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ABSTRACT 

 
In scanning photographs, receipts or other small objects 
users will often scan many at a time. It would be 
convenient to automatically detect that the scanned image 
consists of many small objects rather than a single large 
one, and segment appropriately.  We present a simple, 
efficient and robust way of doing this. 
 

1. INTRODUCTION 
 

The problem we address is simply stated: given an image 
determine whether it contains rectangular objects, and if 
so determine their vertices. The rectangles can be of any 
sizes, at any positions and orientations and there can be 
any number of them in the image. We merely assume that 
they do not overlap with each other. The most obvious 
application is to scanner images, so that multiple 
photographs, receipts, or business cards might be 
segmented and stored automatically. We are primarily 
interested in objects on a constant color background. For 
example, most scanners have a constant black, white or 
grey color, but we also accommodate any other 
background that is predominately of one color. Let us be 
clear that we are not solving or addressing the compound 
document analysis problem: we do not seek to separate 
images from text on scans of magazine pages for example.  
 
Given that we seek rectangles the obvious approaches 
might be to seek lines and/or corners in the image and 
match them up. While this might be feasible in certain 
cases it can become very complicated as the number of 
objects increases. Firstly, detecting either lines or corners 
at arbitrary positions and orientations can be 
computationally expensive. The Hough transform [1], a 
standard method for determining the existence of lines in 
an image, requires many operations and is error prone. 
Secondly, certain images will have one or more edges that 
are hard to distinguish from the background (e.g. 
photographs of snow scenes scanned on a white 
background). Thirdly, there is often sharing of lines 
among objects: two or more objects at the same 
orientation can often be confused as one.  
 
In the next section we examine the question of estimating 
the background color. In Section 3 we show that when an 

image contains only a single rectangular object the 
vertices are easily determined. In Section 4 we give an 
example of  how a recursive divide and conquer technique 
can simplify the multiple object case to many single 
object cases, and in Section 5 give the core of the 
algorithm. In Section 6 we examine implementation 
details, and how our algorithm fares when faced with real 
data that deviates from our idealized assumptions.  
 
2. DETERMINING THE BACKGROUND COLOR 
 
A key assumption is that the background is a single color 
and that most of the interior pixels of the rectangular 
objects differ from that color. We will not assume that this 
background is known, but rather estimate it from the data. 
Most of the algorithms to estimate the background color 
involve taking a histogram of the image or parts of the 
image and seeking well defined peaks. The background 
color, being constant, will often form a larger peak than 
any of the other colors.   
 
In many cases this simple scheme is adequate; however it 
can fail when: 

•  The rectangular objects themselves contain large 
amounts of constant color (e.g. saturated white in 
snow scenes or black in underexposed images) 

•  The rectangular objects cover so much of the 
image  that the number of background pixels is 
insufficient to form a discernible peak. 

Since correctly determining the background color is of 
paramount importance we actually use a more 
sophisticated algorithm than the simple histogram 
approach. In the interest of space we omit the details, and 
will from here on assume that the background color has 
been accurately determined. Interested readers are 
referred to [2] for details. 
 
3. SINGLE OBJECT CASE 
We now demonstrate that if the image consists of a single 
rectangular object the problem is easily solved. The 
situation is as shown in Figure 1. We assume that the 
background color b has been estimated, and that at least a 
majority of the pixels in the interior of the rectangle differ 
from b by more than a threshold amount. Call any pixel 
for which |Im(i,j) – b| > threshold a data pixel, and all 
others background pixels. Suppose we calculate the 



number of data pixels in the j-th row P(j), and the i-th 
column Q(i). These functions have been plotted in Figure 
1. Observe that for the first and last few rows we have P(j) 
= 0, since there are no data pixels at the top and bottom of 
the image. P(j) becomes non-zero at rows a and d (the 
rows that contain the corners of the rectangular object), 
and ramps from there to it’s maximum width between  
rows  b and c. Similarly Q(i) has a trapezoidal shape as 
also shown in Figure 1.  
Elementary geometry gives that the top part of the graph 
of P(j) is equal to x Cos(theta) and of Q(i) is y cos(theta), 
where x and y are the dimensions of the rectangle, and 
theta the angle at which it is oriented. The corners of the 
rectangle are the four points (g,a), (h, c), (f,d) and (e,b) 
which correspond to the inflexion points of the trapezoids 
P(j) and Q(i).  
 
There is actually a second possible rectangular object that 
would produce the same P(j) and Q(i) functions, as shown 
in Figure 2. This rectangle with coordinates (h,b), (g,d), 
(e,c) and (f,a) is at the same position as the first, but 
oriented at angle –theta, and is the only other possible 
rectangle that would generate the observed trapezoids.    
 

 

 
 
Clearly, in this simple case, if we knew that our image 
consisted of only a single rectangle, and there were no risk 
of confusing data pixels and background pixels, then we 
could calculate P(j) and Q(i), estimate the inflexion points 
(a,b,c,d) and (e,f,g,h) and then explicitly check which of 
the rectangles is present.  We defer until later discussion 
of departures from this ideal case; for example where not 
all interior pixels satisfy |Im( i,j)-b| > threshold, or the 
knee points are not well defined, or the background is not 
of uniform color. 
 
The kernel of our algorithm  is a method that, given the 
functions P(j) and Q(i) calculated over that image or sub-
image, determines the inflexion points, and from this 
determines whether either of the two possible rectangles is 
a plausible fit to the data. If either of them is then it 
returns the vertices of the rectangle. For notational 
convenience, let’s call a routine to accomplish all of this 
singleObject(Im, P, Q), which takes as arguments a 
portion of an image, and the P(j) and Q(i) functions as 
defined above.  
 
4. MULTIPLE RECTANGLES: EXAMPLE 
When the image consists of multiple rectangles the 
situation becomes a great deal more complicated. The 
quantities P(j) and Q(i) will now consist of the sums of the 
trapezoids generated by each of the individual rectangles. 
See for example Figure 3, where three rectangles are 
present. In the ideal case it might be possible to estimate 
the parameters if one knew, or guessed, that three 
trapezoids were present. But such an approach is unlikely 
to be robust when faced with real  data, and will become 

P(j) 

Figure 1: A single rectangular object. We graph P(j) 
and Q(i), the number of data pixels per row and per 
column respectively. Observe that the knee points of 
the trapezoids give the vertices of the rectangular 
object in the image. 
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Figure 2: Two rectangular objects at different 
orientations give the same P(j) and Q(i) functions. To 
distinguish between these two possibilities one can 
explicitly check which rectangular object is present. 



very complicated as the number of rectangles (and hence 
trapezoids) increases.  
 
Observe from Figure 3 however, that P(j) contains a gap 
at row j0, that is there is a location where P(j) is zero. This 
indicates that there is no image data at this location, and 
the problem can be decoupled to examine the portions of 
the image above and below row j0 separately. This is an 
important simplification as it allows us to split the 
problem in two.  
 
Having discovered this gap, we can decouple the parts of 
the problem above and below j0. This is shown in Figure 
4. Let’s calculate the quantities P(j) and Q(i) over the two 
parts of the image (the rows above j0 and the rows below). 
We see from Figure 4 (a)  that the part above consists of a 
single rectangle so P(j) and Q(i) end up being simple 
trapezoids. Thus this subproblem is solved by routine 
singleObject(). The part below j0 consists of two 
rectangles and P(j) is the sum of two trapezoids. The 
handling of this sub-image is shown in Figure 4 (b). 
Observe that now there is a gap in Q(i) at location i1 
indicating again that this sub-image can be broken into 
even simpler sub-images by taking those columns to the 
left of i1 and those to the right. Those sub-sub-images 
each contain a single rectangle and their P(j) and Q(i) 
functions are simple trapezoids,  allowing them to be 
solved using routine singleObject().  
 
The example shown in Figures 3 and 4 illustrates that a 
gap in the P(j) or Q(i) function of the image will allow us 
to break the problem into sub-problems, and even these 
sub-problems can often be similarly decomposed. In this 
example the simplification carried us all the way to sub-
images that each contained only a single rectangle and 
could be solved using function singleObject().  
 
It is not the case that the simplification always leads to 
sub-images that each contain a single rectangle. However, 
every simplification makes further simplifications more 
likely. In the majority of cases where a user places objects 
on a scanner, the algorithm simplifies all the way to sub-
images containing single objects.  Figure 5 shows 
examples of several images that can be simplified and one 
that cannot. Further details are in [2]. 
 
5. RECURSIVE DIVIDE AND CONQUER 
Our approach will be to calculate P(j) and Q(i) for a given 
image. If gaps are found, we simplify and re-apply to the 
sub-images until no further simplifications are possible. 
At the lowest level we have sub-images for which the  P(j) 
and Q(i) functions contain no gaps. We then use routine 
singleObject() and if a single rectangle is found add it to 
the global list. Otherwise we decide that no rectangle has 

been found in the given sub-image. In either case we 
proceed with the other sub-images until no more sub-
images remain. Because we apply much the same 
processing to an image and its sub-images the overall 
algorithm is efficiently implemented recursively. 
 
function procMult(Im);  
[P, Q] = getProjections(Im); 
[gP, gQ] = getGaps(P, Q); 
 
if ( #(gaps in P) + #(gaps in Q) == 0) 
      singleObject(Im, P, Q); 
else 
      for m = 1 to #(gaps in Q) 
 for n = 1 to #(gaps in P) 
       procMult(Im(gQ(m):gQ(m+1), gP(n):gP(n+1)) 
 end 
      end 
end  
 
Where the called functions are as follows: 
getProjections(Im) is a routine to calculate P(j), Q(i)  
over sub-image Im, getGaps(P,Q) determines position 
of any gaps in P(j), Q(i), and singleObject(Im, P, Q) 
examines P(j) and Q(i) for a single rectangular object and 
adds to the global list if found.  
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6. IMPLEMENTATION ISSUES 

We’ve dealt primarily with the case where there is no 
confusion between background pixels and data pixels.  Of 
course this idealization seldom holds in practice. For 
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Figure 3: Example of three rectangular objects. The 
P(j) and Q(i) functions are now the sums of trapezoids. 
Observe that P(j) has a gap at row j0, indicating that 
the problem can be simplified into sub-problems 
above and below this row. 



example if the background color is saturated white then 
any pixels interior to the rectangles will be confused as 
background, resulting in P(j) and Q(i) functions that 
deviate from perfect trapezoids, even when only a single 
object is present.  The main role of P(j) and Q(i) is to 
show where gaps occur; only approximate location of the 
knee points is needed in singleObject() and once we 
know a sub-image contains at most a single object it is 
possible to estimate its vertices with care. Tested on 
hundreds of groups of scanned photos, receipts and 
business cards the algorithm behaves very robustly. Figure 
6 shows an example. 
Being recursive, the algorithm is inherently efficient,  with 
little duplication of effort. A detailed analysis of 
complexity is in [2]. 
 
[1] A. Jain, “Fundamentals of Image Processing,” Prentice-Hall. 
[2] C. Herley, “Recursive Extraction of Objects from Images,” 
in preparation. 

 

 
 
 
 

 
 
 
 Figure 5. Examples of various configurations of 
rectangular objects. All but the top left example are 
simplified to sub-images that contain a single object. The 
splits generated by our algorithm are shown as dotted 
lines. 
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Figure 4: decoupling the example of Figure 3 by splitting 
above and below row j0. We recalculate P(j) and Q(i) for 
the new sub-images. (a) We find the sub-image above j0 
is now the single object case (b) The sub-image below j0 
now has a new split in Q(j) at column i1 (allowing further 
simplification). 

(a) 

Figure 6. Actual segmentation of a scanned image. The 
image consists of four rectangular objects; the dotted 
black lines indicate the splits generated by our algorithm. 
All vertices were correctly found. 


