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Abstract
HMF is a conservative extension of Hindley-Milner type inference
with first-class polymorphism. In contrast to other proposals, HML
uses regular System F types and has a simple type inference algo-
rithm that is just a small extension of the usual Damas-Milner al-
gorithm W. Given the relative simplicity and expressive power, we
feel that HMF can be an attractive type system in practice. There is
a reference implementation of the type system available online to-
gether with a technical report containing proofs (Leijen 2007a,b).

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms Languages, Design, Theory

Keywords Type Inference, First-class polymorphism

1. Introduction
Type inference in functional languages is usually based on the
Hindley-Milner type system (Hindley 1969; Milner 1978; Damas
and Milner 1982). Hindley-Milner has a simple logical specifica-
tion, and a type inference algorithm that can automatically infer
most general, or principal, types for expressions without any fur-
ther type annotations.

To achieve automatic type inference, the Hindley-Milner type
system restricts polymorphism where function arguments and ele-
ments of structures can only be monomorphic. Formally, this means
that universal quantifiers can only appear at the outermost level
(i.e. higher-ranked types are not allowed), and quantified variables
can only be instantiated with monomorphic types (i.e. impredica-
tive instantiation is not allowed). These are severe restrictions in
practice. Even though uses of first-class polymorphism occur infre-
quently, there is usually no good alternative or work around (see
(Peyton Jones et al. 2007) for a good overview).

The reference calculus for first-class polymorphism is System F
which is explicitly typed. As remarked by Rémy (2005) one would
like to have the expressiveness of System F combined with the con-
venience of Hindley-Milner type inference. Unfortunately, full type
inference for System F is undecidable (Wells 1999). Therefore, the
only way to achieve our goal is to augment Hindley-Milner type in-
ference with just enough programmer provided annotations to make
programming with first-class polymorphism a joyful experience.

There has been quite some research into this area (Peyton Jones
et al. 2007; Rémy 2005; Jones 1997; Le Botlan and Rémy 2003;
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Le Botlan 2004; Odersky and Läufer 1996; Garrigue and Rémy
1999; Vytiniotis et al. 2006; Dijkstra 2005) but no fully satisfac-
tory solution has been found yet. Many proposed systems are quite
complex, and use for example algorithmic specifications, or intro-
duce new forms of types that go beyond regular System F types.

In this article, we present HMF, a simple and conservative
extension of Hindley-Milner with first-class polymorphism that
needs few annotations in practice. The combination of simplicity
and expressiveness can make HMF an attractive replacement of
Hindley-Milner in practice. In particular:

• HMF is a conservative extension: every program that is well-
typed in Hindley-Milner, is also a well-typed HMF program and
type annotations are never required for such programs. Through
type annotations, HMF supports first-class polymorphic values
and impredicative instantiation. Unlike previous works, HMF
does not require any new form of types (such of boxed types or
flexible bindings) but only uses familiar System F types.

• In practice, few type annotations are needed for programs
that go beyond Hindley-Milner. Only polymorphic parameters
and ambiguous impredicative instantiations must be annotated.
Both cases can be clearly specified and are relatively easy to
apply in practice.

• The type inference algorithm is very close to algorithm W
(Damas and Milner 1982). It does not require unfamiliar op-
erations, which makes it relatively easy to understand and im-
plement.

• HMF is robust with respect to abstraction. It has the property
that whenever the application e1 e2 is well-typed, so is the ab-
straction apply e1 e2. We consider this an important property
as it implies that we can reuse common polymorphic abstrac-
tions over general polymorphic values.

In the following section we give an overview of HMF in practice.
Section 4 presents the formal logical type rules of HMF followed
by a description of the type inference algorithm in Section 6.
Finally, Section 5 discusses type annotations in more detail.

2. Overview and background
HMF extends Hindley-Milner with regular System F types where
polymorphic values are first-class citizens. To support first-class
polymorphism, two ingredients are needed: higher-ranked types
and impredicative instantiation.

2.1 Higher-rank types
Hindley-Milner allows definitions to be polymorphic and reused at
different type instantiations. Take for example the identity function:

id :: ∀α. α → α (inferred)
id x = x

Because this function is polymorphic in its argument type, it can
be applied to any value, and the tuple expression (id 1, id True)



where id is applied to both an integer and a boolean value is well-
typed. Unfortunately, only definitions can be polymorphic while
parameters or elements of structures cannot. We need types of
higher-rank to allow for polymorphic parameters. Take for example
the following program:

poly f = (f 1, f True) (rejected)

This program is rejected in Hindley-Milner since there exists no
monomorphic type such that the parameter f can be applied to both
an Int and a Bool . However, in HMF we can explicitly annotate
the parameter with a polymorphic type. For example:

poly (f :: ∀α. α → α) = (f 1, f True)

is well-typed in HMF, with type (∀α. α → α) → (Int ,Bool), and
the application poly id is well-typed. The inferred type for poly is
a higher-rank type since the quantifier is nested inside the function
type. Note that the parameter f can be assigned many polymorphic
types, for example ∀α. α → α → α, or ∀α. α → Int , where
neither is an instance of the other. Because of this, HMF can
never infer polymorphic types for parameters automatically, and
parameters with a polymorphic type must be annotated.

Higher-rank polymorphism has many applications in practice,
including type-safe encapsulation of state and memory transac-
tions, data structure fusion, and generic programming. For a good
overview of such applications we refer the interested reader to (Pey-
ton Jones et al. 2007).

2.2 Impredicative instantiation
Besides higher-rank types, HMF also supports the other ingredient
for first-class polymorphism, namely impredicative instantiation,
where type variables can be instantiated with polymorphic types
(instead of just monomorphic types). We believe that this is a cru-
cial property that enables the use of normal polymorphic abstrac-
tions over general polymorphic values. For example, if we define:

apply :: ∀αβ. (α → β) → α → β (inferred)
apply f x = f x

then the expression

apply poly id

is well-typed in HMF, where the type variable α in the type
of apply is impredicatively instantiated to the polymorphic type
∀α. α → α (which is not allowed in Hindley Milner). Unfortu-
nately, we cannot always infer impredicative instantiations auto-
matically since this choice is sometimes ambiguous.

Consider the function single :: ∀α. α → [α] that creates a
singleton list (where we use the notation [α ] for a list of elements of
type α). In a predicative system like Hindley-Milner, the expression
single id has type ∀α. [α → α]. In a system with impredicative
instantiation, we can also a give it the type [∀α. α → α] where all
elements are kept polymorphic. Unfortunately, neither type is an
instance of the other and we have to disambiguate this choice.

Whenever there is an ambiguous impredicative application,
HMF always prefers the predicative instantiation, and always intro-
duces the least inner polymorphism possible. Therefore, HMF is by
construction fully compatible with Hindley-Milner and the type of
single id is also ∀α. [α → α] in HMF. If the impredicative instan-
tiation is wanted, a type annotation is needed to make this choice
unambiguous. For example, we can create a list of polymorphic
identity functions as:1

ids = (single :: (∀α. α → α) → [∀α. α → α]) id

1 We can also write single (id :: ∀α. α → α) with rigid type annotations
(Section 5.3)

where ids has type [∀α. α → α]. Fortunately, ambiguous im-
predicative applications only happen in one specific case: namely
when a function with a type of the form ∀α. α → ... is applied
to a polymorphic argument whose outer quantifiers should not be
instantiated (as in single id ). In all other cases, the (impredica-
tive) instantiations are always fully determined and an annotation
is never needed. This is the case for example if the function has
type ∀α. [α ] → ..., or if the argument has no outer quantifiers.
For example, we can create a singleton list with ids as its element
without extra annotations:

idss :: [[∀α. α → α]] (inferred)
idss = single ids

since the instantiation is unambiguous. Moreover, HMF considers
all arguments in an application to disambiguate instantiations and
is not sensitive to the order of arguments. Consider for example
reverse application defined as:

revapp :: ∀αβ. α → (α → β) → β (inferred)
revapp x f = f x

The application revapp id poly is accepted without any annotation
as the impredicative instantiation of the quantifier α in the type of
revapp to ∀α. α → α is uniquely determined by considering both
arguments.

More generally, HMF has the property that whenever an ap-
plication e1 e2 is well typed, than the expression apply e1 e2 is
also well typed, and also the reverse application revapp e2 e1.
We consider this an important property since it applies more gen-
erally for arbitrary functors (map) applying polymorphic functions
(poly) over structures that hold polymorphic values (ids). A con-
crete example of this that occurs often in practice is the applica-
tion of runST in Haskell. The function runST executes a state
monadic computation in type safe way and its (higher-rank) type
is:

runST :: ∀α. (∀s.ST s α) → α

Often, Haskell programmers use the application operator ($) to
apply runST to a large computation as in:

runST $ computation

Given that ($) has the same type as apply , HMF accepts this ap-
plication without annotation and impredicatively instantiates the α
quantifier of apply to ∀s.ST s α. In practice, automatic impred-
icative instantiation ensures that we can also reuse many common
abstractions on structures with polymorphic values without extra
annotations. For example, we can apply length to a list with poly-
morphic elements,

length ids

or map the head function over a list of lists with polymorphic
elements,

map head (single ids)

or similarly:

apply (map head) (single ids)

without giving any type annotation.

2.3 Robustness
HMF is not entirely robust against small program transformations
and sometimes requires the introduction of more annotations. In
particular, η-expansion does not work for polymorphic parame-
ters since these must always be annotated in HMF. For example,
λf .poly f is rejected and we should write instead λ(f :: ∀α. α →
α).poly f .



Moreover, since HMF disambiguates impredicative instantia-
tions over multiple arguments at once, we cannot always abstract
over partial applications without giving an extra annotation. For
example, even though revapp id poly is accepted, the ‘equiva-
lent’ program let f = revapp id in f poly is not accepted
without an extra annotation, since the type assigned to the par-
tial application revapp id in isolation is the Hindley-Milner type
∀αβ. ((α → α) → β) → β and the body f poly is now rejected.

Nevertheless, we consider the latter program as being quite dif-
ferent from a type inference perspective since the partial appli-
cation revapp id can now be potentially shared through f with
different (polymorphic) types. Consider for example let f =
revapp id in (f poly , f iapp) where iapp has type (Int →
Int) → Int → Int . In this case, there does not exist any Sys-
tem F type for f to make this well-typed, and as a consequence we
must reject it. HMF is designed to be modular and to stay firmly
within regular System F types. Therefore f gets assigned the regu-
lar Hindley-Milner type. If the polymorphic instantiation is wanted,
an explicit type annotation must be given.

3. A comparision with MLF and boxy types
In this section we compare HMF with two other type inference sys-
tems that support first-class polymorphism, namely MLF (Le Bot-
lan and Rémy 2003; Le Botlan 2004; Le Botlan and Rémy 2007;
Rémy and Yakobowski 2007) and boxy type inference (Vytiniotis
et al. 2006).

MLF
The MLF type system also supports full first-class polymorphism,
and only requires type annotations for parameters that are used
polymorphically. As a consequence, MLF is strictly more powerful
than HMF, and every well-typed HMF program is also a well-typed
MLF program. MLF achieves this remarkable feat by going beyond
regular System F types and introduces polymorphically bounded
types. This allows MLF to ‘delay’ instantiation and give a principal
type to ambiguous impredicative applications. For example, in the
program let f = revapp id in (f poly , f iapp), the type
assigned to f is ∀(γ > ∀α. α → α).∀β. (γ → β) → β, which
can be instantiated to either ∀β. ((∀α. α → α) → β) → β or
∀αβ. ((α → α) → β) → β. Since applications never need an
annotation, this makes MLF robust under rewrites. For example,
when the application e1 e2 is well-typed, than so is apply e1 e2

and also revapp e2 e1, and partial applications can always be
abstracted by a let-binding.

As shown in Section 2.1, inference for polymorphic parameters
is not possible in general and we can therefore argue that MLF is
an upper bound in the design space which achieves optimal (local)
type inference in the sense that it requires the minimal number
of annotations possible. The drawback of MLF is that it goes
beyond regular System F types which makes MLF considerably
more complicated. This is not only the case for programmers that
have to understand these types, but also for the meta theory of
MLF, the implementation of the type inference algorithm, and the
translation to System F (which is important for qualified types
(Leijen 2007c; Leijen and Löh 2005)).

HMF represents a lower bound in the design space and only uses
regular System F types. As shown in Section 2.2, HMF does this at
the price of also requiring annotations on ambiguous impredicative
applications which is harder on the programmer. In return for those
annotations though, we get a simpler system with familiar System F
types and where the inference algorithm is a small extension of
algorithm W (which also makes it easier to extend HMF with
qualified types for example).

Boxy type inference
The GHC compiler supports first-class polymorphism using boxy

σ ::= ∀α. σ (quantified type)
| α (type variable)
| c σ1 ... σn (type constructor application)

ρ ::= α | c σ1 ... σn (unquantified types)
τ ::= α | c τ1 ... τn (monomorphic types)

Figure 1. HMF types

type inference. This inference system is made principal by distin-
guishing between inferred ‘boxy types’ and checked annotated
types. There are actually two variants of boxy type inference,
namely basic boxy type inference, and the extension with ‘pre-
subsumption’ (Vytiniotis et al. 2006, Section 6). The basic version
is quite weak cannot type simple applications like tail ids or prop-
agate the annotation in single id :: [∀α. α → α]. Therefore, we
only discuss the extended version with pre-subsumption (which is
implemented in GHC).

Unfortunately, there are no clear rules for programmers when
annotations are needed with boxy type inference. In general, it is
hard to characterize those situations precisely since they depend on
the typing context, and the details of the boxy matching and pre-
subsumption algorithms.

In general, most polymorphic parameters and impredicative ap-
plications need an annotation with boxy type inference. However,
due to the built-in type propagation, we can often just annotate
the result type, as in (single id) :: [∀α. α → α] (which is re-
jected in HMF). Annotations can also be left out when the type is
apparent from the context, as in foo (λf .(f 1, f True)) where
foo has type ((∀α. α → α) → (Int ,Bool)) → Int . Nei-
ther HMF nor MLF can type this example and need an annota-
tion on f . Of course, local propagation of types is not robust un-
der small program transformations. For example, the abstraction
let poly = λf .(f 1, f True) in foo poly is not well-typed and
the parameter f needs to be annotated in this case.

In contrast to HMF, annotations are sometimes needed even if
the applications are unambiguous. Take for example the function
choose with type ∀α. α → α → α, and the empty list null
with type ∀α. [α]. Both the applications choose null ids and
choose ids null are rejected with boxy type inference even though
the instantiations are unambiguous2. Surprisingly, the abstraction
let f = choose null in f ids is accepted due to an extra gen-
eralization step on let bindings. All of these examples are accepted
without annotations in both HMF and MLF.

Finally, even if an impredicative application e1 e2 is accepted,
the abstraction apply e1 e2 (and revapp e2 e1) is still rejected with
boxy type inference without an extra type annotation. For example,
the application apply runST (return 1) must be annotated as
(apply :: ((∀s.ST s Int) → Int) → (∀s.ST s Int) →
Int) runST (return 1). We feel that this can be a heavy burden
in general when abstracting over common polymorphic patterns.

4. Type rules
HMF uses regular System F types as defined Figure 1. A type σ is
either a quantified type ∀α. σ, a type variable α, or the application
of a type constructor c. Since HMF is invariant, we do not treat the
function constructor (→) specially and assume it is part of the type
constructors c. The free type variables of a type σ are denoted as
ftv(σ):

2 GHC actually accepts the second expression due to a left-to-right bias in
type propagation.



ftv(α) = {α}
ftv(c σ1 ... σn) = ftv(σ1)∪ ... ∪ ftv(σn)
ftv(∀α. σ) = ftv(σ)− {α}

and is naturally extended to larger constructs containing types.
In the type rules, we sometimes distinguish between polymor-

phic types σ and monomorphic types. Figure 1 defines unquanti-
fied types ρ as types without an outer quantifier, and monomorphic
types τ as types without any quantifiers at all (which correspond to
the usual Hindley-Milner τ types).

4.1 Substitution
A substitution S is a function that maps type variables to types.
The empty substitution is the identity function and written as [ ].
We write Sx for the application of a substitution S to x where
only the free type variables in x are substituted. We often write a
substitution as a finite map [α1 := σ1, ..., αn := σn ] (also written
as [α := σ ]) which maps αi to σi and all other type variables to
themselves. The domain of a substitution contains all type variables
that map to a different type: dom(S) = {α | Sα 6= α}. The
codomain is a set of types and defined as: codom(S) = {Sα |
α ∈ dom(S)}. We write (α := σ) ∈ S if α ∈ dom(S) and
Sα = σ. The expression (S − α) removes α from the domain of
S, i.e. (S − α) = [α := σ | (α := σ) ∈ S ∧ α /∈ α ]. Finally, we
only consider idempotent substitutions S where S(Sx ) = Sx (and
therefore ftv(codom(S)) 6∩ dom(S)).

4.2 Type instance
We use the regular System F polymorphic generic instance relation
(v) on types, defined as:

β 6∩ ftv(∀α. σ1)

∀α. σ1 v ∀β. [α := σ ]σ1

where we write (6∩) for disjoint sets. Note that the generic instance
relation can only instantiate the outer bound variables. Here are
some examples:

∀α. α → α v Int → Int
∀α. α → α v ∀β. [∀α. α → β] → [∀α. α → β]

Note that HMF is invariant since the instance relation can only
instantiate outer quantifiers. Two types are considered equal if they
are instances of each other:

σ1 = σ2 , (σ1 v σ2 ∧ σ2 v σ1)

This means that we can freely apply α-renaming, reorder quanti-
fiers, and that unbound quantifiers are irrelevant. Finally, we write
JσK for the polymorphic weight of a type, which is defined as the
number of inner quantifiers:

J∀α. ρK = wt(ρ)
where

wt(α) = 0
wt(c σ1 ... σn) = wt(σ1) + ... + wt(σn) + 0
wt(∀α. σ) = wt(σ) iff α /∈ ftv(σ)
wt(∀α. σ) = wt(σ) + 1 otherwise

and extends naturally to structures containing types. For example,
J∀α. [∀β. α → β]K is one, while JτK, the polymorphic weight of
monomorphic types, is always zero. Note that the polymorphic
weight is monotonically increasing with respect to instantiation, i.e.
Property 1 (Polymorphic weight is stable):

If σ1 v σ2 then Jσ1K 6 Jσ2K

The polymorphic weight is used in the type rules to restrict deriva-
tions to have a minimal polymorphic weight, effectively preventing
the introduction of arbitrary polymorphic types.

VAR
x : σ ∈ Γ

Γ ` x : σ

GEN
Γ ` e : σ α /∈ ftv(Γ)

Γ ` e : ∀α. σ

INST
Γ ` e : σ1 σ1 v σ2

Γ ` e : σ2

FUN
Γ, x : τ ` e : ρ

Γ ` λx .e : τ → ρ

FUN-ANN
Γ, x : σ ` e : ρ

Γ ` λ(x :: σ).e : σ → ρ

LET

Γ ` e1 : σ1 Γ, x : σ1 ` e2 : σ2

∀σ′1. Γ ` e1 : σ′1 ⇒ σ1 v σ′1
Γ ` let x = e1 in e2 : σ2

APP

Γ ` e1 : σ2 → σ Γ ` e2 : σ2

(∀σ′σ′2. (Γ ` e1 : σ′2 → σ′ ∧ Γ ` e2 : σ′2)
⇒ Jσ2 → σK 6 Jσ′2 → σ′K)

Γ ` e1 e2 : σ

Figure 2. Type rules for Plain HMF

4.3 Type rules
We first describe a simpler version of HMF, called Plain HMF, that
does not consider multiple argument applications. In Section 4.5
we describe the addition of a type rule for N-ary applications that
is used for full HMF.

The type rules for Plain HMF are given in Figure 2. The expres-
sion Γ ` e : σ implies that under a type environment Γ we can
assign a type σ to the expression e . The type environment Γ binds
variables to types, where we use the expression Γ, x : σ to extend
the environment Γ with a new binding x with type σ (replacing any
previous binding for x ). Expressions e in HMF are standard and
consist of variables x , applications e1 e2, functions λx .e , func-
tions with an annotated parameter λ(x :: σ).e , and local bindings
let x = e1 in e2.

An important property for HMF is the existance of principal
type derivations, i.e. for any derivation Γ ` e : σ′, there also exists
a derivation Γ ` e : σ with a unique most general type σ such that
σ v σ′. In Section 6 we describe a type inference algorithm that
infers precisely those principal types and is sound and complete
with respect to the type rules.

The rules VAR and GEN are standard and equivalent to the usual
Hindley-Milner rules. The instantiation rule INST is generalized to
use the System F generic instance relation.

Just like Hindley-Milner, the function rule FUN restricts the type
of the parameter x to a monomorphic type τ . As we have seen in the
introduction, this is essential to avoid guessing polymorphic types
for parameters. Furthermore, the type of the function body must
be an unquantified type ρ. For example the expression λx .λy .x
has the principal type ∀αβ. α → β → α in HMF. Without the
restriction to unquantified types, the type ∀α. α → (∀β. β → α)
could also be derived for this expression, and since neither of
these types is an instance of each other, we would no longer have
principal type derivations.

In contrast, rule FUN-ANN binds the type of the parameter to a
given polymorphic type σ. Again, the type of the function body
must be an unquantified type ρ. For simplicity we consider only
closed annotations in Plain HMF but we remove this restriction in



Section 5.1. There is no special rule for type annotations since we
can treat a type annotation (e ::σ) as an application to an annotated
identity function: (λ(x :: σ).x ) e . Using this encoding, we can
derive the following rule for closed annotations:

ANN? Γ ` e : σ

Γ ` (e :: σ) : σ

using INST, GEN, FUN-ANN, and APP.
The LET rule and application rule APP are standard except for

their extra side conditions. Without these conditions the type rules
are still sound and would reside between HMF and implicitly typed
System F. Unfortunately this system would not have principal type
derivations which precludes efficient type inference. The side con-
ditions are therefore pragmatically chosen to be the simplest condi-
tions such that HMF has principal type derivations, simple rules for
type annotations, and a straightforward type inference algorithm.

The application rule APP requires that the argument and pa-
rameter type are syntactically equivalent which can be full poly-
morphic types. Furthermore, the rule requires that the polymor-
phic weight of the function type is minimal, i.e. for any deriva-
tions Γ ` e1 : σ′2 → σ′ and Γ ` e2 : σ′2, we have that
Jσ2 → σK 6 Jσ′2 → σ′K. For convenience, we often use the short-
hand minimal(Jσ2 → σK) to express this condition. Note that for
monomorphic applications, the polymorphic weight is always zero
and therefore always minimal. Effectively, the condition ensures
that predicative instantation is preferred when possible and that no
arbitrary polymorphism can be introduced. Take for example the
derivation of the application single id from the introduction:

Γ ` single : ∀α. α → [α]
∀α. α → [α] v (α → α) → [α → α]

Γ ` single : (α → α) → [α → α]

Γ ` id : ∀α. α → α
∀α. α → α v α → α

Γ ` id : α → α
minimal(J(α → α) → [α → α]K)

Γ ` single id : [α → α] α /∈ ftv(Γ)

Γ ` single id : ∀α. [α → α]

Without the condition for minimal polymorphic weights, the type
[∀α. α → α] could also be derived for the application single id :

Γ ` single : ∀α. α → [α]
∀α. α → [α] v (∀α. α → α) → [∀α. α → α]

Γ ` single : (∀α. α → α) → [∀α. α → α]
Γ ` id : ∀α. α → α

Γ ` single id : [∀α. α → α] wrong!

where we would lose principal type derivations since the types
∀α. [α → α] and [∀α. α → α] are not in an instance relation.
The minimality condition ensures that the second derivation is
disallowed, since the polymorphic weight J∀α. [α → α]K is smaller
than J[∀α. α → α]K.

It is important that the minimality condition ranges over the
entire sub derivations of e1 and e2 since the ‘guessed’ polymor-
phism of the second derivation is introduced higher up the tree in
the instantiation rule. As shown in these derivations, the condition
disambiguates precisely those impredicative applications where a
function of type α → ... is applied to a polymorphic argument. It
is easy to see that the argument is always be (predicatively) instan-
tiated in this case (if no annotation was given).

Just like Hindley-Milner, the LET rule derives a polymorphic
type for let-bound values. In addition, the rule requires that the type
of the bound value is the most general type that can be derived,
i.e. for any derivation Γ ` e1 : σ′1, we have that σ1 v σ′1.
As a convenient shorthand, we often write mostgen(σ1) for this
condition.

The condition on let bindings is required to prevent the introduc-
tion of arbitrary polymorphism through polymorphic types in the

type environment Γ. Without it, we could for example bind single ′

to single with the (polymorphically) instantiated type (∀α. α →
α) → [∀α. α → α], and derive for the application single ′ id the
type [∀α. α → α] and lose principal type derivations again.

We cannot just require that the let-bound values are of mini-
mal polymorphic weight as in the application rule, since arbitrary
polymorphism can also be introduced through the sharing of quan-
tified type variables. Consider the expression (let foo x y =
single y in foo ids id) where ids has type [∀α. α → α]. The
principal type for this expression is ∀α. [α → α], where the type
for foo is ∀αβ. β → α → [α]. Without the most general type
restriction, we could also assign the type ∀α. [α] → α → [α]
to foo and through arbitrary sharing derive the incomparable type
[∀α. α → α] for the expression.

The type rules of HMF allow principal derivations and are sound
where well-typed programs cannot go ‘wrong’. We can prove this
by showing that for every HMF derivation there is a correspond-
ing System F term that is well-typed (Leijen 2007b). Furthermore,
HMF is a conservative extension of Hindley-Milner. In Hindley-
Milner programs rule FUN-ANN does not occur and all instantia-
tions are monomorphic. This implies that the types in an application
are always monomorphic and therefore the minimality restriction
is always satisfied. Since Hindley-Milner programs have principal
types, we can also always satisfy the most general types restric-
tion on let bindings. Finally, it is interesting that if we just restrict
instantiation to monomorphic instantiation, we end up with a pred-
icative type system for arbitrary rank type inference (Peyton Jones
et al. 2007; Odersky and Läufer 1996).

4.4 On the side conditions
The LET rule restriction to most-general types is not new. It has
been used for example in the typing of dynamics in ML (Leroy
and Mauny 1991), local type inference for F6 (Pierce and Turner
1998), semi-explicit first-class polymorphism (Garrigue and Rémy
1999), and more recently for boxy type inference (Vytiniotis et al.
2006). All of these systems require some form of minimal solutions
in order to have principal type derivations.

From a logical perspective though, the conditions on LET and
APP are unsatisfactory since they range over all possible derivations
at that point and can therefore be more difficult to reason about
(even though they are still inductive). There exists a straighforward
decision procedure however to fullfill the conditions by always
using most general type derivations. This automatically satisfies the
LET rule side condition, and due to Property 1 will also satisfy the
minimality condition on the APP rule where only rule INST on e1

and e2 needs to be considered (which is a key property to enable
efficient type inference).

It is interesting to note that the type rules without the side
conditions are still sound, but would lack principal derivations,
and the type inference algorithm would be incomplete. This is the
approach taken by Pierce and Turner (1998) for local type inference
for example which is only partially complete.

Even though we are not fully satisfied with the side conditions
from a logical perspective, we believe that the specification is still
natural from a programmers perspective, with clear rules when an-
notations are needed. Together with the use of just regular System F
types and a straightforward type inference algorithm, we feel that
the practical advantages justify the use of these conditions in the
specification of the type rules.

4.5 N-ary applications
Since Plain HMF requires minimal polymorphic weight on every
application node, it is sensitive to the order of the applications. For
example, if e1 e2 is well-typed, so is apply e1 e2, but the reverse
application, revapp e2 e1 is not always accepted. As a concrete



example, revapp id poly is rejected since the principal type of the
application revapp id in Plain HMF is ∀αβ. (α → α) → β → β
and we cannot derive the (desired) type ∀β. (∀α. α → α) → β →
β since its polymorphic weight is larger.

A solution to this problem is to allow the application rule to have
a minimal polymorphic weight over multiple arguments. In partic-
ular, we extend Plain HMF to full HMF by adding the following
rule for N-ary applications:

APP-N

Γ ` e : σ1 → ... → σn → σ Γ ` e1 : σ1 ... Γ ` en : σn

∀σ′σ′1..σ′n. Γ ` e : −→σn
′ → σ′ ∧ Γ ` e1 : σ′1 ∧ .. ∧ Γ ` en : σ′n
⇒ J−→σn → σK 6 J−→σn

′ → σ′K
Γ ` e e1 ... en : σ

where we write −→σn for the type σ1 → ... → σn. With the rule
APP-N, it becomes possible to accept the application revapp id poly
since we can instantiate revapp to (∀α. α → α) → ((∀α. α →
α) → (Int ,Bool)) → (Int ,Bool) which has a minimal polymor-
phic weight when both arguments are considered.

Even though it is always best to consider the maximal number
of arguments possible, the rule APP-N does not require to always
consider all arguments in an application, and derivations for partial
applications are still possible. In fact, it would be wrong to always
consider full applications since functions can return polymorphic
functions that need to be instantiated first using rule INST. As an
example, consider the expression head ids 1. For this application,
it is essential to consider the application head ids first in order to
use INST to instantiate its polymorphic result ∀α. α → α to the
required Int → Int type, and we cannot use APP-N directly.

5. About type annotations
In principle HMF does not need any special rules for type annota-
tions since we can type an annotation (e :: σ) as an application to
a typed identity function: (λ(x :: σ).x ) e . However, in practice it
is important to handle annotations with free variables and to prop-
agate type annotation information to reduce the annotation burden.
In this section we discuss these issues in more detail. Note that all
three techniques described in this section are not required for HMF
as such but make it more convenient to work with in practice. All
of these concepts can be applied in general to any Hindley-Milner
based type inference systems.

5.1 Partial annotations
In order to give types to any subexpression, we need to be able to
give partial type annotations (Rémy 2005). We write e :: ∃∃α. σ for
a partial type annotation where the free variables α in σ are locally
bound. We read the annotation as “for some (monomorphic) types
α, the expression e has type σ” (and therefore call ∃∃ the ‘some’
quantifier). As a practical example of such annotation, consider the
type of runST :

runST :: ∀α. (∀s.ST s α) → α

If we define this function, the parameter needs a partial annotation:

runST (x :: ∃∃α.∀s.ST s α) = ...

Note that we cannot annotate the parameter as ∀αs.ST s α since
the parameter itself is not polymorphic in α. For simplicity, we still
require type annotations to be closed but of course it is possible to
extend this with scoped type variables (Peyton Jones and Shields
2004), where annotations can contain free type variables that are
bound elsewhere.

We can formalize partial annotations in the type rules by modi-
fying the annotation rule to assume fresh monotypes for the ‘some’

(let x = e1 in e2) :: ∃∃α. σ
 (let x = e1 in (e2 :: ∃∃α. σ)) :: ∃∃α. σ

(λx .e) :: ∃∃α. ∀β. σ1 → σ2

 (λ(x :: ∃∃αβ. σ1).(e :: ∃∃αβ. σ2)) :: ∃∃α.∀β. σ1 → σ2

Figure 3. Type annotation propagation

quantifiers:

FUN-ANN
σ2 = [α := τ ]σ1 Γ, x : σ2 ` e : ρ

Γ ` λ(x :: ∃∃α. σ1).e : σ2 → ρ

Moreover, we can remove the FUN rule since we can encode unan-
noted functions λx .e as λ(x ::∃∃α. α).e . Using this encoding, GEN,
and FUN-ANN, we can derive the following rule for unannoted func-
tions:

FUN? Γ ` λ(x :: τ).e : σ

Γ ` λx .e : σ

5.2 Type annotation propagation
Another important addition in practice is the propagation of type
annotations. For example, a programmer might write the following
definition for poly :

poly :: (∀α. α → α) → (Int ,Bool)
poly f = (f 1, f True)

As it stands, this would be rejected by HMF since the parameter f
itself is not annotated (and used polymorphically). We can remedy
this situation by propagating the type annotation down through
lambda and let expressions. Figure 3 defines rules for propagating
type information, where a rule e1 :: σ  e2 :: σ propagates
the type annotation on e1 into a newly annotated expression e2.
The specified rules should be applied recursively to all parts of
an expression until no further progress is possible. Note that the
rules leave all original annotations in place. Also, the propagation
is conservative and the propagated types can be less precise. For
example, in the propagation for lambda expressions the sharing of
the type variables β is not propagated. As a practical example, the
above expression would be transformed into:

poly :: (∀α. α → α) → (Int ,Bool)
poly (f :: ∀α. α → α) = (f 1, f True) :: (Int ,Bool)

and the definition is now well-typed in HMF. Type propagation can
be seen as preprocessing step since it is defined as a separate syn-
tactical transformation, and can be understood separately from the
order independent specification of the type rules. We consider this
an important property since systems that combine type propagation
with type inference lead to algorithmic formulations of the type
rules that are fragile and difficult to reason about (Rémy 2005).

5.3 Rigid annotations
In general, we cannot statically propagate types through application
nodes (since the expression type can be more polymorphic than the
propagated type). This is a serious weakness in practice. Consider
again the definition of ids from the introduction:

(single :: (∀α. α → α) → ([∀α. α → α])) id

In a system that mixes type propagation with type inference, like
boxy type inference (Vytiniotis et al. 2006), we could write instead:

(single id) :: [∀α. α → α] (rejected in HMF)

Even though this looks natural and can be implemented for HMF
too, we will not give in to the siren call of mixing type propagation



with type inference and stick with a declarative formulation of the
type rules. Instead, we propose to make type annotations rigid.
In particular, when a programmer writes a type annotation on an
argument or the body of a lambda expression, we will take the type
literally and not instantiate or generalize it further. This mechanism
allows the programmer to write an annotation on an argument
instead of a function, and we can write:

single (id :: ∀α. α → α)

which has type [∀α. α → α]. We believe that rigid annotations
are a good compromise to avoid an algorithmic specification of
the type system. Moreover, we appreciate the ability to be very
specific about the type of an expression where rigid annotations
give precise control over type instantiation. For example, we can
write a variation of the const function that returns a polymorphic
function:

const ′ :: ∀α. α → (∀β. β → α) (inferred)
const ′ x = (λy → x ) :: ∃∃α.∀β. β → α

Note that with the type annotation propagation of Figure 3 we can
also write:

const ′ :: ∀α. α → (∀β. β → α)
const ′ x y = x

Note that rigid annotations are generally useful and are not specific
to HMF and we believe that expression annotations in any language
based on Hindley-Milner should be treated rigidly.

Rigid annotations can be formalized with ease using simple syn-
tactic restrictions on the derivations. First we consider an expres-
sion to be annotated when it either has a direct annotation or if it is
a let expression with an annotated body. The grammar for annotated
expressions ea is:

ea ::= e :: σ | let x = e in ea

Dually, we define unannotated expressions eu as all other expres-
sions, namely:

eu ::= x | e1 e2 | λx .e | λ(x :: σ).e | let x = e in eu

We want to treat annotated expressions rigidly and not instantiate
or generalize their types any further. Therefore, our first adaptation
to the type rules of Figure 2 is to restrict instantiation and general-
ization to unannotated expressions only:

INST
Γ ` eu : σ1 σ1 v σ2

Γ ` eu : σ2
GEN

Γ ` eu : σ α /∈ ftv(Γ)

Γ ` eu : ∀α. σ

Since instantiation and generalization are now restricted to unanno-
tated expressions, we can instantly derive the type [∀α. α → α] for
the application single (id :: ∀α. α → α) since the minimal weight
condition of rule APP is now satisfied. At the same time, the appli-
cation (id :: ∀α. α → α) 42 is now rejected – indeed, a correct
annotation would rather be (id :: ∃∃α. α → α) 42.

Moreover, we can allow lambda bodies to have a polymorphic
type as long as the body expression is annotated, and we add an
extra rule for lambda expressions with annotated bodies:

FUN-ANN-RIGID
Γ, x : σ1 ` ea : σ2

Γ ` λ(x :: σ1).ea : σ1 → σ2

Note that we don’t need such rule for unannoted functions as FUN?

can be used with both FUN-ANN and FUN-ANN-RIGID.

5.4 Translation of System F to HMF
Plain HMF can almost express any System F program, except for
terms that return polymorphic values from a function since Plain
HMF restricts function results to ρ types only. We do not see this

FJxKΓ = x
FJΛα. eKΓ = FJeKΓ
FJe σKΓ = FJeKΓ
FJλ(x : σ). eKΓ

= λ(x :: σ).(FJeK(Γ,x:σ) :: σ2) iff Γ `F e : σ2 ∧ σ2 ∈ Q
= λ(x :: σ).FJeK(Γ,x:σ) otherwise

FJe1 e2KΓ
= FJe1KΓ (FJe2KΓ :: σ2) iff Γ `F e2 : σ2 ∧ σ2 ∈ Q
= FJe1KΓ FJe2KΓ otherwise

Figure 4. System F to HMF translation

as a serious restriction as such System F terms are always βη-
convertible to a term with a prenex type, i.e. such terms do not
add any significant expressive power.

Nevertheless, HMF extended with rigid type annotations can
express any System F program since rigid annotations allow poly-
morphic values to be returned from a function. Figure 4 defines a
translation function FJeKΓ that translates any System F term e un-
der a type environent Γ to a well-typed HMF term e . Note that Q
denotes the set of quantified types and σ ∈ Q implies that σ 6= ρ
for any ρ. The expression Γ `F e : σ states that the System F term
e has type σ under a type environment Γ and is standard.

To translate a System F term to HMF, we keep variables un-
translated and remove all type abstractions and applications. Pa-
rameters of a lambda expressions are kept annotated in the trans-
lated HMF term. If the body has a polymorphic type in the Sys-
tem F term, we also annotate the body in the HMF term since HMF
cannot derive polymorphic types for unannotated lambda bodies.
Applications are annotated whenever the argument is a quantified
type.

There are of course other translations possible, and in many
cases one can do with fewer annotations in practice. Nevertheless,
the above translation is straightforward and removes most of the
annotations that can be inferred automatically.
Theorem 2 (Embedding of System F):

If Γ `F e : σ then Γ ` FJeKΓ : σ′ where σ′ v σ

6. Type inference
The type inference algorithm for HMF is a relatively small exten-
sion of algorithm W (Damas and Milner 1982) with subsumption
and unification of quantified types. We first discuss unification and
subsumption before describing the actual type inference algorithm.

6.1 Unification
Figure 5 describes a unification algorithm between polymorphic
types. The algorithm is equivalent to standard Robinson unification
(Robinson 1965) except that type variables can unify with poly-
types and there is an extra case for unifying quantified types. The
unification algorithm assumes that the types are in normal form. A
type σ is in normal form when all quantifiers are bound and or-
dered with respect to their occurrence in the type. For example,
∀αβ. α → β is in normal form, but ∀βα. α → β or ∀α. Int are
not. Implementation wise, it is easy to keep types in normal form by
returning the free variables of a type always in order of occurrence.

Having types in normal form makes it easy to unify quantified
types. In the last case of unify , we replace the quantifiers of each
type with fresh skolem constants in order, and unify the resulting
unquantified types. Afterwards, we check that none of the skolems
escape through a free variable which would be unsound. For ex-
ample, if β is a free variable, we need to reject the unification of



unify :: (σ1, σ2) → S
where σ1 and σ2 are in normal form

unify(α, α) =
return [ ]

unify(α, σ) or unify(σ, α) =
fail if (α ∈ ftv(σ)) (‘occurs’ check)
return [α := σ ]

unify(c σ1 ... σn, c σ′1 ... σ′n) =
let S1 = [ ]
let Si+1 = unify(Siσi, Siσ

′
i) ◦ Si for i ∈ 1 ... n

return Sn+1

unify(∀α. σ1,∀β. σ2) =
assume c is a fresh (skolem) constant
let S = unify([α := c ]σ1, [β := c ]σ2)
fail if (c ∈ con(codom(S))) (‘escape’ check)
return S

Figure 5. Unification

subsume :: (σ1, σ2) → S
where σ1 and σ2 are in normal form

subsume(∀α. ρ1,∀β. ρ2) =

assume β are fresh, and c are fresh (skolem) constants
let S = unify([α := c ]ρ1, ρ2)

fail if not (c 6∩ con(codom(S − β))) (‘escape’ check)
return (S − β)

Figure 6. Subsumption

∀α. α → α and ∀α. α → β. This check is done by ensuring that the
codomain of the substitution does not contain the skolem constant
c, and the unification fails if c is an element of con(codom(S)))
(where con(·) returns the skolem constants in the codomain).
Theorem 3 (Unification is sound): If unify(σ1, σ2) = S then
Sσ1 = Sσ2.

Theorem 4 (Unification is complete and most general): If Sσ1 =
Sσ2 then unify(σ1, σ2) = S′ where S = S′′ ◦ S′ for some S′′.

6.2 Subsumption
Figure 6 defines subsumption where subsume(σ1, σ2) returns a
most general substitution S such that Sσ2 v Sσ1. Informally, it
instantiates σ2 such that it can unify with the (potentially polymor-
phic) type σ1. It uses the same mechanism that is usually used to
implement the subsumption relation in type systems based on type
containment (Odersky and Läufer 1996; Peyton Jones et al. 2007).

As shown in Figure 6, the algorithm first skolemizes the quan-
tifiers of σ1 and instantiates the quantifiers β of σ2 with fresh
type variables. Afterwards, we check that no skolems escape
through free variables which would be unsound. For example,
subsume(∀α. α → α,∀αβ. α → β) succeeds, but it would be
wrong to accept subsume(∀α. α → α, ∀α. α → β) where β is a
free variable. Note that in contrast with unification, we first remove
the quantifiers β from the domain of the substitution since it is fine
for those variables to unify with the skolems c.
Theorem 5 (Subsumption is sound): If subsume(σ1, σ2) = S
then Sσ2 v Sσ1.

infer :: (Γ, e) → (θ, σ)

infer(Γ, x ) =
return ([ ], Γ(x ))

infer(Γ, let x = e1 in e2) =
let (θ1, σ1) = infer(Γ, e1)
let (θ2, σ2) = infer((θ1Γ, x : σ1), e2)
return (θ2 ◦ θ1, σ2)

infer(Γ, λx .e) =

assume α and β are fresh
let (θ,∀β. ρ) = infer((Γ, x : α), e)
return (θ, generalize(θΓ, θ(α → ρ)))

infer(Γ, λ(x :: ∃∃α. σ).e) =

assume α and β are fresh
let (θ,∀β. ρ) = infer((Γ, x : σ), e)
return (θ, generalize(θΓ, θ(σ → ρ)))

infer(Γ, e1 e2) =
assume α are fresh
let (θ0,∀α. ρ) = infer(Γ, e1)
let (θ1, σ1 → σ) = funmatch(ρ)
let (θ2, σ2) = infer(θ1θ0Γ, e2)
let (Θ3, θ3) = split(subsume(θ2σ1, σ2))
let θ4 = θ3 ◦ θ2 ◦ θ1 ◦ θ0

fail if not (dom(Θ3) 6∩ ftv(θ4Γ))
return (θ4, generalize(θ4Γ, Θ3θ4σ))

Figure 7. Type inference for Plain HMF

funmatch(σ1 → σ2) =
return ([ ], σ1 → σ2)

funmatch(α) =
assume β1 and β2 are fresh
return ([α := β1 → β2 ], β1 → β2)

generalize(Γ, σ) =
let α = ftv(σ)− ftv(Γ)
return ∀α. σ

split(S) =
let θ1 = [α := σ | (α := σ) ∈ S ∧ σ ∈ T ]
let Θ1 = [α := σ | (α := σ) ∈ S ∧ σ /∈ T ]
return (Θ1, θ1)

Figure 8. Helper functions

Theorem 6 (Subsumption is partially complete and most gen-
eral): If Sσ2 v Sσ1 holds and σ1 is not a type variable, then
subsume(σ1, σ2) = S′ where S = S′′ ◦ S′ for some S′′.
If σ1 is a type variable, we have that subsume(α, ∀β. ρ) equals
[α := ρ ] for some fresh β. When matching arguments to functions
with a type of the form ∀α. ... → α → ... this is exactly the
disambiguating case that prefers predicative instantiation and a
minimal polymorphic weight, and the reason why subsumption is
only partially complete.

6.3 A type inference algorithm
Figure 7 defines a type inference algorithm for HMF. Given a type
environment Γ and expression e , the function infer(Γ, e) returns a



monomorphic substitution θ and type σ such that σ is the principal
type of e under θΓ.

In the inference algorithm we use the notation σ ∈ T when
σ is a monomorphic type, i.e. σ = τ . The expression σ /∈ T is
used for polymorphic types when there exist no τ such that σ = τ .
We use the notation θ for monomorphic substitutions, where σ ∈
codom(θ) implies σ ∈ T , and the notation Θ for polymorphic
substitutions where σ ∈ codom(Θ) implies σ /∈ T . The function
split(S) splits any substitution S into two substitutions θ and Θ
such that S = Θ ◦ θ.

The rules for variables and let expressions are trivial. In the
rules for lambda expressions, we first instantiate the result type of
the body and than generalize over the function type. For unanno-
tated parameters, we can assume a fresh type α in the type environ-
ment while annotated parameters get their given type.

The application rule is more involved but still very similar to the
usual application rule in algorithm W (Damas and Milner 1982). In-
stead of unifying the argument with the parameter type, we use the
subsume operation since we may need to instantiate the argument
type. The polymorphic substitution S returned from subsume is
split in a monomorphic substitution θ3 and a polymorphic substitu-
tion Θ3, such that S = Θ3 ◦ θ3. Next, we check that no polymor-
phic types escape through free variables in the type environment by
ensuring that dom(Θ3) 6∩ ftv(θ4Γ). This is necessary since rule
FUN can only assume monotypes τ for parameters, and without the
check we would be able to infer polymorphic types for parameters.
Since the domain of Θ3 does not occur in the type environment, we
can apply the polymorphic substitution to the result type, and return
the generalized result together with a monomorphic substitution.

We can now state our main theorems that type inference for
(Plain) HMF is sound and complete:
Theorem 7 (Type inference is sound): If infer(Γ, e) = (θ, σ) then
θΓ ` e : σ holds.

Theorem 8 (Type inference is complete and principal): If θΓ ` e :
σ, then infer(Γ, e) = (θ′, σ′) where θ ≈ θ′′ ◦ θ′ and θ′′σ′ v σ.

Following Jones (1995), we use the notation S1 ≈ S2 to
indicate that S1α = S2α for all but a finite number of fresh type
variables. In most cases, we can treat S1 ≈ S2 as S1 = S2 since
the only differences between substitutions occur at variables which
are not used elsewhere in the algorithm. We need this mechanism
because the algorithm introduces fresh variables that do not appear
in the hypotheses of the rule or other distinct branches of the
derivation.

6.4 Optimizations
In practice, inference algorithms tend to use direct updateable refer-
ences instead of using an explicit substitution. This works well with
HMF too, but certain operations on substitutions must be avoided.
When unifying quantified types in the unify algorithm, the check
(c ∈ con(codom(S))) can be implemented more effectively when
using references as (c ∈ con(S(∀α. σ1))∪ con(S(∀β. σ2)) (and
similarly in subsume).

In the application case of infer , we both split the substitution
and there is a check that (dom(Θ3) 6∩ ftv(θ4Γ)) which ensures
that no poly type escapes into the environment. However, since let-
bound values in the environment always have a generalized type,
the only free type variables in the environment are introduced by
lambda-bound parameter types. Therefore, the check can be de-
layed, and done instead when checking lambda expressions. Effec-
tively, we remove the split and move the check from the application
rule to the lambda case:

infer(Γ, λx .e) =

assume α and β are fresh
let (S,∀β. ρ) = infer((Γ, x : α), e)

fail if (Sα /∈ T )
return (S, generalize(SΓ, S(α → ρ)))

This change makes it directly apparent that only monomorphic
types are inferred for lambda bound parameters. Of course, it also
introduces polymorphic substitutions everywhere, but when using
an updateable reference implementation this happens anyway. Note
that this technique can actually also be applied in higher-rank
inference systems (Peyton Jones et al. 2007; Odersky and Läufer
1996) removing the ‘escaping skolem’ check in subsumption.

6.5 Rigid annotations
It is straightforward to extend the type inference algorithm with
rigid type annotations, since expressions can be checked syntac-
tically if they are annotated or not. In the application case of the
algorithm specified in Figure 7, we use unify instead of subsume
whenever the argument expression e2 is annotated, which effec-
tively prevents the instantiation of the argument type. Finally, we
adapt the case for lambda expressions to not instantiate the type of
an annotated body.

6.6 N-ary applications
Implementing inference that disambiguates over multiple argu-
ments using rule APP-N is more involved. First we need to extend
subsumption to work on multiple arguments at once:

subsumeN (σ1 ... σn, σ′1 ... σ′n) =
let i = if σi ∈ {σ1, ..., σn} ∧ σi /∈ V then i else 1
let S = subsume(σi, σ

′
i)

if n = 1 then return S
else return S ◦ subsumeN (S(σ1 ... σi−1 σi+1 ... σn),

S(σ′1 ... σ′i−1 σ′i+1 ... σ′n))

The function subsumeN applies subsumption to n parameter types
σ1 ...σn with the supplied argument types σ′1 ...σ′n. Due to sharing,
we can often infer a polymorphic type after matching some argu-
ments, as happens for example in revapp id poly where the poly
argument is matched first. The trick is now to subsume the parame-
ter and argument pairs in the right order to disambiguate correctly.
Since subsumption is unambiguous for parameter types that are not
a type variable (σi /∈ V), we first pick these parameter types. Only
when such parameters are exhausted, we subsume the rest of the
parameters, where the order does not matter and we arbitrarily pick
the first. In a previous version of the system, we subsumed in or-
der of dependencies between parameter and argument types, but
one can show that this is unnecessary – if there is any type variable
shared between parameter and argument types, it must be (lambda)
bound in the environment, and in that case, we cannot infer a poly-
morphic type regardless of the order of subsumption.

Secondly, we extend function matching to return as many
known parameter types as possible, where we pass the number
of supplied arguments n:

funmatchN (n, σ1 → ... → σm → σ) =
where m is the largest possible with 1 6 m 6 n
return ([ ], σ1 ... σm, σ)

funmatchN (n, α) =
assume β1 and β2 are fresh
return ([α := β1 → β2 ], β1, β2)

During inference, we now consider all arguments at once, where we
first infer the type of the function, and then call the helper function
inferapp with the found type:

infer(Γ, e e1 ... en) =
assume n is the largest possible with n > 1
let (θ1, σ1) = infer(Γ, e)



let (θ2, σ2) = inferapp(θ1Γ, σ1, e1 ... en)
return (θ2 ◦ θ1, σ2)

The inferapp function is defined separately as it calls itself recur-
sively for each polymorphic function result until all n arguments
are consumed:

inferapp(Γ,∀α. ρ, e1 ... en) =
assume α is fresh and n > 1
let (θ0, σ1 ... σm, σ) = funmatchN (n, ρ)
let (θ′i, σ

′
i) = infer(θi−1Γ, ei) for 1 6 i 6 m

let θi = θ′i ◦ θi−1

let (Θ, θ′) = split(subsumeN (θm(σ1 ... σm),
θm(σ′1 ... σ′m)))

let θ = θ′ ◦ θm

fail if not (dom(Θ) 6∩ ftv(θΓ))
if m < n then return inferapp(θΓ, Θθσ, em+1 ... en)

else return (θ, generalize(θΓ, Θθσ))

First, funmatchN is used to consider as many arguments m as pos-
sible. Note that m is always smaller or equal to n . Next, the types
of the next m arguments are inferred, and the subsumeN function
applies subsumption to all the parameter types with the found argu-
ment types. Afterwards we check again that no polymorphic types
escape in the environment. Finally, if there are still arguments left
(as in head ids 1 for example), inferapp is called recursively with
the remaining arguments and the found result type. Otherwise, the
generalized result type is returned.

7. Related work
In Section 3 we already discussed MLF and boxy type inference.
MLF was first described by by Rémy and Le Botlan (2004; 2003;
2007; 2007). The extension of MLF with qualified types is de-
scribed in (Leijen and Löh 2005). Leijen later gives a type directed
translation of MLF to System F and describes Rigid-MLF (Lei-
jen 2007c), a variant of MLF that does not assign polymorphically
bounded types to let-bound values but internally still needs the full
inference algorithm of MLF.

Vytiniotis et al. (2006) describe boxy type inference which is
made principal by distinguishing between inferred ‘boxy’ types,
and checked annotated types. A critique of boxy type inference is
that its specification has a strong algorithmic flavor which can make
it fragile under small program transformations (Rémy 2005).

Recently, Vytiniotis et al. (2008) presented new version of boxy
type inference called FPH. The system has a simple annotation rule
where polymorphic parameters require an annotation, and where
let-bindings with a higher-rank type may require an annotation.
An advantage of using boxy types, is that FPH does not need
minimality conditions like HMF. A drawback though is that FPH
cannot always assign a principal type to an expression. Also, it
shares with boxy type inference that some common expressions
with unambiguous typings are still rejected (see Section 3). For
example, suppose we add the id function to a list of polymorphic
identity functions:

let xs = cons id ids

where cons has type ∀α. α → [α ] → [α ]. The above definition
is rejected in FPH even though the result type, [∀α. α → α ], is
unambiguous (and inferred by HMF).

To the best of our knowledge, a type inference algorithm for the
simply typed lambda calculus was first described by Curry and Feys
(1958). Later, Hindley (1969) introduced the notion of principal
type, proving that the Curry and Feys algorithm inferred most gen-
eral types. Milner (1978) independently described a similar algo-
rithm, but also introduced the important notion of first-order poly-
morphism where let-bound values can have a polymorphic type.

Damas and Milner (1982) later proved the completeness of Mil-
ner’s algorithm, extending the type inference system with poly-
morphic references (Damas 1985). Wells (1999) shows that general
type inference for unannotated System F is undecidable.

Jones (1997) extends Hindley-Milner with first class polymor-
phism by wrapping polymorphic values into type constructors. This
is a simple and effective technique that is widely used in Haskell but
one needs to define a special constructor and operations for every
polymorphic type. Garrigue and Rémy (1999) use a similar tech-
nique but can use a generic ‘box’ operation to wrap polymorphic
types. Odersky and Läufer (1996) describe a type system that has
higher-rank types but no impredicative instantiation. Peyton Jones
et al. (2007) extend this work with type annotation propagation.
Dijkstra (2005) extends this further with bidirectional annotation
propagation to support impredicative instantiation.

8. Future work
We feel that both HMF and MLF present interesting points in the
design space of type inference for first-class polymorphism. (Full)
MLF is an upper bound: it is the most expressive system to date,
requiring only annotations on parameters that are used polymorphi-
cally, but it also introduces more complexity with the introduction
of polymorphically bounded types. The lower bound in the design
space is represented by HMF, which uses just System F types, but
also requires annotations on ambiguous impredicative applications.

Currently, we are working on a third system, called HML, that
resides between these design points (Leijen 2008). This system is a
simplification of MLF that only uses flexible types. The addition
of flexible quantification leads to a very simple annotation rule
where only function parameters with a polymorphic type need an
annotation, but it still retains much of the expressiveness of MLF.

9. Conclusion
HMF is a conservative extention of Hindley-Milner type inference
that supports first-class polymorphism and has an effective type in-
ference algorithm that is just a small modification of algorithm W.
Given the relative simplicity combined with expressive power, we
feel that this system can be a great candidate as the basic type sys-
tem for future languages that want to support first-class polymor-
phic programming with minimal implementation effort.
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Martin Odersky and Konstantin Läufer. Putting type annotations
to work. In 23th ACM symp. on Principles of Programming
Languages (POPL’96), pages 54–67, January 1996.

Simon Peyton Jones and Mark Shields. Lexically scoped type
variables. Draft, March 2004.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17(1):1–82, 2007.

Benjamin C. Pierce and David N. Turner. Local type inference.
In 25th ACM symp. on Principles of Programming Languages
(POPL’98), pages 252–265, 1998.
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