process a step further, by allowing devices to be designed at a high level of

abstraction with little or no knowledge of the specific parts available. The designer needs only a

basic knowledge of the available part types, namely promoters, ribosome binding sites, protein

coding regions and terminators. Parts of these elementary types can be composed to form genes

and gene networks. The higher level of abstraction in GEC is achieved by specifying constraints

between otherwise unspecified parts: the GEC compiler automatically determines a solution with

the actual parts that satisfy the design constraints.

In most cases, multiple solutions are possible for a given design. GEC can compile each of the

solutions to a set of chemical reactions, which can then be simulated or analyzed by the designer.

The solutions that exhibit the desired behaviour can then be synthesized and put to work in living

cells. Although there is no guarantee that a solution which produces the desired simulation results

will function correctly inside a living cell, analyzing the design on a computer is an effective way to

rapidly detect design errors prior to building the physical device - a process which can take several

days and for which even small errors can prove very costly.

In this manual we first describe how to access Visual GEC on the web. We then walk through the

user interface, from the parts database to the GEC program editor and simulator. This should allow

new designers to get up to speed using Visual GEC based on the built-in examples. We then proceed

with an informal overview of the GEC language itself based on small examples. We end in the last

section with a presentation of the concrete syntax of GEC. For further details, including a formal

presentation of the semantics of GEC, please refer to the published paper.

Michael Pedersen and Andrew Phillips: Towards programming languages for genetic

engineering of living cells. In Journal of the Royal Society Interface, 15 April 2009.

http://partsregistry.org/
http://research.microsoft.com/apps/pubs/default.aspx?id=79443
http://research.microsoft.com/apps/pubs/default.aspx?id=79443

2

Accessing Visual GEC
Visual GEC is a Silverlight application and requires the Silverlight plug-in for your operating system

and web browser to be installed from http://www.microsoft.com/silverlight.

Silverlight compatibility has been tested on Windows and Mac OS X under various browsers,

including Internet Explorer, Firefox, Safari and Chrome.

With Silverlight installed, browse to http://lepton.research.microsoft.com/webgec

and the user interface should load straight away. Visual GEC can optionally be installed locally by

pressing the “Install” button in the top-right corner of the user interface. This will allow direct access

to Visual GEC from your computer without any need for Internet access. To the right of the “Install”

button is a “License” button which brings up a copy of the Visual DSD license agreement. Once the

software is installed, the “Install” button becomes an “Update” button which can be used to check

for, and install, any newer releases of the software.

Note that when a new version of the software is released online, you may need to “reset” your web

browser to delete the old version from the cache before your browser will load the new version.

The main screen of the Visual GEC contains two tab panels. The panel on the left is concerned with

design, and the panel on the right is concerned with analysis and simulation. We continue in the next

section by describing each of the left hand side design tabs in turn.

http://approjects.co.za/?big=silverlight
http://lepton.research.microsoft.com/webdna

3

User interface walk-through: the design tabs

The Database tab

Visual GEC comes bundled with sample databases which can be used as a basis for experimenting

with the bundled sample models. The databases can be modified, and any changes can be saved to

and loaded from a file by pressing the "Save" and "Load" buttons, respectively. Note that changes to

the databases are not automatically saved, so saving must be done manually in order to avoid losing

changes. The original bundled sample databases can be restored by pressing the "Reset" button.

There are two databases, one for parts (at the top) and one for reactions (at the bottom). In both

cases, a new row can be added by pressing the "add" button, and an existing, selected row can be

deleted by pressing the "Delete" button.

The parts database has the following columns:

 Enabled. When checked, this indicates that a part is enabled. If it is not, it will be ignored by

the tool. This can be useful for experimenting with and debugging a model.

4

 ID. This identifies the part in the database and must be unique. In the sample database,

most of the IDs refer to those of the Registry.

 Type. This indicates whether a part is a promoter ("prom"), a ribosome binding site ("rbs"), a

protein coding region ("pcr") or a terminator ("ter").

 Properties. Properties constitute the characterisation of a part. They are used both for

resolving constrains in a GEC model, and for constructing the reactions to be used for

simulation.

o Terminators currently have no properties.

o Ribosome binding sites have a property of the form "rate(0.1)" which represents a

rate of translation of mRNA arising from upstream parts to proteins arising from

downstream parts.

o Protein coding regions have a property of the form "codes(tetR, 0.1)" where the

first component is the protein coded by the part (here tetR), and the second

component is the degradation rate of this protein.

o Promoters typically have several properties. The constitutive property

"con(0.0001)" represents the constitutive rate of transcription from the promoter.

The negative property of the form "neg(tetR, 1.0, 0.5, 0.00005)" states that the

promoter is negatively regulated by the given transcription factor, here tetR. The

remaining real-numbered components represent the rate of promoter-transcription

factor binding, the rate of unbinding, and the rate of transcription in the bound

state. There is a corresponding positive property of the form "pos(toluene-xylR,

0.001, 0.001, 1.0); in this case, the transcription factor is a complex.

From these properties, the tool automatically deduces a number of reactions which

explicitly model transcription at the level of transcription factor binding.

 Comments. This can be used to associate any further information with a part.

The reactions database is included as a proof of concept, and is intended to represent a

comprehensive knowledge base of possible reactions. These can be used to further constrain parts

in a model, e.g. by requiring that the proteins expressed by two protein coding region can dimerise,

or be transported in and out of a cell. In practice, however, the reactions database can be ignored

for most purposes: reactions which are needed for simulation can be included directly in a model in

the GEC editor.

The reactions database has "Enabled" and "Comments" columns similar to the parts database. It also

has a "Reactions" column which describes the actual reactions, of the form: "enzyme ~ s1 + ... + si ->

p1 + ... + pj". The enzymatic part can optionally be omitted. Transport reactions for representing

transport in and out of a cell are of the form "s -> c[s]" and "c[s] -> s", respectively, where "s" is a

species and "c" denotes some compartment; the compartment name is insignificant in the context

of the database.

Be aware that all numbers in the databases must be written with a decimal point (e.g. "1.0" instead

of "1"), or the database will silently fail to work.

5

The GEC tab

The GEC tab provides functionality for editing and compiling GEC programs. The top section of the

tab contains a code editor. The editor has a row of buttons with standard editing functionality, e.g.

for saving and opening GEC files. Hover the mouse over a button for a description of its functionality.

Directly below the editor are numbers showing the line and column numbers of the curser, and a

slider for changing the font size as needed. The "Simulation-only reactions" box indicates that any

reactions in a model should be used for simulation only, and should not be considered as constraints

of the model. We discuss this issue further in the context of the GEC language.

Visual GEC comes bundled with a number of sample GEC programs which can be selected from the

drop-down box labeled "GEC Examples". The "Basic" example shown in the screenshot, for instance,

is a simple model of a negative feedback loop. The first line of this example is a "//"-prefixed single-

line comment. Multi-line comments are also possible: these are opened with "(*" and closed with

"*)".

The second line of the Basic example, starting with "directive", has no bearing on the model itself,

but rather specifies simulation parameters. The following summarizes the available directives:

 Sample directives are of the form "directive sample 10000.0 1000", as in the screenshot.

This specifies that a simulation should run for 10000.0 time units (the first number) and that

1000 data points should be collected for plotting (the second number). Increasing the

number of data points in the same period of simulation time produces more fine-grained

6

results but the display may be less responsive. Similarly, if the number of data points stays

constant but the simulation time is extended (or shortened), the resulting plot will be less

(or more) detailed. If no sample directive is provided, the default behaviour is to run the

simulation for 1000 time units and take 1000 samples of the species populations. Be aware

of a current restriction: the simulation time must be specified as a floating point number, or

the compiler will complain.

 Plot directives are of the form "directive plot A; B; C". This specifies which species to plot

during simulation; see the bundled Repressilator model for an example. Take care to spell

the species names correctly. If for example compartments are included in the model, the

correct compartment should also be used in the plot directive, and must be applied per-

species; for example, write "c[A]-c[B]" rather than "c[A-B]". Also be aware of a current bug:

if a complex species is plotted (e.g. by a statement of the form "directive plot A-B"), the

order of species A and B sometimes matters. So if no simulation output appears, changing

the order of species in a complex might resolve the problem.

 Scale directives allow the stochastic simulator to scale up from molar concentrations to

populations of individuals. Concentrations are scaled by simply multiplying by the factor and

the rates of binary reactions are modified following Section 4.2 of (Cardelli, 2008). Thus the

user does not have to worry about the details involved in switching between continuous and

discrete simulation methods (see below). The scale factor is 1.0 by default. The scale factor

also modifies the tolerance parameter of the deterministic simulator, as described below.

See the “Populations and concentrations” section below for further details.

 Time directives allow one to specify the assumed unit of time. It will be printed on the x-axis

of simulation plots. The default time units are seconds (s).

 Concentration directives allow one to specify the assumed unit of concentrations. It will be

printed on the y-axis of simulation plots when the simulator is run in deterministic mode.

The default concentration units are nanomolar (nM).

 Tolerance directives are of the form "directive tolerance 0.001". This specifies the tolerance

parameter of the deterministic simulator, which provides a tradeoff between computational

cost and smoothness of the resulting solution. The default value is 10-6. It is crucial to choose

a tolerance value which reflects the populations and reaction rates of the system in

question, or the performance of the deterministic simulator may suffer. Note that the

tolerance is multiplied by the scale factor in an attempt to maintain a reasonable value with

respect to the species populations.

Line 3 of the Basic example in the above screenshot is the core of the model, representing a single

gene expressing a protein, Y, which negatively regulates the promoter. We explain the GEC language

itself in more detail later. For now, the point to note is that the model contains unspecified parts

with certain properties of the kind described in the database section above. A property may contain

variables (here Y), and there may be implicit constraints on these variables (here that the same Y is

expressed by the protein coding region and represses the promoter).

A model can be solved by pressing the "Solve GEC" button. If there are any errors, a message box

appears with an indication of the cause. Otherwise , the number of possible solutions is displayed

below the editor, with a drop-down box allowing individual solutions to be selected. Note that there

7

may be no solutions if there are no appropriate parts in the database satisfying the constraints of

the model.

Selecting a solution populates the "Species assignment" and "Parts implementation" boxes. The

species assignment box shows which species have been assigned to variables. For instance, [("Y",

"araC")] indicates that araC has been assigned to the variable Y for a given solution in the Basic

example. The parts implementation box shows which concrete parts have been chosen for a given

solution. For instance, [[i0500; b0034; c0080; b0015]] indicates that i0500 is the chosen promoter;

that b0034 is the chosen ribosome binding site; that c0080 is the chosen protein coding region; and

that b0015 is the chosen terminator in the case of the Basic example. The parts are selected from

the database, and the part names are their database IDs.

The LBS tab

When a solution is chosen in the GEC tab, a corresponding reaction model is generated for

simulation. This model is written in a language called LBS (a Language for Biochemical Systems) and

the model appears automatically under the LBS tab. In many cases the LBS model can be used as-is,

without any modification, but it is made available for cases where further customization or model

reduction is needed.

The LBS editor itself is similar to that for GEC, and so are the directives (e.g. “plot” and “sample”)

which are copied verbatim from the GEC model. The LBS model generally begins with a rate

8

definition which is used for all generated mRNA degradation reactions (“rate RMNADeg = 0.001”).

The reason is that mRNA in the general case can be polycistronic, so mRNA degradation rates cannot

easily be included directly in the parts database. If different mRNA degradation rates are needed for

individual reactions, these can be entered manually in the LBS model. The global default rate can

also be specified directly in the GEC model, where it takes the slightly different form “rateDef

RMRNADeg 0.001”.

The LBS model generally contains a number of reactions separated by the “|” symbol. Rates are

generally assumed to be mass-action and are enclosed by curly brackets (“{“, “}”) after a reaction

arrow. If the GEC model contains compartments, so will the corresponding LBS model.

Below the LBS editor is a checkbox for "Weak typing". This instructs the LBS compiler to allow

species to be used without first being declared. As the LBS output from a GEC solution does not

declare species, the "Weak typing" box is checked by default when LBS is used in conjunction with

GEC.

Below the LBS editor is also an option to select whether the species units are concentrations or

molecules. This currently does not have any effect in the tool, but in future might be reflected in the

encoding of the SBML output for a model.

Press the "Solve LBS" button for any changes in the LBS model to take effect in the right hand side

tabs. Note that any unsaved changes made to the LBS model will disappear when selecting another

solution under the GEC tab.

Some instructive LBS examples can be found by selecting from the "LBS Examples" drop-down box at

the top of the screen. For a detailed presentation of the LBS language itself, please refer to e.g. the

following published paper:

User interface walk-through: the analysis tabs
The right hand side of Visual GEC contains a number of tabs related to the analysis and simulation of

a GEC solution. We describe each in turn.

Michael Pedersen and Gordon D Plotkin: A Language for Biochemical Systems: Design

and Formal Specification. In Proceedings of T. Comp. Sys. Biology. 2010, 77-145.

9

The Reaction Graph tab

This tab shows a visual representation of the reactions for a solution. The square boxes in the picture

represent reactions, and the rounded rectangles represent species. Lines with no arrowheads

indicate the reactants of a reaction, and lines with arrowheads indicate the products. This visual

representation is similar to that of the standard Petri net associated with a set of chemical reactions.

Towards the top of the tab are a number of visualisation options:

 The Pan button puts the mouse cursor in panning mode, allowing the graph to be moved

around the screen.

 The Zoom radio button puts the mouse cursor in zoom mode, allowing a rectangular

selection of the graph to be enlarged. In addition, the zoom slider to the right allows precise

control of the zoom factor, and there is an option to the fit the graph to the available screen

space.

 The Layout radio button puts the mouse cursor in layout modification mode, allowing

individual reactions and species to be moved by clicking and dragging them to the desired

location. To revert to the automatic layout, press the Layout button at any time.

 The Options drop-down box allows the layout to be predominantly horizontal (the default is

vertical); the aspect ratio to be confined to that of the graph window; and the rates shown

in reaction boxes (rates are hidden by default).

10

The Reaction Text tab

This tab shows a textual representation of the reactions for a solution. Towards the top of the tab is

a slider for adjusting the zoom level, and a button for saving the text to file.

The Reactions tab

This tab shows a stylized representation of the reactions for a solution, in which reaction arrows are

drawn graphically rather than textually as in the Reaction Text tab.

11

The Kappa tab

This tab shows a representation of the reactions for a solution in the rule-based language Kappa.

Note however that the kappa rules resulting from a GEC solution are not per se meaningful. To

generate meaningful Kappa, special syntax must be used in the LBS model; hence the Kappa output

is not directly relevant to modelling with GEC.

The SBML tab

12

This tab shows an SBML (Systems Biology Markup Language) representation of the reactions for a

solution. This can be used for exchange with other modelling and simulation tools. Towards the top

of the tab is a slider for adjusting the zoom level, and a button for saving the text to file.

The MATLAB tab

This tab shows a MATLAB representation of the reactions for a solution, which can be used for

further simulation in MATLAB. Towards the top of the tab is a slider for adjusting the zoom level, and

a button for saving the text to file.

Simulation
The reactions representing a given solution can be simulated by pressing the "Simulate LBS" button

at the top of the screen, and the simulation can be stopped by pressing the "Pause" button. There

are two possible simulation modes, namely stochastic and deterministic, which can be chosen by

selecting from the "Simulation" drop-down box. The duration of the simulation, and the species to

report, are specified using "directive" statements in the GEC and LBS code as previously described.

Once the simulation is started, the result can be viewed in table form and in plot form as described

below.

13

The Table tab

This tab shows the result of a simulation in table form. The table is generally restricted to a certain

number of data points per page. Towards the top of the tab are options for specifying the page

number and the number of data points per page; for choosing to show all data points in a single

page; buttons for navigating between pages; and a button for saving the table to e.g. a Comma

Separated File for visualisation or analysis by third party apps.

The Plot tab

14

This tab shows the result of simulation as a plot with time along the x-axis and population values

along the y-axis. Towards the top of the tab are buttons for loading and saving plots to file. Checking

the "Resample" check box reduces the number of data points plotted, which can improve

performance. Each species is represented by a colour-coded button which can be pressed to toggle

the plot for the corresponding species in the plot; all species can be shown by pressing the "Show

all" button, and all species can be hidden by pressing the "Hide all" button.

Populations and concentrations
In Visual GEC, quantities are specified as molar concentrations, which denote the number of moles

per unit volume. The units of concentration can be set by the concentration directive. For

example, directive concentration "M" sets the units of concentration to molar. The

default units are nanomolar (nM), where 1nM = 10-9 mol/L.

In order to perform a stochastic simulation, concentrations must be converted to numbers of

individuals. This can be achieved using the following equation:

n = c·V·NA

where n is the number of individuals, c is the molar concentration, V is the volume and NA is

Avogadro's constant, which denotes the number of individuals per mole of substance (approximately

6.02214×1023 mol−1). The function x denotes the rounding up of x to its nearest natural number.

Thus, in order to convert a concentration into a number of individuals, it is sufficient to multiply the

concentration by a scale factor s = V·NA, which denotes the number of individuals per unit

concentration. Essentially, this corresponds to choosing a volume V such that the number of

individuals is equal to s for one unit of concentration. For example, a scale factor of 50 corresponds

to choosing a volume that is 50 times the volume occupied by a single individual. The units of the

scale factor are assumed to be the inverse of the units of concentration, and are given as nM−1 by

default. Note that the conversion from concentrations to individuals is achieved using a scale factor s

rather than specifying a volume V directly, since it is difficult to choose a volume such that the

number of individuals is a natural number. The scale factor can be set by the scale directive,

where the default scale factor is 1.0.

The choice of deterministic (continuous) or stochastic (discrete) simulation is also manifested in the

units for the simulation plot. The vertical axis of the plot has units of individuals for stochastic

simulation, and units of concentration for deterministic simulation. Note that the units for rate

constants are assumed to be consistent with the units for time and concentration. For example, if

the units for time are s and the units for concentration are nM, then the units for the bimolecular

rate constants are assumed to be nM−1s−1, and the units for the unimolecular rate constants are

assumed to be s−1. Once a suitable scale factor has been selected, in order to perform a stochastic

simulation the molar concentrations are multiplied by the scale factor, while the concentration-

dependent rates are divided by the scale factor. For example, if the scale factor is 100 nM−1 then a

concentration-dependent rate of 0.4 nM−1s−1 is converted to a stochastic rate of 0.004 s−1 for

simulation. Additional details on converting between populations and concentrations can be found

in Section 4.2 of (Cardelli, 2008), including specific conversion rules for homodimerization reactions.

15

An informal overview of the GEC language
This section gives a brief and informal introduction to the GEC language itself through examples.

Part types
On the most basic level, a model can simply be a sequence of part IDs together with their types. The

following model is an example of a transcription unit which expresses the protein tetR in a negative

feedback loop; the corresponding graphical representation shown beneath.

The symbol ":" is used to write the type of a part, and the symbol ";" is the sequential composition

operator used to put parts together in sequence (conceptually on the same piece of DNA). Writing

this simple model requires the modeller to know that the protein coding region part c0040 codes for

the protein tetR and that the promoter part r0040 is negatively regulated by this same protein, two

facts which we can confirm by inspecting the default parts database bundled with Visual GEC. In this

case the compiler has an easy job: it just produces a single list consisting of the given sequence of

part IDs, while ignoring the part types:

Part variables and properties
We can increase the abstraction level of the model by using variables and properties for expressing

that any parts will do, as long as the protein coding region codes for the protein tetR and the

promoter is negatively regulated by tetR:

As in the database, the angle brackets <> delimit one or more properties, and upper-case names

such as X1 represent variables (undetermined part names or species). Compiling this model

produces exactly the same result as before, only this time the compiler does the work of finding the

specific parts required based on the information stored in the parts database.

The compiler may in general produce several results. For example, we can replace the fixed species

name tetR with a new variable, thus resulting in a program expressing any transcription unit

behaving as a negative feedback device:

16

This time the compiler produces 4 solutions given the standard database, one of them being the tetR

device from above. Choosing one solution now also populates the "Species assignment" section:

When variables are only used once, as is the case for X1, X2, X3 and X4 above, their names are of no

significance and we will use the wild card, _, instead. When there is no risk of ambiguity, we may

omit the wild card altogether and write the above program more concisely as follows:

Parameterised modules
Parameterised modules can be used to add a further level of abstraction to a model. For example, a

module which acts as a negative gates can be written as follows, where "i" denotes input and "o"

denotes output:

Using this module, the repressilator circuit, in which three genes repress each other, can be written

concisely as follows:

17

In general, the "module" keyword is followed by the name of the module, a list of formal

parameters, and the body of the module enclosed in brackets; a module can be invoked simply by

naming it followed by a list of actual parameters in parentheses.

The repressilator model yields 24 solutions based on the sample database:

Compartments and reactions
Compartments can be used to represent the location of devices in the case where a multi-cellular

system is being designed. For example, the following contrived model can be thought of as a multi-

cellular repressilator, with each gene located in different cells c1, c2 and c3:

Because the genes are in different cells and do not follow each other on the same piece of DNA, the

parallel composition operator "||" is used rather than the sequential composition operator ";"

previously used. As a result, the parts implementation no longer consists of a single list of parts, but

instead of three lists, reflecting the fact that the genes are physically separated on different strands

of DNA:

Reactions, which may include compartments, can be used to impose additional constraints on parts.

For example, we might impose the additional constraints that the expressed proteins can move

between cells, and, arbitrarily, that proteins B and C can dimerise under the catalysis of A:

18

The constraints are composed with models using the constraint composition operator, "|". For this

particular example, there are no solutions based on the sample database. If the reactions are not

intended as constraints, they can be used purely for simulation by appending a star to the reaction

arrows as follows:

This model then yields the same solutions as for the original repressilator, but the additional

reactions now appear in the resulting LBS model. If all reactions are intended to be used for

simulation only, the star can be omitted if the "Simulation-only" box under the editor is checked. In

the general form of a reaction, the catalyst, reactants and/or products may be omitted.

Quantitative constraints
Additional quantitative constraints can also be imposed on a model. For example, the following

specifies any ribosome binding site for which the rate of translation is greater than 0.05:

Rate variables in modules should typically be combined with the new variable operator to ensure

that different instances of a module may have different numbers assigned to the variable, subject to

the quantitative constraints. For example, a constraint on the translation rate in the repressilator

module can be written as follows:

19

The syntax of the Visual GEC language
This section defines the concrete syntax of the Visual GEC language in terms of a context-free

grammar. The grammar relies on the following lexical conventions, where we write “digit” for a

single character in the range 0-9, and “alphanumeric” for any character in the range A-Z or a-z.

 Integer: a non-empty sequence of digits.

 Name: the first character of a name must be a lower-case alphanumeric. This is followed by

a possibly-empty sequence of characters which may be alphanumeric or digits.

 Variable: the first character of a name must be an upper-case alphanumeric. This is followed

by a possibly-empty sequence of characters which may be alphanumeric or digits.

 Comma-separated lists (possibly empty) are written with an underline.

 Float: there are three different ways to produce a float value:

1. One or more digits followed by a decimal point (.), followed by zero or more digits.

For example: 3.141.

2. One or more digits followed by an uppercase ‘E’ or lowercase ‘e’, followed by a plus

(+) or minus (-) sign, followed by one or more digits. For example: 3e-5.

3. One or more digits followed by a decimal point, followed by zero or more digits,

followed by an uppercase ‘E’ or lowercase ‘e’, followed by a plus or minus sign,

followed by one or more digits. For example: 1.4324e+2.

Single-line comments are prefixed with "//". Multi-line comments are opened with (* and closed

with *), and may be nested.

The grammar for Visual GEC is then defined as follows, where terminal symbols of are written in

teletype font and non-terminals are in bold.

Non-terminal Definition Description

VGEC ::= Directive GEC A Visual GEC program

Directive ::= directive sample Float End time for simulation

| directive sample Float Integer - with optional data points

| directive scale Float Scaling factor

| directive time TU Unit of time

| directive concentration CU Unit of concentration

| directive plot Plots Species to plot

| directive tolerance Float ODE solver tolerance

Plots ::= PlotSpec One species to plot

| PlotSpec ; Plots - or more

SimpSpec ::= Name Simple species

| Name [Name] - in compartment

PlotSpec ::= SimpSpec Atomic plot species
| SimpSpec - PlotSpec Complex plot species

20

GEC ::= Apart Abstract part

| GEC ; GEC Sequential composition

| GEC || GEC Parallel composition

| Name [GEC] Compartment

| GEC | Constraint Constraint composition

| new Name . GEC New variable

| module Name(FPar){GEC}; GEC Module definition

| Name(APar) Module invocation

APart ::= AName : PartType <Property> Asbstract part

| PartType <Property> - without name

 AName : PartType - without properties

| PartType - without name & properties

PartType ::= Prom Promoter type
| Rbs Ribosome binding site type
| Pcr Protein coding region type
| Ter Terminator type

Property ::= pos(AComplex) Positive regulation

| pos(AComplex, AFloat , AFloat, AFloat) - with rates

| neg(AbsSpec) Negative regulation

| neg(AbsSpec, AFloat, AFloat, AFloat) - with rates

| con(AFloat) Constitutive expression

| rate(AFloat) Translation rate

AFloat ::= Float Concrete abstract float

| Variable Variable abstract float
| _ Wild card

AName ::= Name Concrete abstract name

| Variable Variable abstract name
| _ Wild card

ASpec ::= AName Atomic abstract species

| AName – Acomplex Complex abstract species

Constraints ::= Reaction Reaction constraint

| Transport Transport constraint
| NumCons Numerical constraint
| Constraint | Constraint Constraint composition

Reaction ::= ASpec ~ Sum Arrow Sum Enzymatic reaction

| Sum ->{AFloat} Sum Standard reaction

Sum ::= ASpec Atomic sum
| ASpec + Sum Composite sum

Arrow ::= -> Simple arrow

| *-> - simulation-only

21

| ->{ AFloat } Arrow with rate

| *->{ AFloat } - simulation-only

Transport ::= ASpec Arrow Name [ASpec] Transport into compartment

| Name [ASpec] Arrow ASpec Transport out of compartment

NumCons ::= ASpec > ASpec Greater than constraint

TU ::= seconds | s | minutes | m | hours | h Units of time
CU ::= molar | M 1 mol∙L-1

| milimolar | mM 10-3 mol∙L-1
| micromolar | uM 10-6 mol∙L-1
| nanomolar | nM 10-9 mol∙L-1
| picomolar | pM 10-12 mol∙L-1
| femtomolar | fM 10-15 mol∙L-1
| attomolar | aM 10-18 mol∙L-1
| zeptomolar | zM 10-21 mol∙L-1
| yoctomolar | yM 10-24 mol∙L-1

Known bugs
The following bugs are known for the currently released version of Visual GEC:

 In the Reaction Graph tab, zoom sometimes does not respond to selection.

 The plot directive is sensitive to the ordering of species in a complex.

