
Factoring groups efficiently.

Neeraj Kayal1 and Timur Nezhmetdinov2

1 Microsoft Research Lab India,
196/36 2nd Main, Sadashivanagar Bangalore 560080 India

2 Lehigh University, Pennsylvania, USA ?

Abstract. We give a polynomial time algorithm that computes a de-
composition of a finite group G given in the form of its multiplication
table. That is, given G, the algorithm outputs two subgroups A and B of
G such that G is the direct product of A and B, if such a decomposition
exists.

1 Introduction

1.1 Background

Groups are basic mathematical structures and a number of computer algebra
systems do computations involving finite groups. One very successful area of re-
search has been the design of algorithms that handle a given permutation group
G. It is customary to specify G via a small set of generating permutations. De-
spite the succinctnesness of such representations, a substantial polynomial-time
machinery has developed for computing with permutation groups [Luk]. A major
stimulus for this activity was the application to the graph isomorphism problem
(it is easily seen for example that the graph isomorphism problem reduces to
the problem of computing the intersection of two permutation groups). Ensu-
ing studies resulted in algorithms for deciphering the basic building blocks of
the group making available constructive versions of standard theoretical tools
[BKL79], [Luk87], [KT88], [Kan85a], [Kan85b], [Kan90], [BSL87]. But problems
such as subgroup intersection and computing sylow subgroups are trivial for
verbosely encoded groups - groups which are specified via their multiplication
tables. On the other hand, the verbose representation begets its own set of prob-
lems. The central problem here is to design a polynomial-time algorithm that
given two finite groups G1 and G2 decides whether they are isomorphic or not.
Towards this end, the classification theorem for finite simple groups helps us
by giving a polynomial time algorithm for isomorphism of finite simple groups.
What prevents us in going from simple groups to arbitary groups is our lack of
understanding of ‘group products’ - how to put together two groups to get a new
one. So far, despite much effort [Mil78,AT04,Gal09] not much progress has been
made in resolving the complexity of the general group isomorphism problem. For

? This work was done while the second author was visiting DIMACS under REU
program.

example, even for groups whose derived series has length two, we do not know
how to do isomorphism testing in NP∩ coNP. A less ambitious goal (a cowardly
alternative?) is to develop algorithms that unravel the structure of a verbosely
given group. In this work we devise an algorithm that accomplishes one such
unravelling.

1.2 Direct product of groups

Given two groups A and B one of the most natural ways to form a new group
is the direct product, denoted A × B. As a set, the direct product group is the
Cartesian product of A and B consisting of ordered pairs (a, b) and the group
operation is component-wise.

(a1, b1) · (a2, b2) = (a1 · a2, b1 · b2).

Given (the Cayley representation of) groups A and B, its trivial to compute
(Cayley representation of) the group G = A×B. In this article, we consider the
inverse problem of factoring or decomposing a group G as a direct product of two
of its subgroups. There are some very natural motivations for such a study. The
fundamental theorem of finite abelian groups (Theorem 2) states that any finite
abelian group can be written uniquely upto permutation as the direct product
of cyclic groups of prime power order. This theorem means that the problem of
finding an isomorphism between two given abelian groups [Kav07] is essentially
the same as the problem of factoring an abelian group. In the general case, the
Remak-Krull-Shcmidt theorem (Theorem 3) tells us that the factorization of a
group as a direct product of indecomposable groups is “unique” in the sense
that the isomorphism class of each of the components of the factorization is
uniquely determined. This means that all such decompositions are structurally
the same. This motivates us to devise an efficient algorithm which finds such a
factorization. Computing the direct factorization of a group has also been found
to be useful in practice. The computer algebra system GAP (Groups, Algorithms
and Programming) implements an inefficient algorithm for this purpose [Hul].

1.3 Algorithm outline.

Notice that if we have an algorithm that efficiently computes any nontrivial fac-
torization G = A×B, we can also efficiently compute the complete factorization
of G into indecomposable subgroups by recursing on A and B. Therefore we
formulate our problem as follows: given a group G, find subgroups A and B such
that G = A×B and both A and B are nontrivial subgroups of G. The algorithm
is developed in stages, at each stage we solve a progressively harder version of
the GroupDecomposition problem until we arrive at a complete solution to
the problem. Each stage uses the solution of the previous stage as a subroutine.

– G is abelian. The proof of the fundamental theorem of finite abelian groups
(Theorem 2) is constructive and gives a polynomial-time algorithm. This
case has also been studied previously and a linear time algorithm is given in
[CF07].

– The subgroup A is known. In this case we have to just find a B such that
G = A × B. We call it the GroupDivision problem and in section 4, an
algorithm is devised in two substages.
• B is abelian.
• B is nonabelian.

– A is unknown but an abelian A exists. We call this the SemiAbelian-
GroupDecomposition problem and the algorithm is given in section 5.

– A is unknown and all indecomposable direct factors of G are nonabelian. In
section 6 we describe the algorithm for this most general form of GroupDe-
composition .

Let us now assume that we have an efficient algorithm for both GroupDivi-
sion and for SemiAbelianGroupDecomposition and outline the algorithm
for solving GroupDecomposition using these subroutines. One of the main
sources of difficulty in devising an efficient algorithm is that the decomposition
of a group is not unique. Indeed, there can be superpolynomially many different
decompositions of G. We fix a reference decomposition. We first analyze the dif-
ferent ways a group can decompose and come up with some invariants which do
not depend on the particular decomposition at hand. Assume G is decomposable
and let us fix a decomposition of G,

G = G1 ×G2 × . . .×Gt.

with each Gi indecomposable. Let Z1
def= CentG(G2 × . . . × Gt), where for any

A ⊆ G, CentG(A) denotes the subgroup of G consisting of all the elements of
G that commutes with every element of A (it is called the centralizer of A in
G). Our algorithm first computes Z1 (the group Z1 is invariant across different
decompositions) and then uses this subgroup in order to solve GroupDecom-
position . Notice that Z1 = G1×Cent(G2× . . .×Gt). By a repeated application
of the subroutine SemiAbelianGroupDecomposition , we can obtain a de-
composition of Z1 into

Z1 = H1 × Y,

where Y is an abelian group and H1 has no abelian direct factors. An application
of theorem 4 allows us to deduce that any such decomposition of Z1 has the
following properties:

1. H1 is indecomposable and isomorphic to G1.
2. ∃Y1 EG such that G = H1 × Y1.

Having obtained H1, we obtain an appropriate Y1 by invoking GroupDivi-
sion on (G,H1) and thereby get a decomposition of G. We will now introduce
some notation and then outline the procedure used to compute Z1.
Notation. For a positive integer s, [s] denotes the set {1, 2, . . . , s}. We will
denote the center of the group G by Z. For a set A of elements of G, 〈A〉 will
denote the subgroup of G generated by the elements in A.
Computing Z1. From the given group G, we construct a graph ΓG which has
the following properties:

1. The nodes of G correspond to conjugacy classes of G; however not all conju-
gacy classes of G are nodes of ΓG. For a connected component Λ of ΓG, let
Elts(Λ) ⊆ G denote the set of all g ∈ G that are members of some conjugacy
class occuring in Λ.

2. (Proposition 3). If a decomposition of G contains t nonabelian indecompos-
able components then the number of connected components in ΓG is at least
t.

3. (Proposition 3). Let G = G1 × . . . × Gt, with each Gi indecomposable. Let
Z be the center of G and let Λ1, . . . , Λs be the set of connected components
of ΓG. Then there exists a partition

[s] = S1] . . .] St

such that for any i,

Gi (mod Z) =
∏
j∈Si

〈Elts(Λj)〉 (mod Z).

4. (Proposition 5). The number of connected components s ≤ log |G| and G/Z
has a decomposition given by

G/Z = 〈Elts(Λ1)〉 (mod Z)× . . .× 〈Elts(Λs)〉 (mod Z).

Now given only the group G and the constructed graph ΓG, we do not the set
S1 ⊆ [s] apriori. But s ≤ log |G|, so we can simply iterate over all possible sets
S1 in just |G| iterations. Let us therefore assume that we have the appropriate
S1. Then the sought-after set Z1 can be obtained as follows:

Z1
def= CentG(

⋃
j /∈S1

Elts(Λj)).

This completes the outline of the algorithm. Let us summarize the algorithm.
Algorithm I. GroupDecomposition
Input. A group G in the form of a Cayley table.

1. Construct the conjugacy class graph ΓG associated to the group G.
2. Compute the connected components Λ1, . . . , Λs of ΓG.
3. For each S1 ⊆ [s] do the following:

(a) Let Z1
def= CentG(

〈⋃
j /∈S1

Elts(Λj)
〉

).
(b) By repeated invocations to SemiAbelianGroupDecomposi-

tion determine H1, Y EG such that Z1 = H1 × Y and H1 has
no abelian direct factors and Y is abelian.

(c) Invoke GroupDivision on (G,H1) to determine if there exists
a Y1 E G such that G = H1 × Y1. If such a Y1 is found then
output (H1, Y1).

4. If no decomposition has been found, output NO SUCH DECOM-
POSITION.

2 Preliminaries.

2.1 Notation and Terminology.

Cent(G) will denote the center of a group G and |G| its size. For an element
a ∈ G, we will denote |〈a〉| by ord(a). We will denote the conjugacy class of the
element a by Ca, i.e.

Ca
def= {g · a · g−1 | g ∈ G} ⊂ G.

Let A,B ⊆ G. We write A ≤ G when A is a subgroup of G and AEG when A
is a normal subgroup of G. CentG(A) will denote the subgroup of elements of G
that commute with every element of A. i.e.

CentG(A) def= {g ∈ G | a · g = g · a ∀a ∈ A}.

We will denote by [A,B] the subgroup of G generated by the set of elements

{a · b · a−1 · b−1|a ∈ A, b ∈ B}.

We shall denote by A ·B the set

{a · b | a ∈ A, b ∈ B} ⊆ G.

We say that a group G is decomposable if there exist nontrivial subgroups A and
B such that G = A × B and indecomposable otherwise. When A is a normal
subroup of G we will denote by B (mod A) the set of cosets {A · b | b ∈ B} of
the quotient group G/A. We will say that a subgroup A of G is a direct factor
of G if there exists another subgroup B of G such that G = A× B and we will
call B a direct complement of A.
The canonical projection endomorphisms. When a group G has a decom-
position

G = G1 ×G2 × . . .×Gt
then associated with this decomposition is a set of endomorphisms π1, . . . , πt of
G with

πi : G 7→ Gi, πi(g1 · g2 · . . . · gt) = gi.

where g = g1 ·g2 · . . . ·gt ∈ G (∀i ∈ [t] : gi ∈ Gi) is an arbitary element of G. The
πi’s we call the canonical projection endomorphisms of the above decomposition.

2.2 Background.

Theorem 1. (Expressing G as a direct product of A and B, cf. [Her75]) Let G
be a finite group and A,B be subgroups of G. Then G = A×B if and only if the
following three conditions hold:

– Both A and B are normal subgroups of G.
– |G| = |A| · |B|.

– A
⋂
B = {e}.

Theorem 2. (The fundamental theorem of finite abelian groups, cf. [Her75])
Every finite abelian group G can be as the written product of cyclic groups of
prime power order.

Theorem 3. (Remak-Krull-Schmidt, cf. [Hun74]) Let G be a finite group. If

G = G1 ×G2 × . . .×Gs

and
G = H1 ×H2 × . . .×Ht

with each Gi, Hj indecomposable, then s = t and after reindexing Gi ∼= Hi for
every i and for each r < t,

G = G1 × . . .×Gr ×Hr+1 × . . .×Ht.

Notice that the uniqueness statement is stronger than simply saying that the
indecomposable factors are determined upto isomorphism.

3 Invariants of group factorization.

The main source of difficulty in devising an efficient algorithm for the decompo-
sition of a group lies in the fact that the decomposition need not be unique. Let
us therefore analyze what one decomposition should be in reference of another.

Lemma 1. For a group G, suppose that G = A×B. Then for a subset C ⊂ G,

G = C×B ⇐⇒ C = {α·φ(α) | α ∈ A}, where φ : A 7→ Cent(B) is a homomorphism.

Theorem 4. (Characterization of the various decompositions of a group.) Let
G be a finite group with

G = G1 ×G2 × . . .×Gt (1)

with each Gi indecomposable. For i ∈ [t], define Mi to be the normal subgroup
of G as follows:

Mi
def= G1 × . . .×Gi−1 ×Gi+1 × . . .×Gt,

so that G = Gi ×Mi∀i ∈ [t]. If G has another decomposition

G = H1 ×H2 × . . .×Ht (2)

(the number of Hj’s must equal t by Theorem 3) with each Hj indecomposable,
then there exist t homomorphisms {φr : Gr 7→ Cent(Mr)}r∈[t] so that after
reindexing, for each r ∈ [t],

Hr = {α · φr(α) | α ∈ Gr, φr(α) ∈ Cent(Mr)}

4 An algorithm for GroupDivision

In this section we solve the group division problem which is used in step 3 of
Algorithm I. Let us recall that GroupDivision is the following problem: given
a group G and a normal subgroup A E G, find a B E G such that G = A × B,
if such a decomposition exists. We will solve this problem itself in two stages.
First, we devise an efficient algorithm assuming that the quotient group G/A is
abelian and then use this as a subroutine in the algorithm for the general case.

4.1 When the quotient group G/A is abelian.

In this case we can assume that G = A×B where B is abelian. Observe that in
this case, for every coset A · g of A in G, we can pick an element b ∈ A · g such
that b ∈ Cent(G) and ordG(b) = ordG/A(A · g). Also, the quotient group G/A is
abelian and therefore using the abelian group decomposition algorithm, we can
efficiently find a complete decomposition of G/A. So let

G/A = 〈A · g1〉 × . . .× 〈A · gt〉

Now from each coset A · gi we pick a representative element bi such that bi ∈
Cent(G) and ordG(bi) = ordG/A(A · bi). For any such set of bi’s, its an easy
verification that G = A× 〈b1〉 × . . .× 〈bt〉.

4.2 When the quotient group G/A is nonabelian.

We first give the algorithm and then prove its correctness.
Algorithm II. GroupDivision
Input. A group G and a normal subgroup A of G.
Output. A subgroup C of G such that G = A× C, if such a C exists.

1. Compute T def=
〈
{a · g · a−1 · g−1 | a ∈ CentG(A), g ∈ G}

〉
.

2. If T is not a normal subgroup of G then output NO SUCH DE-
COMPOSITION.

3. Compute G̃ def= G/T and Ã
def= {T · a | a ∈ A}E G̃.

4. Verify that T
⋂
A = {e}. If not, output NO SUCH DECOMPOSI-

TION. If yes, then we deduce that the canonical map a 7→ Ta is an
isomorphism from A to Ã.

5. Using the abelian group division algorithm given above, determine
if there exists a B̃ E G̃, with B̃ abelian, so that G̃ = Ã × B̃. If so,
determine elements Tg1, T g2, . . . , T gt ∈ G/T such that

G̃ = Ã× 〈Tg1〉 × 〈Tg2〉 × . . .× 〈Tgt〉 .

6. From each coset Tgi, pick any representative element ci. Compute
C

def= 〈T
⋃
{c1, . . . , ct}〉 ≤ G.

7. If G = A× C then output C else output NO SUCH DECOMPO-
SITION.

The algorithm clearly has polynomial running time and it remains for us
to prove its correctness. To see whats going on in the algorithm above, let us
assume that G = A×B and fix this decomposition of G. Its easy to verify that
the subgroup T computed in step 1 is a normal subgroup of G and T = [B,B].
Also, T = [B,B] ⊆ B and therefore A

⋂
T must be {e}. This implies that the

canonical mapping a 7→ T ·a is an isomorphism from A to Ã This explains step 4
of the algorithm. Observe that the G̃ computed in step 3 has the decomposition

G̃ = Ã× (B/[B,B]).

But B/[B,B] is an abelian group so we can use the previous algorithm and
decompose G̃ into product of Ã times a number of cyclic groups. By the end of
step 6, we would have computed c1, . . . , ct ∈ G such that

G̃ = Ã× C̃, where C̃ def= 〈Tc1〉 × 〈Tc2〉 × . . .× 〈Tct〉 ≤ G.

Proposition 1. C EG and the elements of C and A together generate G. Fur-
thermore, C

⋂
A = {e}.

Summarizing, we have A and C are normal subgroups of G that span G and
have a trivial intersection which means that G = A × C, as required to prove
the correctness of the algorithm.

5 An algorithm for SemiAbelianGroupDecomposition

In this section, we solve the special case of GroupDecomposition when some
of the indecomposable components of G are abelian groups. That is given G, we
wish to find an abelian subgroup B and another subgroup A of G so that

G = A×B, where B is abelian. (3)

Since B is abelian, it has a decomposition into a direct product of cyclic groups.
So let

B = 〈b1〉 × . . .× 〈bt〉 .

so that G becomes
G = A× 〈b1〉 × . . .× 〈bt〉 .

Thus, if G has a decomposition of the form (3) then there exists a b ∈ G such
that 〈b〉 is a direct factor of G. Conversely, to find a decomposition of the form
(3) it is sufficient to find a b such that 〈b〉 is a direct factor of G. Knowing B, we
can find an appropriate direct complement of 〈b〉 efficiently using the algorithm
for GroupDivision given previously. Lastly, given the group G, we find an
appropriate b in polynomial-time by iterating over all the elements of G and
using the algorithm for GroupDivision to verify whether 〈b〉 is a direct factor
of G or not.

6 The conjugacy class graph of a group and its properties.

Here we give the construction of the conjugacy class graph of a group. Consider
a group G which has a decomposition

G = A×B.

Fixing this decomposition, consider the conjugacy class Cg of an arbitary element
g = α · β ∈ G, where α ∈ A, β ∈ B. Observe that Cg = Cα · Cβ and the elements
of Cα and Cβ commute. More generally, we have

Observation 5. If G = G1× . . .×Gt and g = g1 · . . . · gt is an arbitary element
of G, with each gi ∈ Gi then

Cg = Cg1 · Cg2 · . . . · Cgt
.

Furthermore for all i 6= j each element of Cgi
commutes with every element of

Cgj
.

For the rest of this section, we fix the group G and a reference decomposition

G = G1 ×G2 × . . .×Gt.

Let {πi : G 7→ Gi | i ∈ [t]} be the set of canonical projection endomorphisms
associated with the above decomposition. If any of the Gi’s are abelian groups
then we can obtain a decomposition of G using the algorithm for SemiAbelian-
GroupDecomposition given in section 5. So henceforth we will assume that all
the Gi’s are nonabelian. Observation 5 above motivates the following definitions.

Definition 1. We say that two conjugacy classes Ca and Cb commute when for
every α ∈ Ca and β ∈ Cb, α and β commute.

Definition 2. Call a conjugacy class reducible Cg if it is either a conjugacy
class of an element from the center of G, or there exist two conjugacy classes Ca
and Cb such that

– Neither a nor b belongs to the center of G.
– Ca and Cb commute.
– Cg = Ca · Cb
– |Cg| = |Ca| · |Cb|

If a conjugacy class is not reducible, then call it irreducible.

Proposition 2. If a conjugacy class Cg is irreducible then there exists a unique
i ∈ [t] such that πi(g) /∈ Cent(Gi).

Proof. If it happens that for all i ∈ [t], πi(g) ∈ Cent(Gi) then g ∈ Cent(G) so
that the conjugacy class Cg is reducible by definition. If more than one πi(G) are
noncentral elements then by observation 5, we would get that Cg is reducible.

The converse of this proposition is not true in general. The above proposition
implies that corresponding to a conjugacy class Cg, there exists a unique Gi
such that πi(g) /∈ Cent(Gi). Let us call this subgroup Gi the indecomposable
component associated to the conjugacy class Cg. Let us now define the conjugacy
class graph ΓG associated to a group G.

Definition 3. The graph of a group G (denoted ΓG) is a graph with irreducible
conjugacy classes as nodes and such that a pair of nodes is connected by an edge
iff the corresponding pair of conjugacy classes does not commute.

The connected components of Γg can be computed efficiently and they give us
information about the direct factors of G.

Proposition 3. Let Λ1, . . . , Λs be the connected components of ΓG. Then s ≥ t
and there is a partition

[s] = S1] S2] . . .] St
such that

〈
∪i∈Sj

Elts(Λi)
〉

(mod Z) = Gj (mod Z) for all j where Z = Cent(G).

Proof. Let us consider two irreducible conjugacy classes Cg and Ch. Let the in-
decomposable components associated with Cg and Ch be Gi and Gj respectively.
Suppose that i 6= j. Then πj(g) and πi(h) are central elements of G so that every
element of Cg commutes with every other element of Ch. Thus there is no edge
between the nodes corresponding to Cg and Ch. This implies that if Cg and Ch are
in the same connected component of ΓG then the indecomposable components
associated with Cg and Ch are the same. Each nonabelian component of G gives
rise to at least one irreducible conjugacy class so that the number of connected
components s of ΓG is at least the number of indecomposable nonabelian com-
ponents of G. The above argument shows that there exists a partition of [s] into
Si such that

〈
∪i∈Sj

Λi
〉

(mod Z) ⊆ Gj (mod Z) for all j. The inclusion is in
fact an equality because all the irreducible conjugacy classes generate all the
noncentral elements of G by construction.

In general it is not true that the number of connected components of ΓG equals
the number of indecomposable nonabelian groups in the factorization of G. The
irreducible conjugacy classes of each of the Gi may be divided into more than
one component. However we have the following:

Proposition 4. If the center of group G is trivial, then the number of connected
components of its graph is equal to the number of indecomposable groups in the
factorization of G. Moreover, the subgroups generated by the conjugacy classes
of each of the components are normal disjoint subgroups which together span G;
thus we have the factorization of G.

Using the proposition we can efficiently factor a group with a trivial center.
When the center of the group is non-trivial it is no longer the case that each
component of ΓG generates one of the factors in the factorization of G. We would
need to search through the partitions of the set of connected components to find
the components associated to an indecomposable factor, say G1. For that we
need a bound on the number of components of the graph:

Proposition 5. The number of connected components is upper bounded by log |G|.

7 Putting everything together

We now have all the component steps of Algorithm I. So let us conclude with
the proof of correctness of Algoritm I.

Theorem 6. If the input to Algorithm I is a decomposable group G then it
necessarily computes a nontrivial decomposition of G, otherwise it outputs NO
SUCH DECOMPOSITION. Moreover, Algorithm I has running time polynomial
in |G|.

Proof. Clearly, if the group is indecomposable our algorithm outputs NO SUCH
DECOMPOSITION. By Proposition 5, s ≤ log |G| so that the number of itera-
tions in step 3 is at most |G|. All the operations inside the loop (steps 3a to 3c)
are polynomial-time computable so that the overall running time also poly(|G|).
It remains to show that if G is decomposable then our algorithm outputs a
nontrivial decomposition. Let the given group G have a decomposition

G = G1 × . . .×Gt (4)

with each Gi indecomposable. Let Z be the center of G. In the algorithm we
iterate over all subsets of the connected components of ΓG so let us assume that
we have found the subset S1 of indices of connected components corresponding
to conjugacy class of elements of G1. By Proposition 5 we have

G2 ×G3 × . . .×Gt (mod Z) =
〈
∪j /∈S1Elts(Λj)

〉
(mod Z).

This means that in step 3a we would have computed

Z1
def= CentG(

〈
∪j /∈S1Elts(Λj)

〉
)

= CentG(G2 ×G3 × . . .×Gt)
= G1 × Cent(G2)× Cent(G3)× . . .× Cent(Gt)

Let us now consider the decomposition Z1 = H1 × Y obtained in step 3b of
Algorithm I. By the Remak-Krull-Schmidt theorem (Theorem 3), all decompo-
sitions of Z1 are isomorphic so that if H1 is any direct factor of Z1 which has no
abelian direct factors then H1 must be indecomposable and isomorphic to G1.
Furthermore by an application of theorem 4, we must have that H1 must be of
the form

H1 = {α · φ(α) | α ∈ G1, φ(α) ∈ (Cent(G2)× Cent(G3)× . . .× Cent(Gt))},

where φ : H1 7→ Cent(G2)×Cent(G3)× . . .×Cent(Gt) is a homomorphism. By
lemma 1, we can replace G1 by H1 in the factorization (4) so that in fact

G = H1 ×G2 ×G3 × . . .×Gt.

In particular, this means that H1 is a direct factor of G so that in step (3c),
using the algorithm for GroupDivision , we necessarily recover a nontrivial
factorization of G.

References

[AT04] Arvind and Toran. Solvable group isomorphism is (almost) in NP intersect
coNP. In Proceedings of the 19th Annual Conference on Computational Com-
plexity, pages 91–103, 2004.

[BKL79] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity and
the classification of finite simple groups. In Proceedings of the 24th FOCS,
pages 162–171, 1979.

[BSL87] L. Babai, A. Seress, and E. M. Luks. Permutation groups in nc. In Proceedings
of 19th STOC, pages 409–420, 1987.

[CF07] Li Chen and Bin Fu. Linear and sublinear time algorithms for the basis
of abelian groups. In Electronic Colloquium on Computational Complexity,
Technical report TR07-052, 2007.

[Gal09] Francois Le Gall. Efficient isomorphism testing for a class of group extensions.
In Proceedings of the annual Symposium on Theoretical Aspects of Computer
Science, 2009.

[Her75] I. N. Herstein. Topics in Algebra. John Wiley & Sons, New York, 2nd edition,
1975.

[Hul] Alexander Hulpke. Gap project repository. available at http://www.math.

colostate.edu/~hulpke/gapproj/projects.htm.
[Hun74] Thomas W. Hungerford. Algebra. Number 73 in Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 1974.
[Kan85a] W. M. Kantor. Polynomial-time algorithms for finding elements of prime

order and sylow subgroups. Journal of Algorithms, 6:478–514, 1985.
[Kan85b] W. M. Kantor. Sylow’s theorem in polynomial time. J. Comp. Syst. Sci.,

30:359–394, 1985.
[Kan90] W. M. Kantor. Finding sylow normalizers in polynomial time. Journal of

Algorithms, 11:523–563, 1990.
[Kav07] T. Kavitha. Linear time algorithms for abelian group isomorphism and re-

lated problems. J. Comput. Syst. Sci., 73(6):986–996, 2007.
[KT88] W. M. Kantor and D. E. Taylor. Polynomial-time versions of sylow’s theorem.

Journal of Algorithms, 9:1–17, 1988.
[Luk] Eugene Luks. Lectures on polynomial-time computation in groups. available

at http://ix.cs.uoregon.edu/~luks.
[Luk87] Eugene M. Luks. Computing the composition factors of a permutation group

in polynomial time. Combinatorica, 7:87–99, 1987.
[Mil78] Gary Miller. On the nlog n isomorphism technique. In Proceedings of the

tenth annual ACM symposium on Theory of computing, 1978.

