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Abstract 

Interactive clustering refers to situations in which a human 
labeler is willing to assist a learning algorithm in 
automatically clustering items. We present a related but 
somewhat different task, assisted clustering, in which a user 
creates explicit groups of items from a large set and wants 
suggestions on what items to add to each group. While the 
traditional approach to interactive clustering has been to use 
metric learning to induce a distance metric, our situation 
seems equally amenable to classification. Using clusterings 
of documents from human subjects, we found that one or 
the other method proved to be superior for a given cluster, 
but not uniformly so. We thus developed a hybrid 
mechanism for combining the metric learner and the 
classifier. We present results from a large number of trials 
based on human clusterings, in which we show that our 
combination scheme matches and often exceeds the 
performance of a method which exclusively uses either type 
of learner.  

 Introduction   

The daily lives of information workers abound with 
clustering and categorization problems. For example, a 
researcher must take hundreds of papers and book chapters 
from her field and organize them into coherent lectures; a 
program committee must take hundreds of accepted papers 
and group them into sessions and tracks; an admissions 
panel must take thousands of applicants and group them 
into appropriate departments. In many cases, there are 
underlying rules and metrics which explain much of how 
users are grouping the items; however, these metrics may 
not be obvious to them or easy for them to articulate. 
Furthermore, not all items will follow these metrics; there 
will be important outliers that cannot be missed. On the 
other hand, every group they create and every item they 
put into a group is evidence for how the other items should 
be grouped. The question, then, is whether and how a 
learning system might assist users with problems of this 
kind. 
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 There has been a steady stream of work in the literature 
concerning “interactive clustering,” which initially seemed 
appropriate for this task.  These methods take input from 
users in the form of “must-link” and “cannot-link” 
constraints, which specify whether two items belong 
together or apart. These constraints are then used to learn a 
distance metric, after which traditional clustering 
mechanisms such as k-means can be used to group items 
(more details are in our related work section). However, it 
was not clear to us that specifying such constraints was a 
natural part of users’ behavior for such tasks. We thus 
embarked on an observational study, in which we found 
that instead of specifying must-link and cannot-link 
constraints, users preferred to make semantically 
meaningful clusters and incrementally add items to them, 
i.e., they specified “must-belong” (and implicitly, “cannot-
belong”) constraints between items and clusters. 
 While such labels differ in intent from those specified in 
interactive clustering, the mathematical framework of 
metric learning can easily be adjusted to incorporate these 
changes, as we will show in a later section. The user 
experience is quite different, though: the user is now 
asking for recommendations for a cluster given a set of 
items, or asking for a label given a new item. Both of these 
problems seemed amenable to a classification approach.  
Also, as this is a different problem setup than interactive 
clustering, we refer to this new scenario as assisted 
clustering. 
 To further explore how to help users with such tasks, we 
built a preliminary assisted clustering system and used it to 
collect ground truth data. We then experimented with both 
metric learning and classification approaches, and found 
that neither approach was always the winner for all 
clusters: classification would do better on some; metric 
learning would do better on others. 
 This led us to consider how we might combine the two 
approaches so that we could get the best of both worlds. 
While there are a variety of methods for combining sets of 
classifiers or rankers, our situation proved to be unique, as 
we will explain in our related work section. We thus 
developed a hybrid mechanism for doing this which 
converts the classifier for each cluster into a kernel for the 
metric learner.  As we show in our results, this method  



matches and sometimes substantially exceeds the 
performance of a system that exclusively uses either the 
classifier or the metric learner approach. 
 In the remainder of this paper, we give greater detail to 
all of these steps: the related work, including interactive 
clustering and other means of combining algorithms; our 
own investigations, methods, and experimental setup; and 
finally, the results we found in our experiments and a 
discussion of their implications.  

Related Work 

The most relevant algorithmic work to our own is that of 
interactive clustering, such as the canonical papers by 
(Cohn and Caruana 2000) and (Bilenko, Basu, and Mooney 
2004). As discussed above, these assume a set of user 
labels of items that must belong together and items that 
cannot be together (must-link and cannot-link constraints). 
Typically, these approaches make use of a metric learning 
approach, in which a distance function between items in 
learned. A common formulation is to propose a distance 
function between items ���� , ��� which is parameterized 
by a set of weights �	 over individual distance measures, 
often feature differences; the weights are then optimized to 
minimize a cost function that prefers must-link pairs to 
have small distances and cannot-link pairs to have large 
distances. An alternate approach is to optimize a 
transformation of the feature space f  by a linear transform 

 such that appropriate Euclidean distances in the 
transformed space are small/large as implied by the 
constraints. In either case, given the new distance metric, 
traditional clustering methods (e.g., k-means) are used to 
automatically cluster all of the items.  In other words, the 
user provides a set of labels, and the system produces a 
clustering. There has been very limited work on attempting 
to use these methods in an interactive system, in which 
users incrementally add items to the clusters; the principal 
work we know of is that of (Desjardin, MacGlashan, and 
Ferraioli 2007), though we note that it studies a simulation 
of user behavior and not an interactive system per se. In 
that work, the authors use the interactive clustering 
formulation of (Bilenko, Basu, and Mooney 2004) at each 
iteration.  There is also some recent work on an interactive 
system for classification (Seifert and Lex 2009), but it does 
not address the clustering/categorization task. 
 As we described above, our formulation is somewhat 
different: instead of providing constraints between items, 
the users are placing items into meaningful clusters. 
Furthermore, the goal of our system is not to automatically 
cluster the items based on labels, but to provide appropriate 
recommendations for each clusters. Certainly metric 
learning is applicable here, as we can suggest for each 
cluster those items that are closest via the learned metric.  
However, since we also effectively have labels for which 
items belong to which cluster, we can also frame this as a 
classification problem. As we sought to combine the 
benefits of both of these approaches, we surveyed existing 
work on combining learners. The best known of such work 

is that on combining classifiers – there is a rich history of 
techniques such as boosting and bagging, as covered by 
(Bauer and Kohavi 1999), to achieve better results than a 
single classifier. However, a metric learner is not a 
classifier, and does not fit well into this framework. 
Similarly, there are means of combining ranking metrics 
such as RankBoost (Freund et al. 2003), but these do not 
give us a means of integrating classifiers.  Furthermore, we 
have the unique advantage of an incremental context for 
each individual cluster, in which a combined learner can 
take advantage of labels in previous rounds to perform 
better in future rounds. 
 Finally, we note that classifier combination methods 
could certainly be applied to improve our base classifier’s 
performance; similarly, ranking combination methods 
could be used to improve the metric learner. We are not 
claiming that our implementation of either of these 
components is either novel or optimal; our contribution is 
instead in (1) formulating the problem based on users’ 
observed behavior, by which the applicability of both 
classifiers and metric learners become clear, and (2) 
proposing and evaluating a means of combining these two 
types of learners. We certainly expect that the overall 
performance of the system can be improved by replacing 
the individual learners with more sophisticated 
counterparts, and expect to pursue this in future work. 

Investigating Sorting Behavior 

To better understand how human subjects sort items in the 
real world, we set up an observational study in which five 
subjects were given one hour to manually sort sixty printed 
papers from the CSCW conference. All subjects were 
familiar with the area. We recorded video from several 
points of view as well as audio so we could observe the 
users’ sorting behavior in detail. An analysis of this data 
helped us identify several key trends. First, subjects tended 
to create categories that were semantically meaningful to 
them based on an initial paper or two and then add papers 
to these; this differs from the model of creating must-link 
and cannot-link constraints assumed by interactive 
clustering methods. Second, subjects would often 
remember having seen a paper relevant to a current 
category that they had earlier set aside, and would then 
spend time hunting for it. Third, as they developed a set of 
categories, they tended towards sorting new items into the 
existing piles rather than creating new categories. Finally, 
when a paper from the pile was not relevant to the current 
set of categories, they would either put it somewhere on 
the desktop or add it to a “miscellaneous” pile. 
 After sorting the papers, we interviewed each subject to 
see what kinds of machine assistance they would have 
found most helpful. Most of the subjects desired search 
functionality, which would let them find documents they 
had seen but subsequently misplaced. Next, many asked 
for suggestions of new items for a cluster, especially once 
they had established firm categories. Finally, some users 
wanted suggestions for which category a new item from 



the pile should go into, though most felt that this was a 
much easier task than finding additional relevant items. 

Interactive System and Data Collection 

With our observations and the subjects’ feedback in mind, 
we developed an interactive system for assisted clustering. 
The interface is a large virtual canvas with stacks of 
“baseball card” representations of data items; in the case of 
documents, the face of the card shows the title and authors. 
By double-clicking on the item, users can see more detail; 
for documents, this is the full abstract. A screenshot of the 
system is shown in Figure 1 below.  

 
Figure 1. A screenshot of our assisted clustering system, showing 

suggested items for the selected cluster. Note that these 
recommendations were turned off while subjects were clustering 

items to provide ground-truth data for our experiments.  

The core functionality of our system mirrors what we 
observed our subjects doing in the study: it allows for users 
to create new clusters, move items into those clusters, open 
up clusters to examine their contents, and move clusters 
around; we also provide a “miscellaneous” cluster. Beyond 
this, we added a variety of features to assist users with the 
task. First, we provide a search box which can retrieve 
items by word-based queries. Next, when a user clicks on a 
cluster, the best matching items from the unsorted pile are 
lifted from the pile, indicated via connecting lines, and 
moved towards the cluster (see Figure 1); at this point, the 
user can drag relevant items into the cluster. When the user 
releases the cluster, the untouched items snap back into the 
pile. Similarly, when a user clicks on an item, the best 
matching clusters are indicated by visual lines. 
Determining which items are the best matches, of course, is 
the subject of this paper, and we give more detail on this in 
the sections below. 
 In order to both validate our design and to collect labels 
for our investigations, we had four subjects use this system 

to sort sets of 300 documents from one of three academic 
communities (CSCW, SIGGRAPH, and SIGIR) into 
clusters. They were instructed to group as many items as 
possible, but were not required to put every item into a 
cluster. To prevent biasing from our algorithms, the 
recommendations of relevant items/clusters were not 
active; the subjects could only use search to help them with 
their manual sorting. We used the groupings the users 
came up with as ground truth labels for our experiments in 
the sections below.  
 Finally, we note that while the experiments in this paper 
all involve sorting documents, the system was developed to 
work for any type of data that can be represented visually 
and for which we can express a set of features and 
similarity metrics. We have in fact used the system for a 
different task, clustering structured feedback for software 
products, and will report on those studies in a future paper. 

Retrieval with Metric Learners vs. Classifiers 

In this section, we go through the details of our 
formulation for both the metric learner and the classifier 
and how we can use each one to find the best matching 
items in the assisted clustering scenario.  

Metric Learning Approach 

Given that we are seeking the “nearest” items in the 
appropriate metric space, it is quite natural to use metric 
learning to train a distance measure. The formulation we 
use is similar to existing work such as (Bilenko, Basu, and 
Mooney 2004), though we use must-belong and cannot-
belong constraints vs. must-link and cannot-link. Consider 
a series of candidate distance measures, �	��� , ���, which 
we wish to combine with weights �	. We can then write 
the following combined distance function: 

���� , �� � � �	�	��� , ��
	

 

In addition to the distance function, we have labels from 
the user as to which items must belong to which clusters; 
this also tells us that those items cannot belong to the other 
clusters. We can express the distance between the item and 
a cluster as the distance from the item to the centroid of the 
cluster, �� , which is the item which has the minimum 
cumulative distance to all other items in the cluster. We 
want to minimize the distance between items and the 
clusters they belong to, and maximize the distance to other 
clusters. This leads to the following cost function which we 
wish to minimize:  
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Note that we normalize each type of constraint by the 
number of such constraints (�� and �#), as there are 
typically many more cannot-belong constraints. Also note 
that the final element is a regularization term, which 



controls the growth of the �	; for our experiments ' was 
set to 1. To minimize this cost function �, we take the 
derivative with respect to the weights: 
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We further constrain the �	 to be positive by representing 
them as *	(; we then do our optimizations in terms of the * 
variables via the chain rule: 
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�*	
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2*	  
Given these derivatives and the convexity of the 
formulation, we use the L-BFGS method (Nocedal 1980) 
to find the optimal *	 , which we square to find the �	 for 
the overall ���� , ��. Note that this optimization must be 
performed every time an item is added or removed from 
any cluster. We can then use this distance function to find 
the closest items to a cluster. 
 In order to apply the method, we also need to define 
some component distances �	��� , ���. For our problem, we 
first converted the title, author, and abstract of each 
document into their vector TFIDF representations, a 
common approach for information retrieval tasks (Salton 
and McGill 1983). We then compute six distance 
measures: the ℓ, and ℓ( vector norms between the TFIDF 
representations of the titles, the authors, and the abstracts 
of documents �� and �� . In earlier experiments, we also 
added 20 random distance metrics; as expected, the 
weights for these quickly converged to zero in two or three 
examples.  

Classification Approach 

Since the user is placing items into distinct categories, we 
have positive and negative labels for each cluster, and can 
train a classifier for each cluster that determines which 
items from the unsorted pile may belong to it. Furthermore, 
for many classifiers, we can compute not only a binary 
answer but also a score value for how well the item fits. 
We chose to use logistic regression (Bishop 2006) both 
because of its interpretability, as it learns a weight for each 
feature -�, and also for its meaningful output score, i.e., the 
probability that the given example’s label .� is 1: 

-#��� � /�.� � 1 � 1
1 & 01 ∑ 3456478 

We find the parameters 9� and the bias : by minimizing 
the total log likelihood of the labeled data under this 
model, weighting the positive and negative examples so 
they have equal importance to the cost function; we also 
add an ℓ,-regularization term to encourage sparsity in the 
solution (Ng 2004). As the formulation is convex, we again 
find the optimal solution using L-BFGS.  
 In this case, instead of distance measures, we need to 
supply a set of features to the learner. We begin with the 

TFIDF vector representation of the combined title, author 
list, and abstract, which is of 3502 dimensions and quite 
sparse. This results in having to learn 3502 parameters 9�, 
which unsurprisingly led to very poor performance in our 
initial experiments, even with the ℓ, regularizer. We thus 
reduce the dimensionality using PCA and project the raw 
vector onto the top 100 eigenvectors (i.e., corresponding to 
the 100 highest eigenvalues); this is typically referred to as 
latent semantic indexing or an LSI representation in the 
information retrieval literature (Berry, Dumais, and 
O’Brien 1995).  Finally, once we have trained the 
classifier, we can produce a set of recommendations from 
this method by computing -��� for each uncategorized 
item and then sorting by the score value. 
 Finally, we note that there are many possible variations 
to both learners: for the metric learner, for instance, instead 
of the distance to the centroid of the cluster, we could use 
the minimum, maximum, or mean distance; instead of a 
single global distance function we could have a separate 
set of weights; we could also have chosen from a host of 
other possible component distance functions. For the 
classifier, there are many other choices of models and 
features we could have used which could certainly improve 
the performance. However, it is the combination of the two 
types of methods that is key to our work, as we detail in the 
next section. 

Combining the Learners 

Before we discuss how to combine the learners, let us 
consider why this might be a good idea. The two methods 
are learning quite different things: the metric learner is 
learning a global distance function between items, while 
the classifier is seeking a discriminating surface between 
items inside and outside a given cluster. Furthermore, 
when the user adds a new item to a cluster, it provides the 
same benefit to all clusters for the metric learner, but helps 
the particular classifier for that cluster more than the 
others. In a similar vein, if 50 items have been put into 
clusters when we create a new cluster with a single item, 
the metric learner will have likely converged to a set of 
weights, while the classifier must discriminate based on 
only one positive example. It is reasonable, then, to expect 
that one or the other method might be better in different 
situations. In fact, in our data, when comparing only these 
two methods, we found that the metric learner strictly beat 
the classifier in 23% of the trials, while the classifier did 
better 50% of the time (the rest were ties). Clearly it would 
be to our benefit if we could always do as well as best 
performing algorithm, or ideally even better. 
  As we discussed earlier, though, the prior work in 
combining classifiers or metrics does not apply well to our 
situation. As a result, we have developed a new  hybrid 
mechanism by which we can combine the 
recommendations from each approach. We describe the 
method below, along with other metrics that will help 
demonstrate its relative performance. 



Hybrid Metric Learner. While we cannot turn the metric 
learner into a classifier without assigning a threshold to its 
recommendations, we can turn the results of an individual 
classifier into a distance function that will only affect one 
cluster by careful assignment of its values. Specifically, for 
cluster �: 

�#��� , ��� � ;<�1 " -���,                    ��  => �
0,                                  @Aℎ0C9=<0 

In other words, if the classifier thinks the item is in �, i.e., 
-��� is close to 1, the distance is small; otherwise it is 
large; if � is not involved, it contributes nothing. This 
unusual, asymmetric formulation has the advantage that 
only the columns corresponding to a particular cluster (and 
thus a particular classifier) are affected. As a result, though 
the weight for �#  will be learned globally for all items, it 
will only affect cluster �. The scaling function < accounts 
for the fact that the outputs of logistic regression hover 
around 0.5 when the classifier has not seen many 
examples, as is typical in our trials.  Its form is as follows: 

<�D � E� D " 0.5 & � 
The values for � and E are set after all elements of �#  are 
computed, and normalize the values of �#  to be between 0 
and 10 to be commensurate with the other kernels.  

Best-Individual. This is the maximum of the performance 
of the individual methods, i.e., the classifier and metric 
learning schemes.  As such, this is not an implementable 
scheme, but represents an upper bound of performance if 
we were able to omnisciently choose which individual 
method would work best for the given context. 

Random. This is a baseline measure that selects items at 
random from the unsorted pile. 

Experiments and Results 

Our four subjects’ manual sorting of the three corpora (see 
Section “Interactive System and Data Collection”) resulted 
in 104 total clusters; each cluster contained between 1 and 
32 members. We chose to perform our experiments on 
clusters of larger than 10 elements so that we could 
meaningfully compute learning curves for the methods 
(i.e., performance vs. the number of presented examples); 
this left us with 46 clusters.  
 Rather than only using the order in which the subjects 
placed items in clusters, we generated 10 times more trials 
by randomizing the order in which positive examples and 
negative examples were chosen. The positive examples 
were simply reordered; the negative examples were chosen 
via the “Chinese Restaurant Process” (Aldous 1983).  In 
this process, an item is added to an existing cluster with 
probability � (0.8 in our experiments), where the particular 
cluster to receive a new item is chosen with probability 
proportional to the cluster’s size. A new cluster is formed 
by choosing from the remaining items with probability 
1 " �. This is a standard statistical model for cluster 
growth and ensures that clusters grow organically, with a 

few items being added to each, as opposed to many 
clusters appearing with a single example. Furthermore, this 
matched well with the observed behavior of our subjects. 
 This randomization resulted in a total of 460 unique runs 
over individual clusters (46 clusters times 10 re-orderings). 
To compute our results, we chose a target cluster and re-
ordering, then added a pair of examples at a time, one 
positive and one negative, from the chosen ordering. At 
each step, we computed the performance for all the 
methods above. This resulted in 7250 unique (cluster, 
randomization order, number of examples) tuples. To 
compute the performance the methods for each tuple, we 
allowed each method to produce 10 suggested items for the 
target cluster given the examples thus far, and then tested 
what fraction of those suggestions were correct. This is 
referred to as precision-at-N (with N=10 in our case).  Note 
that if the number of remaining items in the cluster was 
less than 10 for a given state, the fraction was in terms of 
the number remaining. 
 We also wished to investigate the difference in 
performance between a “cold start,” in which the canvas 
would start with a clean slate (no clusters), after which 
positive and negative examples would be added as 
described, versus a “warm start,” in which 50 items were 
already placed into other clusters (via the restaurant 
process) before we began working on the target cluster. 
The latter scenario represents the situation where the user 
has already sorted some data and has now started on a new 
cluster; this is of course the more common scenario in the 
interactive task.  
 We now show the results from these experiments in 
terms of both overall precision and the learning curves 
(per-label improvements). 

 
Figure 2: Average precision over all trials for all methods for 
cold start (black), i.e., no other clusters formed yet, and warm 

start (grey), i.e., 50 items already in other clusters. “Hybrid” is 
our method; “metric” and “classifier” refer to the individual 

learners; “best-ind” represents an unimplementable upper bound 
on the individual methods. See Section “Combining the 

Learners” for more details about each method. 
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Overall Precision. Figure 2 shows the average precision 
of each method over all 7250 data instances, i.e., over all 
combinations of clusters, randomizations, and numbers of 
positive/negative examples, under both cold and warm start 
conditions.  

 In all conditions, the hybrid method does at least as well 
as each individual method. In the cold start case, it does 
only incrementally better than the classifier (not 
statistically significant), but in the more typical warm start 
case, it beats both methods by a large margin. Note that all 
differences in performance are statistically significant at 
the p=0.001 level except for the case mentioned above 
(hybrid vs. classifier in the cold start condition).  

 It is interesting to note that the classifier performance 
decreases substantially in the warm start condition 
compared to the cold start; this is because the classifier is 
now faced with learning a much more complex decision 
boundary as specified by the many negative examples 
already in other clusters. A more complex classifier may 
have fared better in this case, but would in turn overfit the 
data and fare worse when the amount of data was small 
(i.e., the cold start condition).  The advantage of our hybrid 
method is that it can leverage the strengths of both 
individual methods where appropriate: were we to 
incorporate the more complex classifier, we expect that our 
method would reduce the weights corresponding to the 
classifier kernels when little data was available, and rely on 
them more as more examples were added. 

Performance vs. Number of Examples. For the next set 
of experiments, we wished to see the learning curves, i.e., 
how the performance changed with the amount of data 
presented to the various methods. Figures 3 (cold start) and 
4 (warm start) show the results of these experiments. In 
both cases, the hybrid learner exceeds the performance of 
either component learner.  As before, in the cold start case, 
it does incrementally better than the classifier and 
significantly beats the metric learner. In the warm start 
case, it substantially outperforms both methods and at 
times even exceeds the performance of the omnisciently 
chosen best-individual method.  Note that this is possible 
as the hybrid method can incorporate information from 
both schemes. 
 As we discussed in our description of the relative 
strengths of classifiers vs. metric learners, we expected that 
the metric learner would benefit more than the classifier 
from the warm start. What we saw was that the metric 
learner did in fact see a slight improvement, but that the 
classifier saw a large drop in performance with respect to 
the cold start case, again presumably due to the larger 
number of available negative examples (all the warm start 
examples plus the ones paired with each new positive 
example). Though our classifier formulation balances the 
cost of positive and negative examples, the variety of 
negative examples clearly causes it problems, and the 
metric learner performs better for the first few examples. 
 It is possible that we could improve the classifier’s 
performance by reducing the number of negative examples, 
but such an approach would require careful tuning to 

determine when and by how much to reduce the data; it is 
likely that data reduction would help in some cases and 
hurt in others.  In contrast, our method is able to 
automatically adjust to the best combination of the 
component classifiers and distance metrics. The key 
observation from these results is that regardless of the 
individual methods’ performances, the combined learner is 
able to consistently exceed them both. 

 
Figure 3: Average precision vs. number of positive examples from 

a cold start. 

 
Figure 4: Average precision vs. number of positive examples 
where 50 items were already placed into other clusters (warm 

start condition). 

Discussion 

We have presented a novel problem space, assisted 
clustering, based on our observations of real users 
manually clustering items into categories. In this space, 
both classifiers and metric learners are appropriate models. 
In order to leverage the power of both, we have developed 
a means by which we can combine these disparate types of 
learners; we have shown that the resulting hybrid method 
performs as well or better than the individual learners. 
Furthermore, we are optimistic that this hybrid method 
may also be applicable in other scenarios where both types 
of learners are relevant. 
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