

Assisting Users with Clustering Tasks by

Combining Metric Learning and Classification

Sumit Basu
Microsoft Research

Redmond, WA

sumitb@microsoft.com

Danyel Fisher
Microsoft Research

Redmond, WA

danyelf@microsoft.com

Steven M. Drucker
Microsoft Research

Redmond, WA

sdrucker@microsoft.com

Hao Lu
University of Washington

Seattle, WA

hlv@cs.washington.edu

Abstract

Interactive clustering refers to situations in which a human
labeler is willing to assist a learning algorithm in
automatically clustering items. We present a related but
somewhat different task, assisted clustering, in which a user
creates explicit groups of items from a large set and wants
suggestions on what items to add to each group. While the
traditional approach to interactive clustering has been to use
metric learning to induce a distance metric, our situation
seems equally amenable to classification. Using clusterings
of documents from human subjects, we found that one or
the other method proved to be superior for a given cluster,
but not uniformly so. We thus developed a hybrid
mechanism for combining the metric learner and the
classifier. We present results from a large number of trials
based on human clusterings, in which we show that our
combination scheme matches and often exceeds the
performance of a method which exclusively uses either type
of learner.

 Introduction

The daily lives of information workers abound with
clustering and categorization problems. For example, a
researcher must take hundreds of papers and book chapters
from her field and organize them into coherent lectures; a
program committee must take hundreds of accepted papers
and group them into sessions and tracks; an admissions
panel must take thousands of applicants and group them
into appropriate departments. In many cases, there are
underlying rules and metrics which explain much of how
users are grouping the items; however, these metrics may
not be obvious to them or easy for them to articulate.
Furthermore, not all items will follow these metrics; there
will be important outliers that cannot be missed. On the
other hand, every group they create and every item they
put into a group is evidence for how the other items should
be grouped. The question, then, is whether and how a
learning system might assist users with problems of this
kind.

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

 There has been a steady stream of work in the literature
concerning “interactive clustering,” which initially seemed
appropriate for this task. These methods take input from
users in the form of “must-link” and “cannot-link”
constraints, which specify whether two items belong
together or apart. These constraints are then used to learn a
distance metric, after which traditional clustering
mechanisms such as k-means can be used to group items
(more details are in our related work section). However, it
was not clear to us that specifying such constraints was a
natural part of users’ behavior for such tasks. We thus
embarked on an observational study, in which we found
that instead of specifying must-link and cannot-link
constraints, users preferred to make semantically
meaningful clusters and incrementally add items to them,
i.e., they specified “must-belong” (and implicitly, “cannot-
belong”) constraints between items and clusters.
 While such labels differ in intent from those specified in
interactive clustering, the mathematical framework of
metric learning can easily be adjusted to incorporate these
changes, as we will show in a later section. The user
experience is quite different, though: the user is now
asking for recommendations for a cluster given a set of
items, or asking for a label given a new item. Both of these
problems seemed amenable to a classification approach.
Also, as this is a different problem setup than interactive
clustering, we refer to this new scenario as assisted
clustering.
 To further explore how to help users with such tasks, we
built a preliminary assisted clustering system and used it to
collect ground truth data. We then experimented with both
metric learning and classification approaches, and found
that neither approach was always the winner for all
clusters: classification would do better on some; metric
learning would do better on others.
 This led us to consider how we might combine the two
approaches so that we could get the best of both worlds.
While there are a variety of methods for combining sets of
classifiers or rankers, our situation proved to be unique, as
we will explain in our related work section. We thus
developed a hybrid mechanism for doing this which
converts the classifier for each cluster into a kernel for the
metric learner. As we show in our results, this method

matches and sometimes substantially exceeds the
performance of a system that exclusively uses either the
classifier or the metric learner approach.
 In the remainder of this paper, we give greater detail to
all of these steps: the related work, including interactive
clustering and other means of combining algorithms; our
own investigations, methods, and experimental setup; and
finally, the results we found in our experiments and a
discussion of their implications.

Related Work

The most relevant algorithmic work to our own is that of
interactive clustering, such as the canonical papers by
(Cohn and Caruana 2000) and (Bilenko, Basu, and Mooney
2004). As discussed above, these assume a set of user
labels of items that must belong together and items that
cannot be together (must-link and cannot-link constraints).
Typically, these approaches make use of a metric learning
approach, in which a distance function between items in
learned. A common formulation is to propose a distance
function between items ���� , ��� which is parameterized
by a set of weights �	 over individual distance measures,
often feature differences; the weights are then optimized to
minimize a cost function that prefers must-link pairs to
have small distances and cannot-link pairs to have large
distances. An alternate approach is to optimize a
transformation of the feature space f by a linear transform

 such that appropriate Euclidean distances in the
transformed space are small/large as implied by the
constraints. In either case, given the new distance metric,
traditional clustering methods (e.g., k-means) are used to
automatically cluster all of the items. In other words, the
user provides a set of labels, and the system produces a
clustering. There has been very limited work on attempting
to use these methods in an interactive system, in which
users incrementally add items to the clusters; the principal
work we know of is that of (Desjardin, MacGlashan, and
Ferraioli 2007), though we note that it studies a simulation
of user behavior and not an interactive system per se. In
that work, the authors use the interactive clustering
formulation of (Bilenko, Basu, and Mooney 2004) at each
iteration. There is also some recent work on an interactive
system for classification (Seifert and Lex 2009), but it does
not address the clustering/categorization task.
 As we described above, our formulation is somewhat
different: instead of providing constraints between items,
the users are placing items into meaningful clusters.
Furthermore, the goal of our system is not to automatically
cluster the items based on labels, but to provide appropriate
recommendations for each clusters. Certainly metric
learning is applicable here, as we can suggest for each
cluster those items that are closest via the learned metric.
However, since we also effectively have labels for which
items belong to which cluster, we can also frame this as a
classification problem. As we sought to combine the
benefits of both of these approaches, we surveyed existing
work on combining learners. The best known of such work

is that on combining classifiers – there is a rich history of
techniques such as boosting and bagging, as covered by
(Bauer and Kohavi 1999), to achieve better results than a
single classifier. However, a metric learner is not a
classifier, and does not fit well into this framework.
Similarly, there are means of combining ranking metrics
such as RankBoost (Freund et al. 2003), but these do not
give us a means of integrating classifiers. Furthermore, we
have the unique advantage of an incremental context for
each individual cluster, in which a combined learner can
take advantage of labels in previous rounds to perform
better in future rounds.
 Finally, we note that classifier combination methods
could certainly be applied to improve our base classifier’s
performance; similarly, ranking combination methods
could be used to improve the metric learner. We are not
claiming that our implementation of either of these
components is either novel or optimal; our contribution is
instead in (1) formulating the problem based on users’
observed behavior, by which the applicability of both
classifiers and metric learners become clear, and (2)
proposing and evaluating a means of combining these two
types of learners. We certainly expect that the overall
performance of the system can be improved by replacing
the individual learners with more sophisticated
counterparts, and expect to pursue this in future work.

Investigating Sorting Behavior

To better understand how human subjects sort items in the
real world, we set up an observational study in which five
subjects were given one hour to manually sort sixty printed
papers from the CSCW conference. All subjects were
familiar with the area. We recorded video from several
points of view as well as audio so we could observe the
users’ sorting behavior in detail. An analysis of this data
helped us identify several key trends. First, subjects tended
to create categories that were semantically meaningful to
them based on an initial paper or two and then add papers
to these; this differs from the model of creating must-link
and cannot-link constraints assumed by interactive
clustering methods. Second, subjects would often
remember having seen a paper relevant to a current
category that they had earlier set aside, and would then
spend time hunting for it. Third, as they developed a set of
categories, they tended towards sorting new items into the
existing piles rather than creating new categories. Finally,
when a paper from the pile was not relevant to the current
set of categories, they would either put it somewhere on
the desktop or add it to a “miscellaneous” pile.
 After sorting the papers, we interviewed each subject to
see what kinds of machine assistance they would have
found most helpful. Most of the subjects desired search
functionality, which would let them find documents they
had seen but subsequently misplaced. Next, many asked
for suggestions of new items for a cluster, especially once
they had established firm categories. Finally, some users
wanted suggestions for which category a new item from

the pile should go into, though most felt that this was a
much easier task than finding additional relevant items.

Interactive System and Data Collection

With our observations and the subjects’ feedback in mind,
we developed an interactive system for assisted clustering.
The interface is a large virtual canvas with stacks of
“baseball card” representations of data items; in the case of
documents, the face of the card shows the title and authors.
By double-clicking on the item, users can see more detail;
for documents, this is the full abstract. A screenshot of the
system is shown in Figure 1 below.

Figure 1. A screenshot of our assisted clustering system, showing

suggested items for the selected cluster. Note that these
recommendations were turned off while subjects were clustering

items to provide ground-truth data for our experiments.

The core functionality of our system mirrors what we
observed our subjects doing in the study: it allows for users
to create new clusters, move items into those clusters, open
up clusters to examine their contents, and move clusters
around; we also provide a “miscellaneous” cluster. Beyond
this, we added a variety of features to assist users with the
task. First, we provide a search box which can retrieve
items by word-based queries. Next, when a user clicks on a
cluster, the best matching items from the unsorted pile are
lifted from the pile, indicated via connecting lines, and
moved towards the cluster (see Figure 1); at this point, the
user can drag relevant items into the cluster. When the user
releases the cluster, the untouched items snap back into the
pile. Similarly, when a user clicks on an item, the best
matching clusters are indicated by visual lines.
Determining which items are the best matches, of course, is
the subject of this paper, and we give more detail on this in
the sections below.
 In order to both validate our design and to collect labels
for our investigations, we had four subjects use this system

to sort sets of 300 documents from one of three academic
communities (CSCW, SIGGRAPH, and SIGIR) into
clusters. They were instructed to group as many items as
possible, but were not required to put every item into a
cluster. To prevent biasing from our algorithms, the
recommendations of relevant items/clusters were not
active; the subjects could only use search to help them with
their manual sorting. We used the groupings the users
came up with as ground truth labels for our experiments in
the sections below.
 Finally, we note that while the experiments in this paper
all involve sorting documents, the system was developed to
work for any type of data that can be represented visually
and for which we can express a set of features and
similarity metrics. We have in fact used the system for a
different task, clustering structured feedback for software
products, and will report on those studies in a future paper.

Retrieval with Metric Learners vs. Classifiers

In this section, we go through the details of our
formulation for both the metric learner and the classifier
and how we can use each one to find the best matching
items in the assisted clustering scenario.

Metric Learning Approach

Given that we are seeking the “nearest” items in the
appropriate metric space, it is quite natural to use metric
learning to train a distance measure. The formulation we
use is similar to existing work such as (Bilenko, Basu, and
Mooney 2004), though we use must-belong and cannot-
belong constraints vs. must-link and cannot-link. Consider
a series of candidate distance measures, �	��� , ���, which
we wish to combine with weights �	. We can then write
the following combined distance function:

���� , �� � � �	�	��� , ��
	

In addition to the distance function, we have labels from
the user as to which items must belong to which clusters;
this also tells us that those items cannot belong to the other
clusters. We can express the distance between the item and
a cluster as the distance from the item to the centroid of the
cluster, �� , which is the item which has the minimum
cumulative distance to all other items in the cluster. We
want to minimize the distance between items and the
clusters they belong to, and maximize the distance to other
clusters. This leads to the following cost function which we
wish to minimize:

� � 1
��

� ���� , ���
��

������
���� !

" 1
�#

� ���� , ���
�$

��#% ��
���� !

& ' � �	(
	

Note that we normalize each type of constraint by the
number of such constraints (�� and �#), as there are
typically many more cannot-belong constraints. Also note
that the final element is a regularization term, which

controls the growth of the �	; for our experiments ' was
set to 1. To minimize this cost function �, we take the
derivative with respect to the weights:

��
��	

� 1
��

� �	��� , ���
��

������
���� !

" 1
�#

� �	��� , ��� & 2'�	

�$

��#% �
���� !

We further constrain the �	 to be positive by representing
them as *	(; we then do our optimizations in terms of the *
variables via the chain rule:

��
�*	

� ��
��	

��	
�*	

� ��
��	

2*	
Given these derivatives and the convexity of the
formulation, we use the L-BFGS method (Nocedal 1980)
to find the optimal *	 , which we square to find the �	 for
the overall ���� , ��. Note that this optimization must be
performed every time an item is added or removed from
any cluster. We can then use this distance function to find
the closest items to a cluster.
 In order to apply the method, we also need to define
some component distances �	��� , ���. For our problem, we
first converted the title, author, and abstract of each
document into their vector TFIDF representations, a
common approach for information retrieval tasks (Salton
and McGill 1983). We then compute six distance
measures: the ℓ, and ℓ(vector norms between the TFIDF
representations of the titles, the authors, and the abstracts
of documents �� and �� . In earlier experiments, we also
added 20 random distance metrics; as expected, the
weights for these quickly converged to zero in two or three
examples.

Classification Approach

Since the user is placing items into distinct categories, we
have positive and negative labels for each cluster, and can
train a classifier for each cluster that determines which
items from the unsorted pile may belong to it. Furthermore,
for many classifiers, we can compute not only a binary
answer but also a score value for how well the item fits.
We chose to use logistic regression (Bishop 2006) both
because of its interpretability, as it learns a weight for each
feature -�, and also for its meaningful output score, i.e., the
probability that the given example’s label .� is 1:

-#��� � /�.� � 1 � 1
1 & 01 ∑ 3456478

We find the parameters 9� and the bias : by minimizing
the total log likelihood of the labeled data under this
model, weighting the positive and negative examples so
they have equal importance to the cost function; we also
add an ℓ,-regularization term to encourage sparsity in the
solution (Ng 2004). As the formulation is convex, we again
find the optimal solution using L-BFGS.
 In this case, instead of distance measures, we need to
supply a set of features to the learner. We begin with the

TFIDF vector representation of the combined title, author
list, and abstract, which is of 3502 dimensions and quite
sparse. This results in having to learn 3502 parameters 9�,
which unsurprisingly led to very poor performance in our
initial experiments, even with the ℓ, regularizer. We thus
reduce the dimensionality using PCA and project the raw
vector onto the top 100 eigenvectors (i.e., corresponding to
the 100 highest eigenvalues); this is typically referred to as
latent semantic indexing or an LSI representation in the
information retrieval literature (Berry, Dumais, and
O’Brien 1995). Finally, once we have trained the
classifier, we can produce a set of recommendations from
this method by computing -��� for each uncategorized
item and then sorting by the score value.
 Finally, we note that there are many possible variations
to both learners: for the metric learner, for instance, instead
of the distance to the centroid of the cluster, we could use
the minimum, maximum, or mean distance; instead of a
single global distance function we could have a separate
set of weights; we could also have chosen from a host of
other possible component distance functions. For the
classifier, there are many other choices of models and
features we could have used which could certainly improve
the performance. However, it is the combination of the two
types of methods that is key to our work, as we detail in the
next section.

Combining the Learners

Before we discuss how to combine the learners, let us
consider why this might be a good idea. The two methods
are learning quite different things: the metric learner is
learning a global distance function between items, while
the classifier is seeking a discriminating surface between
items inside and outside a given cluster. Furthermore,
when the user adds a new item to a cluster, it provides the
same benefit to all clusters for the metric learner, but helps
the particular classifier for that cluster more than the
others. In a similar vein, if 50 items have been put into
clusters when we create a new cluster with a single item,
the metric learner will have likely converged to a set of
weights, while the classifier must discriminate based on
only one positive example. It is reasonable, then, to expect
that one or the other method might be better in different
situations. In fact, in our data, when comparing only these
two methods, we found that the metric learner strictly beat
the classifier in 23% of the trials, while the classifier did
better 50% of the time (the rest were ties). Clearly it would
be to our benefit if we could always do as well as best
performing algorithm, or ideally even better.
 As we discussed earlier, though, the prior work in
combining classifiers or metrics does not apply well to our
situation. As a result, we have developed a new hybrid
mechanism by which we can combine the
recommendations from each approach. We describe the
method below, along with other metrics that will help
demonstrate its relative performance.

Hybrid Metric Learner. While we cannot turn the metric
learner into a classifier without assigning a threshold to its
recommendations, we can turn the results of an individual
classifier into a distance function that will only affect one
cluster by careful assignment of its values. Specifically, for
cluster �:

�#��� , ��� � ;<�1 " -���, �� => �
0, @Aℎ0C9=<0

In other words, if the classifier thinks the item is in �, i.e.,
-��� is close to 1, the distance is small; otherwise it is
large; if � is not involved, it contributes nothing. This
unusual, asymmetric formulation has the advantage that
only the columns corresponding to a particular cluster (and
thus a particular classifier) are affected. As a result, though
the weight for �# will be learned globally for all items, it
will only affect cluster �. The scaling function < accounts
for the fact that the outputs of logistic regression hover
around 0.5 when the classifier has not seen many
examples, as is typical in our trials. Its form is as follows:

<�D � E� D " 0.5 & �
The values for � and E are set after all elements of �# are
computed, and normalize the values of �# to be between 0
and 10 to be commensurate with the other kernels.

Best-Individual. This is the maximum of the performance
of the individual methods, i.e., the classifier and metric
learning schemes. As such, this is not an implementable
scheme, but represents an upper bound of performance if
we were able to omnisciently choose which individual
method would work best for the given context.

Random. This is a baseline measure that selects items at
random from the unsorted pile.

Experiments and Results

Our four subjects’ manual sorting of the three corpora (see
Section “Interactive System and Data Collection”) resulted
in 104 total clusters; each cluster contained between 1 and
32 members. We chose to perform our experiments on
clusters of larger than 10 elements so that we could
meaningfully compute learning curves for the methods
(i.e., performance vs. the number of presented examples);
this left us with 46 clusters.
 Rather than only using the order in which the subjects
placed items in clusters, we generated 10 times more trials
by randomizing the order in which positive examples and
negative examples were chosen. The positive examples
were simply reordered; the negative examples were chosen
via the “Chinese Restaurant Process” (Aldous 1983). In
this process, an item is added to an existing cluster with
probability � (0.8 in our experiments), where the particular
cluster to receive a new item is chosen with probability
proportional to the cluster’s size. A new cluster is formed
by choosing from the remaining items with probability
1 " �. This is a standard statistical model for cluster
growth and ensures that clusters grow organically, with a

few items being added to each, as opposed to many
clusters appearing with a single example. Furthermore, this
matched well with the observed behavior of our subjects.
 This randomization resulted in a total of 460 unique runs
over individual clusters (46 clusters times 10 re-orderings).
To compute our results, we chose a target cluster and re-
ordering, then added a pair of examples at a time, one
positive and one negative, from the chosen ordering. At
each step, we computed the performance for all the
methods above. This resulted in 7250 unique (cluster,
randomization order, number of examples) tuples. To
compute the performance the methods for each tuple, we
allowed each method to produce 10 suggested items for the
target cluster given the examples thus far, and then tested
what fraction of those suggestions were correct. This is
referred to as precision-at-N (with N=10 in our case). Note
that if the number of remaining items in the cluster was
less than 10 for a given state, the fraction was in terms of
the number remaining.
 We also wished to investigate the difference in
performance between a “cold start,” in which the canvas
would start with a clean slate (no clusters), after which
positive and negative examples would be added as
described, versus a “warm start,” in which 50 items were
already placed into other clusters (via the restaurant
process) before we began working on the target cluster.
The latter scenario represents the situation where the user
has already sorted some data and has now started on a new
cluster; this is of course the more common scenario in the
interactive task.
 We now show the results from these experiments in
terms of both overall precision and the learning curves
(per-label improvements).

Figure 2: Average precision over all trials for all methods for
cold start (black), i.e., no other clusters formed yet, and warm

start (grey), i.e., 50 items already in other clusters. “Hybrid” is
our method; “metric” and “classifier” refer to the individual

learners; “best-ind” represents an unimplementable upper bound
on the individual methods. See Section “Combining the

Learners” for more details about each method.

a
v
e
ra
g
e
 p
re
c
is
io
n

Overall Precision. Figure 2 shows the average precision
of each method over all 7250 data instances, i.e., over all
combinations of clusters, randomizations, and numbers of
positive/negative examples, under both cold and warm start
conditions.

 In all conditions, the hybrid method does at least as well
as each individual method. In the cold start case, it does
only incrementally better than the classifier (not
statistically significant), but in the more typical warm start
case, it beats both methods by a large margin. Note that all
differences in performance are statistically significant at
the p=0.001 level except for the case mentioned above
(hybrid vs. classifier in the cold start condition).

 It is interesting to note that the classifier performance
decreases substantially in the warm start condition
compared to the cold start; this is because the classifier is
now faced with learning a much more complex decision
boundary as specified by the many negative examples
already in other clusters. A more complex classifier may
have fared better in this case, but would in turn overfit the
data and fare worse when the amount of data was small
(i.e., the cold start condition). The advantage of our hybrid
method is that it can leverage the strengths of both
individual methods where appropriate: were we to
incorporate the more complex classifier, we expect that our
method would reduce the weights corresponding to the
classifier kernels when little data was available, and rely on
them more as more examples were added.

Performance vs. Number of Examples. For the next set
of experiments, we wished to see the learning curves, i.e.,
how the performance changed with the amount of data
presented to the various methods. Figures 3 (cold start) and
4 (warm start) show the results of these experiments. In
both cases, the hybrid learner exceeds the performance of
either component learner. As before, in the cold start case,
it does incrementally better than the classifier and
significantly beats the metric learner. In the warm start
case, it substantially outperforms both methods and at
times even exceeds the performance of the omnisciently
chosen best-individual method. Note that this is possible
as the hybrid method can incorporate information from
both schemes.
 As we discussed in our description of the relative
strengths of classifiers vs. metric learners, we expected that
the metric learner would benefit more than the classifier
from the warm start. What we saw was that the metric
learner did in fact see a slight improvement, but that the
classifier saw a large drop in performance with respect to
the cold start case, again presumably due to the larger
number of available negative examples (all the warm start
examples plus the ones paired with each new positive
example). Though our classifier formulation balances the
cost of positive and negative examples, the variety of
negative examples clearly causes it problems, and the
metric learner performs better for the first few examples.
 It is possible that we could improve the classifier’s
performance by reducing the number of negative examples,
but such an approach would require careful tuning to

determine when and by how much to reduce the data; it is
likely that data reduction would help in some cases and
hurt in others. In contrast, our method is able to
automatically adjust to the best combination of the
component classifiers and distance metrics. The key
observation from these results is that regardless of the
individual methods’ performances, the combined learner is
able to consistently exceed them both.

Figure 3: Average precision vs. number of positive examples from

a cold start.

Figure 4: Average precision vs. number of positive examples
where 50 items were already placed into other clusters (warm

start condition).

Discussion

We have presented a novel problem space, assisted
clustering, based on our observations of real users
manually clustering items into categories. In this space,
both classifiers and metric learners are appropriate models.
In order to leverage the power of both, we have developed
a means by which we can combine these disparate types of
learners; we have shown that the resulting hybrid method
performs as well or better than the individual learners.
Furthermore, we are optimistic that this hybrid method
may also be applicable in other scenarios where both types
of learners are relevant.

References

Aldous, D. 1983. "Exchangeability and Related Topics", in

l'École d'été de probabilités de Saint-Flour, XIII–1983, Berlin:

Springer. pp 1–198.

Bauer, E. and Kohavi, R. 1999. An Empirical Comparison of

Voting Classification Algorithms: Bagging, Boosting, and

Variants. Machine Learning 36(1-2): 106-139.

Berry, M. W., Dumais, S.T., and O’Brien, G.W. 1995. Using

Linear Algebra for Intelligent Information Retrieval. SIAM
Review 37(4): 573-595.

Bilenko, M., Basu, S., and Mooney, R.J. 2004. Integrating

Constraints and Metric Learning in Semi-Supervised Clustering.

In Proceedings of the Int’l Conf. on Machine Learning (ICML).

Bishop, C. M.. 2006. Pattern Recognition and Machine Learning.

New York: Springer.

Cohn, D., and Caruana, R. 2000. Semi-Supervised Clustering:

Incorporating User Feedback to Improve Cluster Utility. In

Proceedings of the Conf. on Artificial Intelligence. AAAI Press.

Desjardins, M., MacGlashan, J., and Ferraioli, J. 2007.

Interactive Visual Clustering. In Proceedings of the Int’l Conf.
on Intelligent User Interfaces. ACM Press.Engelmore, R., and

Morgan, A. eds. 1986. Blackboard Systems. Reading, Mass.:

Addison-Wesley.

Freund, Y., Iyer, R., Schapire, R.E., and Singer, Y. 2003. An

Efficient Boosting Algorithm for Combining Preferences. Journal
of Machine Learning Research 4: 933-969.

Ng, A. 2004. Feature Selection, L1 vs. L2 Regularization, and

Rotational Invariance. In Proceedings of the Int’l. Conf. on
Machine Learning (ICML).

Nocedal, J. “Updating Quasi-Newton Matrices with Limited

Storage.” Mathematics of Computation 35: 773-782.

Salton, G. and McGill, M.J. 1983. Introduction to Modern
Information Retrieval. New York: McGraw-Hill.

Seifert, C. and Lex, E. 2009. A Novel Visualization Approach

for Data-Mining-Related Classification. In Proceedings of
Information Visualization.

