
Controlled Ascent: Imbuing Statistical MT with Linguistic Knowledge

William D. Lewis and Chris Quirk
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{wilewis,chrisq}@microsoft.com

Abstract
We explore the intersection of rule-based and sta-
tistical approaches in machine translation, with a
particular focus on past and current work here at
Microsoft Research. Until about ten years ago,
the only machine translation systems worth using
were rule-based and linguistically-informed. Along
came statistical approaches, which use large cor-
pora to directly guide translations toward expres-
sions people would actually say. Rather than mak-
ing local decisions when writing and conditioning
rules, goodness of translation was modeled numer-
ically and free parameters were selected to opti-
mize that goodness. This led to huge improvements
in translation quality as more and more data was
consumed. By necessity, the pendulum is swing-
ing towards the inclusion of linguistic features in
MT systems. We describe some of our statistical
and non-statistical attempts to incorporate linguis-
tic insights into machine translation systems, show-
ing what is currently working well, and what isn’t.
We also look at trade-offs in using linguistic knowl-
edge (“rules”) in pre- or post-processing by lan-
guage pair, with a particular eye on the return on
investment as training data increases in size.

1 Introduction

Machine translation has undergone several
paradigm shifts since its original conception.
Early work considered the problem as cryptog-
raphy, imagining that a word replacement cipher
could find the word correspondences between two
languages. Clearly Weaver was decades ahead of
his time in terms of both computational power
and availability of data: only now is this approach
gaining some traction (Knight, 2013)1 At the time,
however, this direction did not appear promising,
and work turned toward rule-based approaches.

Effective translation needs to handle a broad
range of phenomena. Word substitution ciphers
may address lexical selection, but there are many
additional complexities: morphological normal-
ization in the source language, morphological in-
flection in the target language, word order differ-
ences, and sentence structure differences, to name

1For the original 1949 Translation memorandum by
Weaver see (Weaver, 1955).

a few. Many of these could be captured, at least
to a first degree of approximation, by rule-based
approaches. A single rule might capture the fact
that English word order is predominantly SVO
and Japanese word order is predominantly SOV.
While many exceptions exist, such rules handle
many of the largest differences between languages
rather effectively. Therefore, rule-based systems
that did a reasonable job of addressing morpho-
logical and syntactic differences between source
and target dominated the marketplace for decades.

With the broader usage of computers, greater
amounts of electronic data became available to
systems. Example-based machine translation
systems, which learn corpus-specific translations
based on data, began to show substantial improve-
ments in the core problem of lexical selection.
This task was always quite difficult for rule-based
approaches: finding the correct translation in con-
text requires a large amount of knowledge. In
practice, nearby words are effective disambigua-
tors once a large amount of data has been captured.

Phrasal statistical machine translation systems
formalized many of the intuitions in example-
based machine translation approaches, replacing
heuristic selection functions with robust statistical
estimators. Effective search techniques developed
originally for speech recognition were strong start-
ing influences in the complicated realm of MT de-
coding. Finally, large quantities of parallel data
and even larger quantities of monolingual data al-
lowed such phrasal methods to shine even in broad
domain translation.

Translations were still far from perfect, though.
Phrasal systems capture local context and local re-
ordering well, but struggle with global reordering.
Over the past decade, statistical machine transla-
tion has begun to be influenced by linguistic infor-
mation once again. Syntactic models have shown
some of the most compelling gains. Many sys-
tems leverage the syntactic structure of either the



source or the target sentences to make better deci-
sions about reordering and lexical selection.

Our machine translation group has been an ac-
tive participant in many of these latest develop-
ments. The first MSR MT system used deep lin-
guistic features, often with great positive effect.
Inspired by the successes and failures of this sys-
tem, we invested heavily in syntax-based SMT.
However, our current statistical systems are still
linguistically impoverished in comparison.

This paper attempts to document important
lessons learned, highlight current best practices,
and identify promising future directions for im-
proving machine translation. A brief review of
our earlier generation of machine translation tech-
nology sets the stage; this older system remains
relevant given renewed interest in semantics (e.g.,
http://amr.isi.edu/). Next we describe some of
our statistical and non-statistical attempts to in-
corporate linguistic insights into machine transla-
tion systems, showing what is currently working
well, and what is not. We also look at trade-offs
in using linguistic knowledge (“rules”) in pre- or
post-processing by language pair, with a particu-
lar eye on the return on investment as training data
increases in size. Systems built on different ar-
chitectures, particularly those incorporating some
linguistic information, may have different learn-
ing curves on data. The advent of social media
and big data presents new challenges; we review
some effective research in this area. We conclude
by exploring promising directions for improving
translation quality, especially focusing on areas
that stand to benefit from linguistic information.

2 Logical Form Translation

Machine translation research at Microsoft Re-
search began in 1999. Analysis components had
been developed to parse surface sentences into
deep logical forms: predicate-argument structures
that normalized away many morphological and
syntactic differences. This deep representation
was originally intended for information mining
and question answering, allowing facts to rein-
force one another, and simplifying question and
answer matching. These same normalizations
helped make information more consistent across
languages: machine translation was a clear poten-
tial application. Consider the deep representations
of the sentence pairs in Figure 1: many of the sur-
face differences, such as word order and morpho-

Figure 1: Example logical forms for three distinct
inputs, demonstrating how differences in syntactic
structure may be normalized away. In each case,
the logical form is a graph of nodes such as “be”
and “difficult”, and relations such as “Tobj” (typ-
ical object) and “Tsub” (typical subject). In addi-
tion, nodes are marked with binary features called
bits, prefixed with a + symbol in the notation, that
capture unstructured pieces of information such as
tense and number.

logical inflection, are normalized away, potentially
easing the translation process.

Substantial differences remained, however.
Many words and phrases have non-compositional
contextually-influenced translations. Commercial
systems of the time relied on complex, hand-
curated dictionaries to make this mapping. Yet
example-based and statistical systems had already
begun to show promise, especially in the case of
domain-specific translations. Microsoft in par-
ticular had large internal demand for “technical”
translations. With increasing language coverage
and continuing updates to product documentation
and support articles came increasing translation
costs. Producing translations tailored to this do-
main would have been an expensive task for a
rule-based system; a corpus-based approach was
pursed.

This was truly a hybrid system. Source and tar-
get language surface sentences were parsed into
deep logical forms using rule-based analyzers.2

2These parsers were developed with a strong focus on cor-
pora, though. George Heidorn, Karen Jensen, and the NLP
research group developed a toolchain for quickly parsing a
large bank of test sentences and comparing against the last
best result. The improvements and regressions resulting from
a change to the grammar could be manually evaluated, and
the changes refined until the end result. The end result was a



Figure 2: The process of learning translation in-
formation from parallel data in the LF system.

Likewise a rule-based target language generation
component could find a surface realization of a
deep logical form. However, the mapping from
source language logical form fragments to target
language logical form fragments was learned from
parallel data.

2.1 Details of the LF-based system

Training started with a parallel corpus. First, the
source and target language sentences were parsed.
Then the logical forms of the source and target
were aligned (Menezes and Richardson, 2001).
These aligned logical forms were partitioned into
minimal non-compositional units, each consisting
of some non-empty subset of the source and tar-
get language nodes and relations. Much like in
example-based or phrasal systems, both minimal
and composed versions of these units were then
stored as possible translations. A schematic of the
this data flow is presented in Figure 2.

At runtime, an input sentence was first parsed
into a logical form. Units whose source sides
matched the logical form were gathered. A heuris-
tic search found a set of fragments that: (a) cov-
ered every input node at least once, and (b) were
consistent in their translation selections. If some
node or relation was not uncovered, it was copied
from source to target. The resulting target lan-
guage logical form was then fed into a genera-
tion component, which produced the final string.
A schematic diagram is presented in Figure 3.

This overview sweeps many fine details un-
der the rug. Many morphological and syntactic
distinctions were represented as binary features
(“bits”) in the LF; mapping bits was difficult. The

data driven but not statistical approach to parser development.

Figure 3: The process of translating a new sen-
tence in the LF system.

logical form was a graph rather than a tree – in
“John ate and drank”, John is the DSUB (deep sub-
ject) of both eat and drink – which led to com-
plications in transferring structure. Many such
complications were often handled through rules;
these rules grew more complex over time. Corpus-
based approaches efficiently learned many non-
compositional and domain specific issues.

2.2 Results and lessons learned

The system was quite successful at the time. MSR
used human evaluation heavily, performing both
absolute and relative quality evaluations. In the
absolute case, human judges gave each transla-
tion a score between 1 (terrible translation) and
4 (perfect). For relative evaluations, judges were
presented with two translations in randomized or-
der, and were asked whether they preferred system
A, system B, or neither. In its training domain,
the LF-based system was able to show substantial
improvements over rule-based systems that domi-
nated the market at the time.

Much of these gains were due to domain- and
context-sensitivity of the system. Consider the
Spanish verb “activar”. A fair gloss into En-
glish is “activate”, but the most appropriate trans-
lation in context varies (“signal”, “flag”, etc.). The
example-based approach was able to capture those
contexts very effectively, leading to automatic do-
main customization given only translation mem-
ories. This was a huge improvement over rule-
based systems of the time.

During this same era, however, statistical ap-
proaches (Och and Ney, 2004) were showing great
promise. Therefore, we ran a comparison be-
tween the LF-based system and a statistical system



(a) Effecitve LF translation. Note how the LF system is able to translate “se lleveban a cabo” even though that particular
surface form was not present in the training data.

SRC: La tabla muestra además dónde se llevaban a cabo esas tareas en Windows NT versión 4.0.
REF: The table also shows where these tasks were performed in Windows NT version 4.0.

LF: The table shows where, in addition, those tasks were conducted on Windows NT version 4.0.
STAT: The table also shows where llevaban to Windows NT version 4.0.

(b) Parsing errors may degrade translation quality; the parser interprted ‘/’ as coordination.

SRC: La sintaxis del operador / tiene las siguientes partes:
REF: The / operator syntax has these parts:

LF: The operator syntax it has the parts:
STAT: The / operator syntax has these parts:

(c) Graph-like structures for situations such as coordination are difficult to transfer (see the parenthesized group in particular);
selecting the correct form at generation time is difficult in the absence of a target language model.

SRC: Debe ser una consulta de selección (no una consulta de tabla de referencias cruzadas ni una consulta de acción).
REF: Must be a select query (not a crosstab query or action query).

LF: You must not be a select query neither not a query in table in cross-references nor not an action query.
STAT: Must be a select query (not a crosstab query or an action query).

Figure 4: Example source Spanish sentences, English reference translations of those sentences, transla-
tions from the LF system, and translations from a statistical translation system without linguistic features.

without linguistic information. Both systems were
trained and tuned on the same data, and translated
the same unseen test set. The linguistic system
had the additional knowledge sources at its dis-
posal: morphological, lexical, syntactic, and se-
mantic information. Regardless, the systems per-
formed nearly equally well on average. Each had
distinct strengths and weaknesses, though.

Often the success or failure of the LF-system
was tied to the accuracy of its deep analysis. When
these representations were accurate, they could
lead to effective generalizations and better trans-
lations of rare phenomena. Since surface words
were lemmatized and syntactic differences nor-
malized, unseen surface forms could still be trans-
lated as long as their lemma was known (see Fig-
ure 4(a)). Yet mistakes in identifying the correct
logical form could lead to major translation errors,
as in Figure 4(b).

Likewise the lack of statistics in the com-
ponents could cause problems. Statistical ap-
proaches found great benefits from the target lan-
guage model. Using a rule-based generation com-
ponent made it difficult to leverage a target lan-
guage model. Often, even if a particular transla-
tion was presented tens, hundreds, or thousands
of times in the data, the LF-based system could
not produce it because the rule-based generation
component would not propose the common sur-
face form, as in Figure 4(c).

We drew several lessons from this system when
developing our next generation of machine trans-
lation systems. It was clear to us that syntactic rep-
resentations can help translation, especially in re-
ordering and lexical selection: appropriate repre-
sentations allows better generalization. However,
over-generalization can lead to translation error, as
can parsing errors.

3 The Next Generation MSR MT
Systems

Research in machine translation at Microsoft has
been strongly influenced by this prior experience
with the LF system. First we must notice that
there is a huge space of possible translations. Con-
sider human reference translations: unless tied to
a specific domain or area, they seldom agree com-
pletely on lexical selection and word order. If our
system is to produce reasonable output, it should
consider a broad range of translation options, pre-
ferring outputs most similar to language used by
humans. Why do we say “order of magnitude”
rather than “magnitude order”, or “master of cer-
emonies” rather than “ceremonies master”? Many
choices in language are fundamentally arbitrary,
but we need to conform to those arbitrary deci-
sions if we are to produce fluent and understand-
able output. Second, while there is leverage to be
gained from deep features, seldom do we have a
component that identifies these features with per-



fect accuracy. In practice it seems that the error
rate increases as the depth of component analy-
sis increases. Finally, we need a representation
of “good translations” that is understandable by a
computer. When forced to choose between two
translations, the system needs to make a choice:
an ordering.

Therefore, our data-driven systems crucially
rely on several components. First, we must effi-
ciently search a broad range of translations. Sec-
ond, we must rank according to both our linguistic
intuitions and the patterns that emerge from data.

We use a number of different systems based
on the availability of linguistic resources. So-
called phrasal statistic machine translation sys-
tems, which model translations using no more than
sequences of contiguous words, perform surpris-
ingly well and require nothing but tokenization in
both languages. In language pairs for which we
have a source language parser, a parse of the in-
put sentence is used to guide reordering and help
select relevant non-contiguous units; this is the
treelet system (Quirk and Menezes, 2006). Re-
gardless of which system we use, however, tar-
get language models score the fluency of the out-
put, and have a huge positive impact on translation
quality.

We are interested in means of incorporating lin-
guistic intuition deeper into such a system. As in
the case of the treelet system, this may define the
broad structure of the system. However, there are
also more accessible ways of influencing existing
systems. For instance, linguists may author fea-
tures that identify promising or problematic trans-
lations. We describe one such attempt in the fol-
lowing system.

3.1 Like and DontLike

Even in our linguistically-informed treelet sys-
tem (Quirk and Menezes, 2006), which uses syn-
tax in its translation system, many of the individ-
ual mappings are clearly bad, at least to a human.
When working with linguistic experts, one gut re-
sponse is to write rules that inspect the transla-
tion mappings and discard those translation map-
pings that appear dangerous. Perhaps they seem
to delete a verb, perhaps they use a speculative re-
ordering rule – something makes them look bad to
a linguist. However, even if we are successful in
removing a poor translation choice, the remaining
possibilities may be even worse – or perhaps no

translation whatsoever remains.

Instead, we can soften this notion. Imagine that
a linguist is able to say that this mapping is not
preferred because of some property. Likewise, a
skilled linguist might be able to identify mappings
that look particularly promising, and prefer those
mappings to others; see Figure 5 for an example.

This begs the question: how much should we
weight such influence? Our answer is a corpus
driven one. Each of these linguistic preferences
should be noted, and the weight of these prefer-
ences should be tuned with all others to optimize
the goodness of translation. Already our statisti-
cal system has a number of signals that attempt to
gauge translation quality: the translation models
attempt to capture fidelity of translation; language
models focus on fluency; etc. We use techniques
such as MERT (Och, 2003) and PRO (Hopkins
and May, 2011) to tune the relative weight of these
signals. Why not tune indicators from linguists in
the same manner?

When our linguists mark a mapping as +Like or
+DontLike, we track that throughout the search.
Each final translation incorporates a count of Like
mappings and a count of DontLike mappings, just
as it accumulates a language model score, trans-
lation model scores, word penalties, and so on.
These weights are tuned to optimize some approx-
imate evaluation metric. In Figure 6, the weight
of Like and DontLike is shown for a number of
systems, demonstrating how optimization may be
used to tune the effect of hand-written rules. Re-
moving these features degrades the performance
of an MT system by at least 0.5 BLEU points,
though the degradations are often even more visi-
ble to humans.

This mechanism has been used to capture a
number of effects in translation commonly missed
by statistical methods. It is crucial yet challenging
to maintain negation during translation, especially
in language pairs where negation is expressed dif-
ferently: some languages use a free morpheme
(Chinese tends to have a separate word), others
use a bound morpheme (English may use pre-
fixes), others require two separated morphemes
(French has negation agreement); getting any of
these wrong can lead to poor translations. Rules
that look at potentially distant words can help
screen away negation errors. Likewise rules can
help ensure that meaning is preserved, by prevent-
ing main verbs mapping to punctuation, or screen-



// don’t allow verb to be lost
if (forany(NodeList(rMapping),[Cat=="Verb" & ˆAux(SynNode(InputNode))])) {

list {segrec} bad_target=sublist(keeplist,
[forall(NodeList,[pure_punk(Lemma) | coord_conjunction(foreign_language,Lemma)])]);

if (bad_target) {
segrec rec;
foreach (rec; bad_target) {

+DontLike(rec);
}

}
}

Figure 5: An example rule for marking mappings as “DontLike”. In this case, the rule searches for
source verbs that are not auxiliaries and that are translated into lemmas or punctuation. Such translations
are marked as DontLike.

Figure 6: A plot of the weights +Like map-
ping count and +DontLike mapping count weights
across language pairs. Generally Like is assigned
a positive weight (sometimes quite positive), and
DontLike is assigned a negative weight. In our
system, weights are L1 normalized (the sum of the
absolute values of the weights is equal to one), so
feature weights greater than 0.1 are very influen-
tial.

ing out mappings that seem unlikely, especially
when those mappings involve unusual tokens.

These two features are a rather coarse means of
introducing linguistic feedback. As our parame-
ter estimation techniques scale to larger features
more effectively, we are considering using finer-
grained feedback from linguists to say not only
that they like or don’t like a particular mapping,
but why. The relative impact of each type of feed-
back can be weighted: perhaps it is critical to pre-
serve verbs, but not so important to handle defi-
niteness. Given recent successes in scaling param-
eter estimation to larger and larger values, this area
shows great promise.

3.2 Linguistic component accuracy

Another crucial issue is the quality of the linguistic
components. We would certainly hope that better
quality of linguistic analysis should lead to bet-
ter quality translations. Indeed, in certain circum-
stances it appears that this correlation holds.

In the case of the treelet system, we hope to de-
rive benefit from linguistic features via a depen-
dency tree. To investigate the impact of the parse
quality, we can degrade a Treebank-trained parser
by limiting the amount of training data made avail-
able. As this decreases, the parser quality should
degrade. If we hold all other information in the
MT system fixed (parallel and monolingual train-
ing data, training regimen, etc.), then all differ-
ences should be due to the changes in parse qual-
ity. Table 1 presents the results of an experiment
of this form (Quirk and Corston-Oliver, 2006). As
the amount of training data increase, we see a sub-
stantial increase in parse quality.

Another way to mitigate parser error is to main-
tain syntactic ambiguity through the translation
process. For syntax directed translation systems,
this can be achieved by translating forests rather
than single trees, ideally including the score of



English- English-
System German Japanese
Phrasal 31.7 32.9
Right branching 31.4 28.0
250 instances 32.8 34.1
2,500 instances 33.0 34.6
25,000 instances 33.7 35.7
39,082 instances 33.8 36.0

Table 1: Comparison of BLEU scores as linguistic
information is varied. A phrasal system provides
a baseline free of linguistic information. Next we
consider a treelet system with a very weak base-
line: a right branching tree is always proposed.
This baseline is much worse than a simple phrasal
system. The final four rows evaluate the impact
of a parser trained on increasing amounts of sen-
tences from the English Penn Treebank. Even with
a tiny amount of training data, the system gets
some benefit from syntactic information, and the
returns appear to increase with more training data.

parse as part of the translation derivation. In un-
published results, we found that this made a sub-
stantial improvement in translation quality; the
effect was corroborated in other syntax directed
translation systems (Mi et al., 2008). Alterna-
tively, allowing a neighborhood of trees similar
to some predicted tree can handle ambiguity even
when the original parser does not maintain a for-
est. This also allows translation to handle phenom-
ena that are systematically mis-parsed, as well as
cases where the parser specification is not ideal
for the translation task. Recent work in this area
has show substantial improvements (Zhang et al.,
2011).

4 Evaluation

4.1 Fact or Fiction: BLEU is Biased Against
Rule-Based or Linguistically-Informed
Systems?

It has generally been accepted as common wis-
dom that BLEU favors statistical MT systems and
disfavors those that are linguistically informed or
rule-based. Surprisingly, the literature on the topic
is rather sparse, with some notable exceptions
(Riezler and Maxwell, 2005; Farrús et al., 2012;
Carpuat and Simard, 2012). We too have made
this assumption, and had a few years ago coined
the term treelet penalty to indicate the degree by

which BLEU favored our phrasal systems over our
treelet systems. We had noted on a few occa-
sions that treelet systems had lower BLEU scores
than our phrasal systems over the same data (the
“penalty”), but when compared against one an-
other in human evaluation, there was little dif-
ference, or often, treelet was favored. A notable
case was on German-English, where we noted a
three-point difference in BLEU between equiva-
lent treelet and phrasal systems (favoring phrasal),
and a ship/no-ship decision was dependent on the
resulting human eval. The general consensus of
the team was that the phrasal system was markedly
better, based on the BLEU result, and treelet sys-
tem should be pulled. However, after a human eval
was conducted, we discovered that the treelet sys-
tem was significantly better than the phrasal. From
that point forward, we talked about the treelet
penalty for German being three points, a “fact”
that has lived in the lore of our team ever since.

What was really missing, however, was sys-
tematic experimental evidence showing the differ-
ences between treelet and phrasal systems. We
talked about the treelet penalty as a given, but
there was slow rumble of counter evidence sug-
gesting that maybe the assumptions behind the
“penalty” were actually unfounded, or minimally,
misinformed.

One piece of evidence was from experiments
done by Xiaodong He and an intern that showed an
interaction in quality differences between treelet
and phrasal gated by the length of the sentence.
Xiaodong was able to show that phrasal systems
tended to do better on longer sentences and treelet
on shorter: for Spanish-English, he showed a dif-
ference in BLEU of 1.29 on “short” content on a
general domain test set, and 1.77 for short content
on newswire content (the NIST08 test set). The
BLEU difference diminished as the length of the
content increased, until there was very little dif-
ference (less than 1/2 point) for longer content.3

An interaction between decoder type and sentence
length means that there might also be an interac-

3These results were not published, but were provided to
the authors in a personal conversation with Xiaodong. In a
related paper (He et al., 2008), He and colleagues showed
significant improvements in BLEU on a system combination
system, but no diffs in human eval. Upon analysis, the re-
searchers were able to show that the biggest benefit to BLEU
was in short content, but the same preference was not exhib-
ited on the same content by the human evaluators. In other
words, the improvements observed in the short content that
BLEU favored had little impact on the overall impressions of
the human evaluators.



tion between decoder type and test set, especially
if particular test sets contain a lot of long-ish sen-
tences, e.g., WMT and Europarl). To the contrary,
most IT text, which is quite common in Microsoft-
specific localization content, tends to be shorter.

The other was based on general impressions
between treelet and phrasal systems. Because
treelet systems are informed by dependency parses
built over the source sentences (a parse can help
constrain a search space of possible translations,
and prune undesirable mappings e.g., constrain to
nominal types when the source is a noun), and,
as noted earlier, because the parses allow linguists
to pre- or post-process content based on observa-
tions in the parse, we have tended to see more
“fluent” output in treelet than phrasal. However,
as the sizes of data have grown steadily over the
years, the quality of translations in our phrasal sys-
tems have grown proportionally with the increase
in data. The question arose: is there also an in-
teraction between the size of our training data and
decoder type? In effect, does the quality of phrasal
systems catch-up to the quality of treelet systems
when trained over very large sets of data?

4.2 Treelet Penalty Experiments

We ran a set of experiments to measure the dif-
ferences between treelet and phrasal systems over
varying sizes of data, in order to measure the size
of the treelet penalty and its interaction with train-
ing data size. Our assumption was that a such
a penalty existed, and that the penalty decreased
as training data size increased, perhaps converg-
ing on zero for very large systems. Likewise,
we wanted to test the interaction between decoder
type and sentence length.

We chose two languages to run these exper-
iments on, Spanish and German, which we ran
in both directions, that is, English-to-target (EX)
and target-to-English (XE). We chose Spanish and
German for several reasons, first among them be-
ing that we have high-quality parsers for both lan-
guages, as we do for English. Further, we have
done significant development work on pre- and
post-processing for both languages over the past
several years. Both of these facts combined meant
that the treelet systems stood a real chance of be-
ing strong contenders in the experiments against
the equivalent phrasal systems. Further, although
the languages are typologically close neighbors
of English, the word order differences and high

distortion rates from English to or from German
might favor a parser-based approach.

We had four baseline systems that were built
over very large sets of data. For Spanish � En-
glish, the baseline systems were trained on over
22M sentence pairs; for German � English, the
baseline systems were trained on over 36M sen-
tence pairs.4 We then created five samples of the
baseline data for each language pair, consisting of
100K, 500K, 1M, 2M, and 5M sentence pairs (the
same samples were used for both EX and XE for
the respective pairs). We then trained both treelet
and phrasal systems in both directions (EX and
XE) over each sample of data. Language mod-
els were trained on all systems over the target-side
data.

For dev data, we used development data from
the 2010 WMT competition (Callison-Burch et al.,
2010), and we used MERT (Och, 2003) to tune
each system. We tested each system against three
different test sets: two were from the WMT com-
petitions of 2009 and 2010, and the other was
one locally constructed from 5000 sentences of
content translated by users of our production ser-
vice (http://bing.com/translator), which we subse-
quently had manually translated into the target lan-
guages. The former two test sets are somewhat
news focused; the latter is a random sample of
miscellaneous translations, and is more generally
focused.

The results of the experiments are shown in Ta-
bles 2 and 3, with the relevant graphs in Fig-
ures 9 - 10. The reader will note that in all cases—
Spanish and German, EX and XE—the treelet sys-
tems scored higher than the related phrasal sys-
tems. This result surprised us, since we thought
that treelet systems would score less than phrasal
systems, especially at lower data sizes. That said,
in the Spanish systems, there is a clear conver-
gence as data sizes increased: on the WMT09
test set for English-Spanish, for instance, the diff
starts at 1.46 BLEU (treelet minus phrasal) for
the 100K sentence system, with a steady conver-
gence to near zero (0.12) for the full-data baseline.
The other test sets show the same steady conver-
gence, although they do not approach zero quite
as closely. (One might ask whether they would
converge to zero with more training data.) The

4A sizable portion of the data for each were scraped from
the Web, but there were other sources used as well, such as
Europarl, data from TAUS, MS internal localization data, UN
content, WMT news content, etc.



other direction is even more dramatic: on all test
sets the diffs converge on negative values, indi-
cating that phrasal systems surpass the quality of
the associated treelet systems at the largest data
points. This is a nice result since it shows, at least
in the case of Spanish, that there is an interac-
tion between decoder type and the amount of data:
treelet clearly does better at lower data amounts,
but phrasal catches up with, and can even pass, the
quality of equivalent treelet given sufficient data.
With larger data, phrasal may, in fact, be favored
over treelet.

The German systems do not tell quite as nice a
story. While it is still true that treelet has higher
BLEU scores than phrasal throughout, and that
systems trained using both decoders improve in
quality as more data is added (and the trajectory
is similar), there is no observable convergence as
data size increases. For German, then, we can only
say that more data helps either decoder, but we
cannot say that phrasal benefits from larger data
more than treelet. Why the difference between
Spanish and German? We suspect there may be an
interaction with the parsers, in that two separate
teams developed them. Thus, it could be the fact
that the strength of the respective parsers affected
how “linguistically informed” particular systems
are. There could also be an interaction with the
number of word types vs. tokens in the German
data—given German’s rampant compounding—
which increases data sparsity, dampening effects
until much larger amounts of data are used. We
are still in the process of running additional ex-
periments to see if there are observable effects in
German with much larger data sizes, or at least,
to determine why German does not show the same
effects as Spanish.

Figure 7: English-Spanish BLEU graph across dif-
ferent data sizes, Treelet vs. Phrasal.

Since human evaluation is the gold standard we

Figure 8: Spanish-English BLEU graph across dif-
ferent data sizes, Treelet vs. Phrasal.

Figure 9: English-German BLEU graph across
different data sizes, Treelet vs. Phrasal.

Figure 10: German-English BLEU graph across
different data sizes, Treelet vs. Phrasal.



EX Treelet Phrasal Diff - T-P
Req Log WMT 2009 WMT 2010 Req Log WMT 2009 WMT 2010 Req Log WMT 2009 WMT 2010

100K 26.49 21.52 23.69 23.10 20.06 21.19 3.39 1.46 2.50
500K 28.61 22.85 25.20 25.64 21.47 22.86 2.97 1.38 2.34
1M 30.52 24.82 27.74 28.36 24.17 26.28 2.16 0.65 1.46
2M 31.61 25.59 28.54 29.48 24.76 26.91 2.13 0.83 1.63
5M 32.86 26.37 30.14 30.89 25.84 28.56 1.97 0.53 1.58
22M 33.80 27.01 30.61 32.55 26.89 30.12 1.25 0.12 0.49

XE
100K 27.72 21.76 23.21 26.18 20.80 21.78 1.54 0.96 1.43
500K 29.89 22.86 24.89 28.16 22.15 23.44 1.73 0.71 1.45
1M 32.18 24.76 27.14 31.32 24.32 26.02 0.86 0.44 1.12
2M 33.31 25.44 28.09 32.77 25.26 27.38 0.54 0.18 0.71
5M 34.47 26.17 29.10 34.18 26.10 28.74 0.29 0.07 0.36
22M 35.88 27.16 30.20 36.21 27.26 30.48 -0.33 -0.10 -0.28

Table 2: BLEU Score results for the Spanish Treelet Penalty experiments

EX Treelet Phrasal Diff (T-P)
Req Log WMT 2009 WMT 2010 Req Log WMT 2009 WMT 2010 Req Log WMT 2009 WMT 2010

100K 18.98 11.13 12.19 18.22 10.81 11.53 0.76 0.32 0.66
500K 22.13 13.18 14.33 21.09 12.74 13.68 1.04 0.44 0.65
1M 23.23 13.98 15.12 21.89 13.51 14.27 1.34 0.47 0.85
2M 23.72 14.77 15.87 23.11 14.04 15.03 0.61 0.73 0.84
5M 24.82 15.31 16.58 24.35 15.00 16.01 0.47 0.31 0.57
36M 26.72 16.72 18.20 25.83 16.33 17.18 0.89 0.39 1.02

XE
100K 27.42 15.91 16.37 26.75 15.83 16.28 0.67 0.08 0.09
500K 30.98 18.25 19.16 29.80 18.11 19.09 1.18 0.14 0.07
1M 32.30 19.16 20.40 31.26 19.06 20.18 1.04 0.10 0.22
2M 33.40 19.95 21.48 32.25 19.65 21.06 1.15 0.30 0.42
5M 34.86 21.14 22.55 33.91 20.67 22.13 0.95 0.47 0.42
36M 37.31 22.72 24.97 36.08 21.99 23.85 1.23 0.73 1.12

Table 3: BLEU Score results for the German Treelet Penalty experiments



seek to achieve with our quality measures, and
since BLEU is only weakly correlated with hu-
man eval (Coughlin, 2003), we ran human evals
against both the English-Spanish and English-
German output. Performing human evaluation
gives us two additional perspectives on the data:
(1) do humans perceive a qualitative difference be-
tween treelet and phrasal, as we see with BLEU,
and (2), if the difference is perceptible, what is its
magnitude relative to BLEU. If the magnitude of
the difference is much larger than that of BLEU,
and especially does not show convergence in the
Spanish cases, then we still have a strong case
for the Treelet Penalty. In fact, if human evalu-
ators perceive a difference Spanish cases on the
full data systems, the case where we show con-
vergence, then the resulting differences could be
described as the penalty value.

Unfortunately, our human evaluation data on
the Treelet Penalty effect was inconclusive. Our
evaluations show a strong correlation between
BLEU and human evaluation, something that is at-
tested to in the literature (e.g., , the first paper on
BLEU (Papineni et al., 2002), and a deeper explo-
ration in (Coughlin, 2003)). However, the effect
we were looking for – that is, a difference between
human evaluations across decoders – was not evi-
dent. In fact, the human evaluations followed the
differences we saw in BLEU between the two de-
coders very closely. Figure 11 shows data points
for each data size for each decoder, plotting BLEU
against human evaluation. When we fit a regres-
sion line against the data points for each decoder,
we see complete overlap.5

Figure 11: Scatterplot showing Treelet vs Phrasal
systems across different data sizes, plotting BLEU
(Y) against Human Eval scores (X)

5Clearly, the sample is very small, so the regression line
should be taken with a grain of salt. We would need a lot
more data to be able to draw any strong conclusions.

In summary, we show a strong effect of treelet
systems performing better than phrasal systems
trained on the same data. That difference, how-
ever, generally diminishes as data sizes increase,
and in the case of Spanish (both directions), there
is a convergence in very large data sizes. These
results are not completely surprising, but still are a
nice systematic confirmation that linguistically in-
formed systems really do better in lower-data en-
vironments. Without enough data, statistical sys-
tems cannot learn the generalizations that might
otherwise be provided by a parse, or codified in
rules. What we failed to show, at least with Span-
ish and German, is a confirmation of the existence
of the Treelet Penalty. Given the small number of
samples, a larger study which includes many more
language pairs and data sizes, may once and for all
confirm the Penalty. Thus far, human evaluations
do not show qualitative differences between the
two decoders—at least, not divergent from BLEU.

4.3 Interaction Between Decoder Type and
Sentence Length

When comparing the differences between de-
coders, another area to pay special attention to is
systematic differences in behavior as input content
is varied. For example, we may expect a phrasal
decoder to do better on noisier, less grammatical
data than a parser-informed decoder, since in the
latter case the parser may fail to parse; the failure
could ripple through subsequent processes, and
thus lessen the quality of the output. Likewise, a
parser-informed decoder may do better on content
that is short and easy to parse. If we were to do a
coarse-grained separation of data into length buck-
ets, making the very gross assumption that short
equals easy-to-parse and long not, then we may
see some qualitative differences between the de-
coders across these buckets.

To see length-based effects across decoder
types, we designed a set of experiments on Ger-
man and Spanish in both directions, where we sep-
arated the WMT 2010 test data into length-based
word-count buckets: 0-10, 10-20, 20-30, 30-40,
and 40+ words. We then calculated the BLEU
scores on each of these buckets, the results for
which are shown in Figures 12.

Treelet does better than phrasal in almost all
conditions (except one). That is not surprising,
given the results we observed in Section 4.2. What
is interesting is to see how much stronger treelet



Figure 12: Treelet-Phrasal BLEU differences by
bucket across language pair

performs on short content than phrasal: treelet
does the best on the shortest content, with quality
dropping off anywhere between 10-30 words.

One conclusion that can be drawn from these
data is that treelet performs best on short con-
tent precisely because the parser can easily parse
the content, and the parse is effective in inform-
ing subsequent processes. The most sustained
benefit is observable in English-German, with a
bump up at 10-20, and a slow tapering off there-
after. Processing the structural divergence be-
tween the two languages, especially when it comes
to word order, may benefit more from a parse. In
other words, the parser can help inform alignment
where there are long-distance distortion effects; a
phrasal system’s view is too local to catch them.
However, at longer sentence sizes, the absence
of good parses lessen the treelet advantage. In
fact, in English-German (and in Spanish-English)
at 40+, there is no observable benefit of treelet
over phrasal.6

5 The Data Gap

All Statistical Machine Translation work relies on
data, and the manipulation of the data as a pre-
process can often have significant effects down-
stream. “Data munging”, as we like to call it, is
every team’s “secret sauce”, something that can
often lead to multi-point differences in BLEU.
For most teams, the heuristics that are applied are
fairly ad hoc, and highly dependent on the kind of
data being consumed. Since data sources are of-
ten quite noisy, e.g., the Web, noise reduction is a
key component of many of the heuristics. Here is

6The bump up at 40+ on English-Spanish and German-
English is inexplicable, but may be attributable to the diffi-
culty that either decoder has in processing such long content.
There is also likely an interaction with statistical noise cause
by such small sample sizes.

a list of common heuristics applied to data. Some
of these are drawn from our own pre-processing,
some are mentioned explicitly in other literature,
in particular, (Denkowski et al., 2012).

• Remove lines containing escape characters,
invalid Unicode, and other non-linguistic
noise.

• Remove content that where the ratio of cer-
tain content passes some threshold, e.g., al-
phabetic/numeric ratio, script ratio (percent-
age of characters in wrong form passes some
threshold, triggering removal).

• Normalize space, hyphens, quotes, etc. to
standard forms.

• Normalize Unicode characters to canonical
forms, e.g., Form C, Form KC.

• In parallel data, measure the degree of ratio
of length imbalance (e.g., character or word
count) between source and target, as a test for
misalignments. Remove sentence pairs that
pass some threshold.

• Remove content where character count for
any token, or token count across a sentence,
exceeds some threshold (the assumption be-
ing that really long content is of little benefit
due to complications it causes in downstream
processing).

The point of data cleaning heuristics is to in-
crease the value of training data. Each data point
that is noisy increases the chance of learning
something that could be distracting or harmful.
Likewise, each data point that is cleaned reduces
the level of data sparsity (e.g., through normaliza-
tions or substitutions) and improves the chances
that the models will be more robust. Although
it has been shown that increasing the amount of
training data for SMT improves results (Brants et
al., 2007), not all data is beneficial, and clean data
is best of all.

Crucially, most data munging is done through
heuristics, or rules, although thresholds or con-
straints can be tuned by data. A more sophis-
ticated example of data cleaning is described in
(Denkowski et al., 2012) where the authors used
machine learning methods for measuring quality
estimation to select the “best” portions of a cor-
pus. So, rather than training their SMT on an en-
tire corpus, they trained an estimator that selected



the best portions, and used only those. In their en-
try in the 2012 WMT competition, they used only
60% of the English-French Gigaword corpus7 and
came in first in the shared translation task for the
pair.

Another important aspect of data as it relates to
SMT is task-dependence: what domain or genre
of data will an SMT engine be applied to? For
instance, will an SMT engine be used to trans-
late IT content, news content, subtitles, or Eu-
roparl proceedings? If the engine itself is trained
on data that is dissimilar to the desired goal, then
results may be less than satisfying. This is a com-
mon problem in the field, and a cottage industry
has been built around customization and domain-
adaptation, e.g., (Moore and Lewis, 2010; Axelrod
et al., 2011; Wang et al., 2012). In general, the so-
lution is to adapt an SMT engine to the desired
domain using a set of seed data in that domain.

A more difficult problem is when there is very
little parallel data in the desired domain, which is
a problem we will look at in the next section.

5.1 Preprocessing Data to Make it Match

A little over a year ago, Facebook activated a
translation feature in their service, which directly
called Bing Translator. This feature has allowed
users to translate pages or posts not in their native
language with a See Translation option. An exam-
ple is shown in Figure 13.

The real problem with translating “FB-speak”,
or content from virtually any kind of social media,
is the paucity of parallel data in the domain. This
flies in the face of the usual way problems are tack-
led in SMT, that is, locate (lots of) relevant parallel
data, and then train up a decoder. Outside of a few
slang dictionaries, there is almost no FB-like par-
allel content available.

Given the relatively formal nature of the text
that most of our engines are trained on, the mis-
match between FB content and our translation en-
gines often led to very poor translations. Yet,
given the absence of in-domain parallel data, it
was not possible for us to train-up FB-specific
SMT engines. We realized that our only option
was to somehow manipulate the input to make it
look more like the content we trained our engines
on. Effectively, if we treated “FB-speak” as a di-
alect of the source language, we could use distri-

7The English-French Gigaword corpus is described in
(Callison-Burch et al., 2009)

Regex Output
frnd[sz] friends
plz+ please
yess* yes
be?c[uo][sz] because
nuff enough
wo?u?lda would have
srr+y sorry

Table 5: Some example regexes to “fix” FaceBook
content

butional queues of dialect-specific content to find
the counterparts in the majority dialect.

Table 4 gives some examples of FB content on
the left, and the more formal representation of the
same on the right. The reader will note some sys-
tematic characteristics of the FB content as com-
pared to the formal content (see also (Hassan and
Menezes, 2013)). Given the absence of parallel
training data, we could “correct” the FB content
to make it look more like English, and then trans-
late the “corrected” English through our engines.

Our first inclination was to examine the logs of
the most frequent words being translated by FB
users and use string substitutions or regexes (regu-
lar expressions) to effect repairs. We arrived very
quickly at a large set of simple repairs like those
shown in Table 5. We were able to achieve greater
than 97% precision using a large table of substitu-
tions for the most common translations (against a
held-out set of FB content). However, there were
two problems with the approach: (1) recall was
relatively low, at 52.03%, and (2) the solution was
not easily scalable to additional languages and sce-
narios.

To address these two deficiencies, we sought a
more data-driven approach. But we had to be cre-
ative since our standard “hammer” of parallel data
did not exist. Our intuition was that there were
distributional regularities in the FB content that
could help discover a mapping for a given target
word, e.g., the distribution of plzzz in the FB con-
tent would allow us to discover that it distributes
similarly to please in our non-FB content. Hany
Hassan developed a TextCorrector tool that is, as
he put it (Hassan and Menezes, 2013), “based on
constructing a lattice from possible normalization
candidates and finding the best normalization se-
quence according to an n-gram language model
using a Viterbi decoder”, where he developed an



Figure 13: Two Facebook posts: the first translated, the second showing the See Translation option

FB Speak English Translation Comment
goooood morniiing good morning Extended characters for emphasis or dramatic effect
wuz up bro What’s up brother “Phonetic” spelling to reflect local dialect or usage
cm to c my luv Come to see my love Remove vowels in common words, sound-alike sequences
4get, 2morrow forget, tomorrow Sound-alike number substitution
r u 4 real? Are you for real? Sound-alike letter and number substitutions
LMS Like my status Single ‘word’ abbreviations for
IDK I don’t know multi-word expressions
ROFL Rolling on the floor laughing

Table 4: FB Speak with English references

“unsupervised approach to learn the normalization
candidates from unlabeled text data.” He then used
a Random Walk strategy to walk a contextual sim-
ilarity graph. The two principal benefits of this
approach is that it did not require parallel train-
ing data—two large monolingual corpora are re-
quired, one for the “noisy” data (i.e., FB content)
and one for the clean data (i.e., our large supply
of language model training data)—nor did it re-
quire labeled data (i.e., , the algorithm is unsu-
pervised). After several iterations over very large
corpora (tens of millions of sentences) he arrived
at a solution that had comparable precision to the
regex method but had much higher recall. The best
iteration achieved 96.51% precision (the regex ap-
proach achieve 97.07% precision) and 72.38% re-
call (regex: 52.03%).8 Crucially, as the size of
the data increases, the TextCorrector continues to
show improvement.

The end result was a much better User Expe-
rience for FB users. Rather than badly mangled
translations, or worse, no translations at all, users
get translations generated by our standard, very
large statistical engines (for English source, no-
tably, our treelet engines). An example English
source string is shown in Table 6, with transla-

8For a complete description of TextCorrector, please
see (Hassan and Menezes, 2013).

tions shown for both the corrected and uncorrected
source.

6 Conclusions and Future Directions

A crucial lesson from the work on the FB correc-
tions described in Section 5.1 is its analog to Ma-
chine Learning as a whole: rule-based approaches
often achieve very high precision, but often at the
sacrifice of recall. The same is true in Machine
Translation: rule-based MT is often more accurate
when it was accurate, resulting in more precise and
grammatical translations. However, it tends to be
somewhat brittle and does not do as well on cases
not explicitly coded for. SMT, on the other hand,
tends to be more malleable and adaptable, but of-
ten less precise. Tapping rule-based approaches
in a statistical framework can really give us the
best of both worlds, giving us higher precision and
higher recall.

Finding an appropriate mix is difficult, though.
As in the case of parsing, we can see how errors
can substantially degrade translation quality, espe-
cially if we only consider the single best analysis.
By making our analysis components as robust as
possible, quantifying our degree of certainty with
scoring mechanisms, and preserving ambiguity of
the analysis, we can achieve a better return on in-



Language Unrepaired Repaired
Original English i’l do cuz ma parnts r ma lyf I’ll do because my parents are my life
To Italian i ’ l fare cuz ma parnts r ma lyf lo far perch i miei genitori sono la mia vita
To German i ’ l tun Cuz Ma Parnts R Ma lyf Ich werde tun, weil meine Eltern mein Leben sind
To Spanish traer hacer cuz ma parnts r ma lyf voy a hacer porque mis padres son mi vida

Table 6: One English FB sentence with and without normalizations, translated to various languages

vestment. Making this linguistic information be
included softly as features is a powerful way of
surfacing linguistic generalizations to the system
while not forcing its hand.

Some of the greatest successes in mixing lin-
guistic and statistical methods have been in syn-
tax. There is much ground to cover still. Mor-
phology is integrated weakly into current SMT
systems, mostly as broad features (Jeong et al.,
2010) though sometimes with more sophistica-
tion (Chahuneau et al., 2013). Better integration of
morphological features could have great effect, es-
pecially in agglutinative languages such as Finnish
and Turkish.

Deeper models of semantics present a rich chal-
lenge to the field. As we proceed into deeper mod-
els, picking the correct representation is a signifi-
cant issue. Humans can generally agree on words,
mostly on morphology, and somewhat on syntax.
But semantics touches on issues of meaning repre-
sentation: how should we best represent semantic
information? Should we attempt to faithfully rep-
resent all the information in the source language,
or gather only a simple model that suffices to dis-
ambiguate information? Others are focusing on
lexical semantics using continuous space repre-
sentations (Mikolov et al., 2013), a softer means
of representing meaning.

Regardless of the details, one point is very clear:
future work in MT will require dealing with data.
Systems, whether statistical or rule-based, will
need to work with and learn from the increas-
ing volumes of information available to comput-
ers. Effective hybrid systems will be no exception
– tempering the keen insights of experts with the
noisy wisdom of big data from the crowd holds
great promise.
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