
Using Peer Support to Reduce Fault-Tolerant Overhead in
Distributed Shared Memories

Galen C. Hunt �

Michael L. Scott y

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226

fgchunt,scottg@cs.rochester.edu

Abstract

We present a peer logging system for reducing performance overhead in fault-tolerant distributed shared
memory systems. Our system provides fault-tolerant shared memory using individual checkpointing and
rollback. Peer logging logs DSM modification messages to remote nodes instead of to local disks. We
present results for implementations of our fault-tolerant technique using simulations of both TreadMarks, a
software-only DSM, and Cashmere, a DSM using memory mapped hardware. We compare simulations with
no fault tolerance to simulations with local disk logging and peer logging. We present results showing that
fault-tolerantTreadmarks can be achieved with an average of 17% overhead for peer logging. We also present
results showing that while almost any DSM protocol can be made fault tolerant, systems with localized DSM
page meta-data have much lower overheads.

Keywords: Distributed shared memory, fault tolerance, peer logging.

�Galen Hunt was supported by a research fellowship from Microsoft Corporation.
yThis work was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724, and ONR research grant no.N00014-

92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology – High Performance Computing, Software
Science and Technology Program, ARPA Order no. 8930).

1

P
C

P
C

P
C

P
C
MM M M

Network

Figure 1: A network-based distributed parallel architecture includes processors (P), caches (C) and memory
(M).

1 Introduction

While modern distributed shared memory (DSM) systems hide the details of explicit communication man-
agement, they cannot hide the increased risk of system failure. For any distributed system the mean time to
failure (MTTF) is inversely proportional to the number of nodes in the system. Large DSM applications need
fault tolerance to ensure their completion in volatile distributed environments.

A number of fault-tolerant techniques have been suggested for DSM systems. Experimental results,
however, have been limited to systems using sequential consistency models. We present in this paper a
self-reliant fault-tolerant protocol that is sufficiently general to be applied to almost any consistency model.
To demonstrate its generality, we present experimental results for two DSMs: Cashmere and TreadMarks.

Traditional fault-tolerant systems have logged data needed for system recovery to local disks. The protocol
presented in this paper can use either local disks or peer-based network logging. In a peer-based system, each
node has a designated peer. Recovery information is replicated across the network to the peer. Our results
show that peer logging reduces log latency and in some cases drastically reduces fault-tolerant overhead.

An important design decision in any DSM system is the placement of page meta-data. Depending on the
DSM protocol, page meta-data includes information such as page location, which processes hold valid copies
of pages, and when each process last saw a valid copy of a page. Meta-data placement and management
becomes especially important when planning for recovery from failures. As will be shown later, systems that
maintain localized meta-data provide much lower fault tolerance overhead.

The remainder of the paper is organized as follows: In Section 2, we give a brief overview of the
architecture and operating models of modern DSM systems. Section 3 examines fault tolerance issues as
they relate to DSM. Section 4 describes our fault-tolerant DSM protocol. Our simulations and experimental
methodology are presented in Section 5. In Section 6 we examine the experimental data. We discuss related
work in Section 7. Finally, in Section 8 we summarize and discuss future work.

2 Distributed Shared Memory

Distributedshared memory (DSM) systems extend the shared memory programming model to loosely coupled
distributedprocessors. In a common distributedsystem each processor has its own local memory; see Figure 1.
The processors communicate by passing messages through a network. The DSM system is responsible for
providing consistency between local copies of shared memory. The DSM system converts shared memory
modifications to network messages. DSM systems have been implemented both in hardware [15] and in
software [2, 3, 10, 16].

Software DSM systems are particularly interestingbecause they can be used on either specialized networks
or on commodity networks such as Ethernet [17] and ATM [14]. Using a software DSM, a network of
workstations can be turned into a parallel processing environment. Programs designed for tightly-coupled,

2

bus-based architectures can be run with little modification. Programmer productivity is increased through the
use of a familiar model: shared memory.

The DSM system is responsible for providing each node with a consistent view of shared memory. The
DSM system maintains consistency using a model, which describes how the program interacts with shared
memory, and a protocol, which describes how shared memory on one processor interacts with shared memory
on another. Common consistency models/protocols include:

� Sequential consistency [13] requires that a read from any shared object will reflect the most recent
write by any processor to that object. Object modifications must be propagated immediately to all
sharing processors.

� Release consistency [6] relaxes consistency guarantees based on the insight that programs use synchro-
nization objects to guard access to data objects. In release consistency, writes need to become visible
at remote processors only when a synchronization release become visible. Release consistency allows
optimizations such as collecting all writes and transferring them with the released synchronization
object in a single message.

� Lazy release consistency [9] reduces network bandwidth by lazily copying only objects used by
acquiring processors. When a processor acquires a synchronization object it sends the releasing
processor a vector time stamp. The time stamp records the intervals when the acquiring processor last
received data from each of the other processors. The releasing processor returns a message containing
a list of exactly the data modified during the intervals that are in the releaser’s logical past, but not in
the logical past of the acquirer.

� Entry consistency [2] reduces the number and size of messages (compared to release consistency) by
binding data objects to synchronization objects. When a processor acquires a synchronization object,
it receives modifications only for the related data objects.

DSM systems can collect data object modifications using virtual memory hardware, instrumented store
operations, or labeled access functions. In VM hardware based systems, sub-page modification granularity
can be achieved by twinning and diffing or by ongoing write-through to the home node. Before modifying a
page, a processor copies the page creating a twin. A diff is created by enumerating the differences between
the modified page and twin made before the modifications.

DSM protocols can be classified as either update or invalidate. In an invalidate protocol, the acquiring
processor receives invalidation notices for modified objects. The acquiring processor will request a modifi-
cation only when it attempts to access an invalidated variable. In an update protocol, the acquiring processor
receives the actual modifications. Invalidate protocols wins if the number of modifications needed by the
acquiring processor is a small subset of the modifications made before a release.

3 Fault Tolerance

Error-free processes fail when the node on which they run fails. In a single uniprocessor, to recover from
failure, the failed process must be restarted either on the same node, in the case of transient failure, or on
another node. In a shared memory system, recovery must also include the DSM.

Richard and Singhal [19] describe a fault-tolerant checkpointing and logging method for sequential
consistency DSM systems. They use a volatile in-memory log and a stable disk log. Before reading a shared
page, the processor makes a copy of the page in the volatile log. When another process requests a page, the
logged page is moved to stable storage before satisfying the remote request. The volatile log is cleared when

3

pages are moved to stable log. The stable log is reset after each checkpoint. Because a page can be invalidated
by another process at any time, it must be logged every time it is read. To start recovery, the program loads
the lastest checkpoint and begins replay. Whenever the recovering process needs a remote page, it retrieves
the page from the stable log. By using logged pages, the process sees exactly the same data that it saw before
the failure.

Suri et al [23] improve on the work of Richard and Singhal. For sequential consistency, they log the
contents of the page only on the first read rather than logging a page each time it is read. When the page is
invalidated, they log the number of times the page was read before being invalidated. On recovery the page is
invalidated after it has been read the specified number of times. They also present a fault-tolerant lazy release
consistency protocol. Lazy release consistency DSM systems invalidate pages only as result of an acquire on
a synchronization object. Their LRC protocol logs the page the first time it is read and the list of invalidated
pages at an acquire.

Neves et al [18] describe fault-tolerant protocol for entry consistency DSM systems using only a volatile
log. Before releasing an object, a process copies it into the volatile log. If the acquiring process fails at some
time in the future, it can recover by asking the releasing process to provide it with a new copy of the logged
object. The log entries needed by a single process are distributed among the prior object owners. After a
checkpoint, log entries are garbage collected by sending messages to all nodes in the system. A log entry
can be discarded only when all processes that subsequently requested the object have been checkpointed. If
a second node fails before all processes have checkpointed, recovery cannot be guaranteed.

An alternative to checkpointing is replication. Kermarrec et al [11] describe a fault-tolerant sequential
consistency DSM system. Their system takes advantage of the page duplication inherent in DSM systems.
Periodically a global checkpoint is created by making sure that duplicates exist for all shared pages. All pages
are then marked read only. As write faults take place, a new writable page is created. Modifications and
future readers use this page. When the next checkpoint is made, the written page is duplicated and the pages
from the last checkpoint are discarded. In the case of a single node failure, the entire system must role back
to the last checkpoint.

The protocol we present in the next section is similar to the self reliant work of Richard and Singhal, and
of Suri et al. Each process of a DSM program is responsible for its own fault tolerance. The process must
preserve any information necessary to guarantee that replay after a failure is externally indistinguishable from
the original execution. The process is self reliant both before failure and after a failure. A process must make
any preparation for failure without changing the state of other processes in the system and it must be able to
recover from a failure without causing the rollback of any other processes.

Our protocol differs from earlier self-reliant protocols in that we use peer logging to reduce fault-tolerant
overhead. For most DSM systems, peer logging reduces logging time and shortens the critical path of
distributed applications. Our peer logging differs from the work of Neves et al and Kermarrec et al in that we
support isolated node recovery.

4 Peer Logging

Log latency is the primary performance cost of fault tolerance. A disk log operation has finished only when
the log entry and any disk meta-data have been safely flushed to disk. While disk logs are reliable, cheap, and
non-volatile, they also have large latencies. Even the fastest disks have latencies on the order of a few million
CPU cycles.

Disk latency becomes a crucial issue when it lengthens the critical path of program execution. For most
DSM programs, the critical path follows access to a synchronization object or a data page. A process acquires
the object, modifies some data and passes the object to another process. For reliable fault tolerance, the object

4

cannot be passed until the acquire has been logged. If log latency is large, compared to the time the object is
held, the program’s critical path will grow.

We reduce log latency by using a remote peer as a log provider. Data is logged by sending an asynchronous
message to the log provider. Once the message has been sent, the requesting process can continue. The log
provider starts an asynchronous disk operation to create a non-volatile copy of the log and then returns
a acknowledgement to the requester. The requesting process considers the log operation finished when it
receives the acknowledgement from the log provider. Spooling to disk is not required for correctness of the
protocol because a valid backup of the data exists in the memory of the log provider. We spool log entries to
disk to reduce memory usage on the logging peer. In the case of failure, the process is restored by reading
log entries over the network from the peer.

The log provider’s process state is not changed by receipt of a log request. Conceptually, logging and
computation are two separate processes. Logging state need not be preserved because it is not externally
visible. Only the log entries are externally visible, and then only to the process that made the log and only
in the case of failure. The log provider can operate as either a secondary task on a peer that is running the
same DSM program or as a log “server” that only manages log entries and does not participate in meaningful
computation.

Our protocol is divided into a failure preparation phase and a failure recovery phase. Failure preparation
is responsible for guaranteeing that in the case of a failure the failure recovery phase can restore the process
to its pre-failed state. Failure preparation consists of the following:

1. The process makes periodic checkpoints. The checkpoints must contain sufficient information to
completely recover the process state at the point of the checkpoint. The checkpoint should include all
private data and local copies of shared memory pages.

2. Whenever the process receives information from another process, it logs the information asynchronously
to reliable storage. Incoming messages include page invalidation and write notices, responses to
requests for copies of remote pages caused by local page faults, and acquire and release operations on
synchronization objects. In the case of failure, the logged messages will be used to ensure that recovery
matches the path of the original execution.

3. Before sending any messages that reflect internal state, the process must wait for any relevant outstanding
log operations to finish. This wait ensures that state becomes externally visible only after the data
necessary to recreate it has been safely logged. For example, in the case of a remote request to satisfy
a page fault, the processor must ensure that any pages read prior to modifying the specified page have
been logged.

4. After a periodic checkpoint has been committed, the prior checkpoint and all intervening log entries
are discarded. The frequency of checkpoints can be adjusted to meet application requirements based
on the size of available log space, checkpoint cost and desired recovery time.

5. In the case that the log provider fails, the process must find another log provider and create a checkpoint
before fulfilling any network requests. By creating a new checkpoint, the process removes any need
for the missing log entries. A window of vulnerability does exist between the time the log provider
fails and the point when the new checkpoint has been committed to a new log provider. This window
of vulnerability can be reduced by duplicating log providers. It is assumed that in most cases, the time
to locate a new log provider and create a new checkpoint is sufficiently small to provide a desired level
of fault tolerance.

5

The second phase of our fault-tolerant protocol is failure recovery. After a failure has been detected,
the process on the failed node must be recovered before execution of the DSM program can continue. The
processor can be recovered either on the original or on another node. Our protocol does not require an explicit
mechanism for suspending other processes in the DSM system. The other processes will continue forward
execution until they reach a point at which they require information from the failed process. At that point
they stall until the failed process has recovered. During recovery, requests from remote processes are queued
for processing after recovery completes. Failure recovery consists of the following:

1. The last checkpoint for the failed process is restored. The process can be restored either on the same
physical node on which it was originally running or on another node. The restored checkpoint contains
all data available locally to the process when the checkpoint was taken.

2. After restoring the checkpoint, execution of the failed process rolls forward. As the replay continues,
the process will need data that was originally supplied via network messages. At each message receive
point, such as a request for a remote page or a synchronization object, the message is retrieved from
the log provider. The logged message is identical to the original message so execution follows a path
exactly the same as that of the process before failure.

3. Process recovery completes when all of the log entries have been replayed.

5 Experimental Methodology

Our experimental results were measured using execution driven simulations. Our simulator consists of two
parts, a MINT [24, 25] front end and a memory system back end. MINT runs native parallel applications
using the MIPS II instruction set. Memory references are passed to the memory system back end which
determines which operations continue and which wait. This information is fed back to the MINT front end.

Table 2 details basic hardware parameters used in the simulation. To avoid the complexity of simulating
operation system software the simulation uses constant numbers for disk scheduling, network message
handling and VM interrupt handlers. We believe that our parameters accurately reflect optimistic, but
achievable numbers. As with any system, your actual mileage may vary.

Our test application suite consists of four programs: appbt, em3d, sor and water. Appbt is from
the NAS parallel benchmark suite [1]. Em3d is from the Split-C [4] project at UC Berkeley. Sor is a local
computation kernel. Water is part of the SPLASH suite [21].

Appbt calculates approximate solutions to Navier-Stokes differential equations modeling heat dissipation.
Appbt uses linear arrays to represent higher dimensional data structures. Each processor is assigned a separate
square area. Communication between processors occurs only on boundaries between the areas. We simulate
5 time steps over 4096 grid points.

Em3d models the propagation of electro-magnetic waves through objects in three dimensions. A prepro-
cessing step models the problem as computation on an irregular bipartite graph containing nodes representing
electric and magnetic field values. Computation consists of step-wise integration of field forces alternating
between electric and magnetic field nodes. A node’s value is calculated based on the value of its neighbors.
For our simulations, we simulate 65536 field nodes. Each node is connected to 5 neighbors with 5% of all
neighbors located on a remote process. Each process is statically assigned a 1=n fraction of the nodes for the
duration of the program. We calculate the field for 10 time steps.

Sor computes the steady state temperature of a metal sheet using a banded parallelization of red-black
successive overrelaxation on a 1024x1024 grid. Sharing occurs between processing neighbors. We simulate
10 time steps.

6

Hardware Parameter Simulated Value

CPU Speed 200 MHz
Cache Size 128K
Cache Line Size 64 bytes
Cache Miss Latency 20 cycles
Memory Bandwidth 381 MB/s
Interrupt Handler 400 cycles
Page Size 4096 bytes
TLB Size 128 entries
TLB Miss 100 cycles
Disk Scheduling 1000 cycles
Disk Seek 10ms
Disk Bandwidth 15MB/s
Mem. Chan. Latency 200 cycles
Mem. Chan. Packet Size 64 bits
Mem. Chan. Bandwidth 50MB/s
ATM Packet Start Latency 2000 cycles
ATM Packet Size 48 bytes
ATM Packet Overhead 5 bytes
ATM Bandwidth 155Mbps
Ethernet Protocol Latency 2000 cycles
Ethernet Packet Overhead 54 bytes
Ethernet Bandwidth 10Mbps

Figure 2: Simulated hardware parameters.

Water is an N-body dynamics simulation of water molecules in a cubic box. The simulation evaluates
forces and potentials using Newtonian equations of motion. To avoid computing all the n2=2 pairwise
interaction among molecules, a spherical cutoff range is set at a radius of half the box length. Water uses
static scheduling to increase data locality. During any time step, a single process will share data with at most
half of the other processes. We simulate 256 molecules for 3 time steps.

Our simulations consist of two DSM protocols, TreadMarks and Cashmere. TreadMarks [10] represents
the state of the art in software-only DSM systems. It uses a multiple-writer, lazy release consistency model
to reduce network bandwidth and minimize the impact of network latency. Shared memory accesses are
detected using the virtualmemory protectionmechanisms. Updates collected using twinningand diffing. Page
invalidationsare forwarded withsynchronization objects and diffs are forwarded on read faults. Cashmere [12]
takes advantage of memory mapped hardware to remove the need for diffs. Modifications to shared memory
are written through the network to a master copy of each page. To ease management, a common protocol page
directory is maintained in distributed, globally modifiable memory. Access to the global directory is protected
with locks. Cashmere provides software coherence with performance close to hardware-only systems.

Our TreadMarks simulation logs synchronization object operations,page invalidation notices, and received
diffs. The Cashmere simulation logs directory entries on all directory operations, write notices on acquires,
incoming master pages on page faults and synchronization object operations.

For each simulation we collect data varying several parameters. For a base case, the coherence protocols
have no fault tolerance support. We simulate each protocol using both disk and peer logging. Our disk logging
simulations assume a log-based file system. Any single log entry can be committed to disk with a single disk

7

Processors
App. Protocol 4 16 32

appbt Cashmere 929 820 772
appbt TreadMarks 18 80 189
em3d Cashmere 3784 1813 1389
em3d TreadMarks 14 15 18
sor Cashmere 394 403 87
sor TreadMarks 0.19 1.21 3.21
water Cashmere 279 473 437
water TreadMarks 40 316 653

Figure 3: Data (in megabytes) logged by application and consistency protocol.

seek. Subsequent log entries that reach the disk controller prior to the termination of the first operation need
not pay the seek latency. Our peer logging simulations use the same network mechanisms as the coherence
protocol.

In addition to log provider, we also vary the type of network from 10Mb/s Ethernet to 155Mb/s ATM and
50MB/s Memory Channel [7]. The Ethernet numbers assume a 51 byte UDP packet overhead. The ATM
numbers use a standard packet containing 48 data bytes and 5 bytes of overhead. The Memory Channel
hardware is memory mapped and provides write-through of 64-bit values. Remote reads are not supported.
Our Cashmere simulation assumes a network reminiscent of the Memory Channel but supporting remote
reads as well as writes. For ATM and Memory Channel, we model contention at sending and receiving nodes,
but assume adequate switching resources to alleviate the need to consider switching contention. The Ethernet
model simulates a standard bus architecture network where all nodes must compete for bandwidth.

We measure performance using 4, 16 and 32 processors. Again the desire is to simulate reasonable
systems and not to measure performance in extreme conditions.

Our simulations do not include checkpointing overhead or any measurement of recovery costs. While
checkpointing cost is an important consideration in overall system performance, it does not directly affect
DSM costs. On the other hand, logging overhead directly increases DSM costs. The number of log entries
for a particular execution remains constant when checkpointing costs are varied.

6 Results

Table 3 contains information about the amount of data logged by each simulation. Log size remains
constant when the log provider is changed from disk to peer. Cashmere logs far more pages than TreadMarks.
When logging incoming pages, TreadMarks writes only the modifications made to the page since the last time
the process read the page. Cashmere writes the entire page since it has no way of knowing which parts of the
page have been modified. Even when a page is found locally on a node, Cashmere must log the page if any
other nodes have touched the page. The lack of diffs forces Cashmere to log pages even when the changes
may not necessarily affect a process’s computation. Additionally, Cashmere maintains a large amount of
page meta-state in the centralized directory. Because the meta-state information affects local process state,
Cashmere must log every access to the shared page directory.

The normalized execution times for TreadMarks and Cashmere on the Memory Channel with 32 processors
are shown in Figure 4. At its best, fault-tolerant Cashmere is 3.59 times slower than non-fault-tolerant
Cashmere. The effects of the large number of log entries can easily be seen in vast performance differences
between Cashmere with disk logging and Cashmere with peer logging. Peer logging on the Memory Channel

8

appbt em3d sor water

0
2

4
6

8

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Cashmere No Fault
Cashmere Disk
Cashmere Peer
TreadMarks No Fault
TreadMarks Disk
TreadMarks Peer

28 78 6.55 23 41

Figure 4: Execution times for Cashmere and TreadMarks on Memory Channel with 32 processors normalized
to execution time on same system without fault tolerance.

has a much lower latency than disk logging. The burst bandwidth of the network is also much higher than
disk bandwidth.

For most applications, fault tolerance on TreadMarks can be acheived with only minimal overhead.
Figure 5 contains the normalized execution times for the test applications running on TreadMarks with 32
processors for each of the three networks. Execution times are normalized to the same network configuration
without fault tolerance. For the ATM and Memory Channel networks, only one execution shows lower
overhead for disk logging than peer logging. On TreadMarks, disk logging has on average a 67% overhead
versus 17% for for peer logging. The important factor again is that logging to a peer has a lower latency than
logging to a local disk. For Ethernet, disk logging always provides lower overhead. The reason is that at low
bandwidths, peer logging must contend with coherence protocol traffic for bandwidth. While the local disk
does have a higher latency, its bandwidth is larger than Ethernet.

Peer logging overhead as a percentage of overall execution time remains almost constant when varying
the number of processors. Of twenty four possible network and protocol configurations, none showed more
than a 20% change in normalized execution time. Only one showed more than an 11% change. Logging
overhead is affected most by varying the number of pages logged and the latencies between page accesses and
synchronization events. Page access latencies remain fairly constant regardless of the number of processors.
With the exception of network bandwidth for Ethernet, logging resources scale with the number of processors.

While reducing overhead is important, speedup and absolute execution time tell the real story. Figure 6
contains speedup plots for sor. Shown are data for Cashmere on Memory Channel, TreadMarks on Memory
Channel and TreadMarks on ATM. The Cashmere on Memory Channel numbers with superlinear speedup

9

appbt em3d sor water

0
1

2
3

4

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

No Fault

MC Disk
ATM Disk
Eth Disk

MC Peer
ATM Peer
Eth Peer

5.36

Figure 5: Execution times for TreadMarks on Memory Channel, ATM, and Ethernet with 32 processors
normalized to execution time on same system without fault tolerance.

are a result of cache effects. The numbers for TreadMarks on Ethernet are not worth showing. The highest
speedup obtained by TreadMarks on Ethernet is .86 with 32 processors and no fault tolerance. For the three
networks in Figure 6, fault-tolerant peer logging shows better speedup than disk logging.

7 Related Work

Fault-tolerant DSM systems are related to work on transactional virtual memory systems. Transactional
VM systems, including Camelot [22], PLinda [8], RVM [20] and LDSM [5], add transaction semantics to
persistent virtual memory. A transaction consists of a start operation, a number of modifications to shared
memory and either a commit or an abort operation. Transactions have three properties: first, atomicity: all
updates made by the transaction either commit completely becoming globally visible or abort completely;
second, isolation: changes made by the transaction are only visible after it commits; and third, automatic
cleanup: uncommitted transactions in failed processes are aborted automatically.

Transactional memory systems tend to differ from DSM in the number and frequency of modifications.
Transactional VMs generally assume that modifications to shared memory are rare and persistent, whereas
DSMs assume that modifications are frequent and transient. In each case, system performance is optimized
to meet modification assumptions. Our protocol does not require explicit use of transaction semantics. All
DSM operations inherently commit. By using asynchronous disk I/O our DSM and the user applications are
persistent as side effect of the fault-tolerance mechanism.

10

8 Conclusion and Future Work

We presented an efficient protocol for adding fault tolerance to distributedshared memories using peer logging.
Our protocol uses independent checkpointing and isolated rollback for recovery from failures.

Our experimental results for two DSM protocols, Cashmere and TreadMarks, demonstrate that fault
tolerance can be achieved with low impact on program execution times. In the case of TreadMarks, average
overhead was 17%. A lazy release consistency DSM system using an update protocol might show even lower
overhead.

We demonstrated the advantages of peer logging over local disk logging. In one extreme example for
Cashmere, peer logging reduced program execution time by two orders of magnitude. In all cases, peer
logging application have better speedup than disk logging applications. Our implementation of network
logging is unique in that logging and recovery only involve a single process and its log provider. Peer logging
is non-intrusive; it does not alter computation state on the log provider.

Our protocol is sufficiently general to be applied to almost any DSM system. Our work demonstrates
that DSM systems with localized page meta-data have much lower fault-tolerant overhead ratios. We are
exploring ways to relax Cashmere’s global meta-data dependence to bring fault-tolerance overhead closer to
that measured for TreadMark because Cashmere without fault tolerance is significantly faster than TreadMarks
given a network with direct memory access.

References
[1] D. Bailey, E. Barszcz, L. Dagum, and H. Simon. NAS Parallel Benchmarking Results. In Proceedings Supercom-

puting ’92, Minneapolis, MN, November 1992.

[2] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway Distributed Shared Memory System. In
Proceedings of the IEEE COMPCON ’93.

[3] J. B. Carter. Design of the Munin Distributed Shared Memory System. In Journal of Parallel and Distributed
Computing, September 1995.

[4] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel
Programming in Split-C. In Proceedings Supercomputing ’93, pages 262–273, Portland, OR, November 1993.

[5] M. J. Feeley, J. S. Chase, V. R. Narasayya, and H. M. Levy. Integrating Coherency and Recovery in Distributed
Systems. In Proceedings of the First Symposium on Operating Systems Design and Implementation, Monterey,
CA, November 1994.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory Multiprocessors. In Proceedings of the Seventeenth International
Symposium on Computer Architecture, pages 15–26, Seattle, WA, May 1990.

[7] R. Gillett. Memory Channel: An Optimized Cluster Interconnect. IEEE Micro, 16(2), February 1996.

[8] K. Jeong and D. Shasha. Persistent Linda 2: A Transactional/Checkpointing Approach to Fault Tolerant Linda. In
Proceedings of the 13th Symposium on Fault-Tolerant Distributed Systems, October 1994.

[9] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Distributed Shared Memory.
In Proceedings of the Nineteenth International Symposium on Computer Architecture, pages 13–21, Gold Coast,
Australia, May 1992.

[10] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the USENIX Winter ’94 Technical Conference, pages
115–131, San Francisco, CA, January 1994.

[11] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut. A Recoverable Distributed Shared Memory
Integrating Coherence and Recoverability. In Proceedings of the Twenty-fifth International Symposium on Fault-
Tolerant Computing, pages 289–298, Los Alamitos, CA, June 1995. INRIA.

[12] L. I. Kontothanassis and M. L. Scott. High Performance Software Coherence for Current and Future Architectures.
Journal of Parallel and Distributed Computing, 29(2):179–195, November 1995.

11

[13] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, C-28(9):241–248, September 1979.

[14] J. Lane. ATM Knits Voice, Data on Any Net. IEEE Spectrum, 31(2):42–45, February 1994.

[15] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam. The
Stanford Dash Multiprocessor. Computer, 25(3):63–79, March 1992.

[16] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems. ACM Transactions on Computer
Systems, 7(4):321–359, November 1989. Originally presented at the Fifth ACM Symposium on Principles of
Distributed Computing, August 1986.

[17] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet Switching for Local Computer Networks. Commu-
nications of the ACM, 19(7):395–403, July 1976.

[18] N. Neves, M. Castro, and P. Guedes. A Checkpoint Protocol for an Entry Consistent Shared Memory System. In
Proceedings of the Thirteenth ACM Symposium on Principles of Distributed Computing, Los Angeles, CA, August
1994.

[19] G. G. Richard III and M. Singhal. Using logging and Asynchronous Checkpointing to Implement Recoverable
Distributed Shared Memory. In Proceedings of the 12th Symposium on Reliable Distributed Systems, Princeton,
NJ, October 1993.

[20] M. Satyanarayanan, H. M. Mashburn, P. Kumar, D. C. Steele, and J. J. Kistler. Lightweight Recoverable Virtual
Memory. ACM Transactions on Computer Systems, 12(1):33–57, Carnegie Mellon University, February 1994.

[21] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory. ACM
SIGARCH Computer Architecture News, 20(1):5–44, March 1992.

[22] A. Z. Spector, J. J. Bloch, D. S. Daniels, R. P. Draves, J. L. Eppinger, S. G. Menees, and D. S. Thompson. The
Camelot Project. CMU-CS-86-166, Computer Science Department, Carnegie-Mellon University, November 1986.

[23] G. Suri, B. Janssens, and W. K. Fuchs. Reduced Overhead Logging for Rollback Recovery in Distributed Shared
Memory. In Proceedings of the 25th International Symposium on Fault-Tolerant Computing, June 1995.

[24] J. E. Veenstra. MINT Tutorial and User Manual. TR 452, Computer Science Department, University of Rochester,
July 1993.

[25] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Simulation of Shared-Memory Multiprocessors.
In Proceedings of the Second International Workshop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS ’94), pages 201–207, Durham, NC, January– February 1994.

A Execution Times

These tables contain the simulated execution times for appbt, em3d, sor, and water. The uniprocessor
times include no DSM logging.

12

appbt Exec. Time (secs.)
System Logging P=4 P=16 P=32
Uniprocessor 5.2691
Cashmere MC None 1.7491 0.6595 0.4921
Cashmere MC Peer 12.8166 3.7409 2.2020
Cashmere MC Disk 441.3210 168.2547 105.7270
Treadmarks MC None 2.3469 2.1290 3.7278
Treadmarks MC Peer 2.8243 2.4602 4.0235
Treadmarks MC Disk 3.3022 3.6996 5.3022
TreadMarks ATM None 6.4400 5.6766 10.4176
TreadMarks ATM Peer 7.4303 6.5257 11.2237
TreadMarks ATM Disk 7.3189 7.0735 11.6816
TreadMarks Eth None 56.2128 67.9023 139.2775
TreadMarks Eth Peer 69.6557 81.2708 151.6853
TreadMarks Eth Disk 56.9925 69.8680 140.4964

em3d Exec. Time (secs.)
Uniprocessor 23.0623
System Logging P=4 P=16 P=32
Cashmere MC None 3.4500 0.4832 0.2165
Cashmere MC Peer 46.3837 5.6227 2.2558
Cashmere MC Disk 463.3579 62.9992 26.9437
TreadMarks MC None 3.9440 0.6467 0.3443
TreadMarks MC Peer 4.2577 0.7270 0.3854
TreadMarks MC Disk 4.1271 0.7027 0.4603
TreadMarks ATM None 15.4463 2.2541 1.1230
TreadMarks ATM Peer 16.1535 2.4203 1.1981
TreadMarks ATM Disk 15.7011 2.3091 1.1528
TreadMark Eth None 118.8242 19.0492 10.8414
TreadMark Eth Peer 126.1312 20.8999 11.7438
TreadMark Eth Disk 118.9804 19.1391 10.8716

sor Exec. Time (secs.)
Uniprocessor 2.2646
System Logging P=4 P=16 P=32
Cashmere MC None 0.5763 0.1520 0.0486
Cashmere MC Peer 5.1025 1.3113 0.1744
Cashmere MC Disk 46.3621 12.2262 2.0423
TreadMarks MC None 0.6199 0.1758 0.0895
TreadMarks MC Peer 0.6229 0.1796 0.0930
TreadMarks MC Disk 0.6826 0.2385 0.1645
TreadMarks ATM None 2.4388 0.6633 0.2450
TreadMarks ATM Peer 2.4452 0.6718 0.2540
TreadMarks ATM Disk 2.4989 0.7232 0.3091
TreadMark Eth None 20.9576 5.9028 2.6204
TreadMark Eth Peer 21.0572 5.9931 2.7554
TreadMark Eth Disk 20.9933 5.9418 2.6452

water Exec. Time (secs.)
Uniprocessor 0.2031
System Logging P=4 P=16 P=32
Cashmere MC None 1.7061 0.5619 0.3292
Cashmere MC Peer 5.7591 2.2856 1.2593
Cashmere MC Disk 723.1721 321.4573 148.1354
TreadMarks MC None 2.8372 2.8658 3.5782
TreadMarks MC Peer 4.0776 4.3544 5.1441
TreadMarks MC Disk 12.9234 20.2351 19.1909
TreadMarks ATM None 5.8282 7.6960 9.7414
TreadMarks ATM Peer 8.5775 12.0173 14.4167
TreadMarks ATM Disk 19.0361 26.2900 25.6712
TreadMark Eth None 56.0234 100.1866 135.7335
TreadMark Eth Peer 85.2908 158.1562 199.9762
TreadMark Eth Disk 84.3400 117.1506 141.3701

13

4

8

12

16

20

24

28

32

4 8 12 16 20 24 28 32

Sp
ee

du
p

Processors - Cashmere Memory Channel

No Fault
Peer
Disk

4

8

12

16

20

24

28

32

4 8 12 16 20 24 28 32

Sp
ee

du
p

Processors - TreadMarks Memory Channel

No Fault
Peer
Disk

4

8

12

16

4 8 12 16 20 24 28 32

Sp
ee

du
p

Processors - TreadMarks ATM

No Fault
Peer
Disk

Figure 6: Sor speedups without fault tolerance, with peer logging and with disk logging.

14

