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ABSTRACT

In this paper, we present two different double-talk detection schemes
for Acoustic Echo Cancellation (AEC). First, we present a novel nor-
malized detection statistic based on the cross-correlation coefficient
between the microphone signal and the cancellation error. The deci-
sion statistic is designed in such a way that it meets the needs of an
optimal double-talk detector. We also show that the proposed detec-
tion statistic converges to the recently proposed normalized cross-
correlation based double-talk detector [1], the best known cross-
correlation based detector. Next, we present a new hybrid double-
talk detection scheme based on a cross-correlation coefficient and
two signal detectors. The hybrid algorithm not only detects double-
talk but also detects and tracks any echo-path variations efficiently.
We compare our results with other cross-correlation based double-
talk detectors to show their effectiveness.

1. INTRODUCTION

Most teleconferencing conversations are conducted in the presence
of acoustic echoes [2]; if the delay between the speech and its echo
is more than a few tens of milliseconds, the echo is distinctly no-
ticeable. An acoustic echo canceller (AEC) is used to remove the
echo created due to the loudspeaker-microphone environment [3].
Echo cancellation is achieved by adaptively synthesizing a replica
of the echo and subtracting the result from the echo-corrupted sig-
nal [2]. When the near-end talker is active or when the speech comes
from both the far-end and near-end, the filter coefficients will diverge
from the true echo path impulse response if adaptation is enabled. A
double-talk detector is used to stop the AEC’s filter adaptation dur-
ing periods of near-end speech [3].

Double-talk detection plays a very important part in acoustic
echo cancellation. A double-talk detection algorithm should be able
to detect a double-talk condition quickly and accurately so as to
freeze adaptation as soon as possible; at the same time it should
be able to track any echo-path changes and should be able to dis-
tinguish double-talk from the echo-path variations [4]. To solve this
problem, this paper presents two different techniques for double-talk
detection. An optimum decision variable ξ for double-talk detection
should behave as follows [3]:

1. If double-talk is not present i.e. v = 0, then ξ ≥ T .

2. If double-talk is present i.e. v �= 0, then ξ < T . The thresh-
old T must be a constant independent of the data and the de-
cision statistic ξ must be insensitive to echo-path variations
when v = 0.

Figure 1 shows the basic structure of the adaptive acoustic echo
canceller. The far-end signal x is filtered through the room impulse

response h to get the echo signal

y(n) = hTx (1)

where

h = [h0 h1 .... , hL−1]
T ,

x = [x(n) x(n − 1) .... , x(n − L + 1)]T ,

and L is the length of the echo-path. This echo signal is added to the
near-end speech signal v to get the microphone signal

m(n) = y(n) + v(n). (2)

The error signal at time n is defined as

e(n) = m(n) − ĥTx (3)

and is used to adapt the L taps of the AEC’s adaptive filter ĥ.
This paper is structured as follows. In section 2, we review pre-

vious double-talk detection algorithms. In section 3, the novel nor-
malized double-talk detection algorithm is formulated and we also
show a link between the proposed algorithm and the one proposed
in [1]. We propose the new hybrid double-talk detection scheme in
section 4. Next, we do a comprehensive study on the proposed algo-
rithms in section 5 which is followed by a summary and conclusions
in section 6.

2. PREVIOUS WORK

Referring to Figure 1, Ye and Wu [4] first proposed using the cross-
correlation vector between the far-end signal vector x, which is played
out of the speakers, and the AEC’s cancellation error e, rex = E[exT ],
as the basis for double-talk detection. In this paper, we will refer
to this algorithm as XECC. Simulation results by Benesty [1] have
shown that this approach does not work well for detecting double-
talk, and a theoretical derivation provides further insight. Noting
that the near-end speech v is independent of the far-end signal x
and assuming all of the signals are zero mean, the cross-correlation
between the AEC’s error signal and the speaker signal is

rex = E[(y + v − ĥTx)xT]

= E[(hTx − ĥTx)xT]

= (hT − ĥT)Rxx (4)

where E[•] denotes the mathematical expectation and
Rxx = E[xxT]. Clearly from equation 4 we observe rex is high
only when there is a change in the echo-path; hence this approach is



  

Fig. 1. Basic AEC Model

more suitable for tracking echo-path variations rather than detecting
double-talk.

More recently, Benesty, et. al. [1] [5] proposed a double-talk de-
tection algorithm based on the cross-correlation between the far-end
signal vector x and the microphone signal scalar m, rxm = E[xm],
which we refer to as XMCC in this paper. Benesty’s decision statis-
tic used to detect double-talk in [1] is given by

ξXMCC =
√

rT
xm(σ2

mRxx)−1rxm (5)

where Rxx is defined earlier and the variance of the microphone
signal (σ2

m) is

σ2
m = E[mmT ] = E[(y + v)(y + v)T ]

= E[yyT ] + E[vvT ] = E[hTx(hTx)T ] + σ2
v

= hTRxxh + σ2
v (6)

and σ2
v is the near-end speech power.

3. NORMALIZED DOUBLE-TALK DETECTION BASED
ON THE MICROPHONE SIGNAL AND THE AEC ERROR

CROSS-CORRELATION

Instead of using rex or rxm as discussed in section 2, we propose
using the cross-correlation between the cancellation error e and the
microphone signal m, rem = E[em], as the basis for double-talk
detection. This algorithm will be called MECC in this paper.

rem = E[(y + v − ĥTx)(y + v)T ]

= E[(hTx − ĥTx + v)(hTx + v)T ]

= E[(hTx − ĥTx)xTh + vvT ]

= (hT − ĥT)Rx,xh + σ2
v. (7)

We define our new normalized decision statistic to be:

ξMECC = 1 − rem

σ2
m

. (8)

Substituting equations 6 and 7 in 8 we get:

ξMECC = 1 − (hT − ĥT)Rxxh + σ2
v

hTRxxh + σ2
v

=
ĥTRxxh

hTRxxh + σ2
v

. (9)

We observe from equation 9, that for v = 0, ξMECC ≈ 1 and for
v �= 0, ξMECC < 1. Thus, the proposed detection statistic meets
the needs of an optimal double-talk detector.
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Fig. 2. Illustrating the convergence of the proposed MECC and the
XMCC double-talk detectors.

The values for rem and σ2
m in (8) are exact and not available in

practice. As a result, the final decision statistic is given by:

ξMECC = 1 − r̂em

σ̂2
m

(10)

which is based on the estimates r̂em[n] and σ̂2
m[n]. The estimates are

found using the exponential recursive weighting algorithm, [6] [7]:

r̂em[n] = λr̂em[n − 1] + (1 − λ)e[n]mT [n]

σ̂2
m[n] = λσ̂2

m[n − 1] + (1 − λ)m[n]mT [n]

where e[n] is the captured cancellation error sample at time n, m[n]
is the captured microphone signal sample at time n, and λ is the
exponential weighting factor. If

ξMECC < T (11)

we conclude that the captured sample of the microphone signal is
corrupted by the near-end speech and halt adaptation of the AEC’s
adaptive filter(s). Otherwise, we continue adapting.

In addition to its simplicity, the main advantage of the proposed
detection statistic is that only the maximum cross-correlation needs
to be computed instead of computing the entire cross-correlation
vector required by the other algorithms. This results in significant
computational savings as compared to the other algorithms; we only
require 2 multiplications, 2 additions, 1 subtraction and a division to
compute the decision statistic at each sample (i.e. 6 operations per
sample), whereas for the Benesty’s test statistic 3L + 3 operations
are required to compute the detection statistic at each sample where
L is the frame size (typically L ≥ 512).

3.1. Relationship Between New and Benesty’s Test Statistic

The proposed decision statistic is given by (10), which theoretically
can be rewritten as in (9), and Benesty’s double-talk decision statis-
tic is given in (5). The decision statistics are different as the former
is based on rem, and the latter is based on rxm. Although the deci-
sion statistics are different, they can be shown to result in a similar
expression. Substituting rxm = Rxxh and σ2

m = hTRxxh+ σ2
v in

(5), we get

ξ2
XMCC = hTRxx(σ2

mRxx)−1Rxxh

=
hTRxxh

hTRxxh + σ2
v

(12)



and from (9) we have

ξMECC =
ĥTRxxh

hTRxxh + σ2
v

. (13)

In addition to the square root, the other difference between the de-
cision statistics is in the numerator; we have the taps of the AEC
filter ĥT in ξMECC and the true echo-path impulse response hT in
ξXMCC . However for practical implementation and computational
simplicity, the authors in [1] substitute ĥT for hT resulting in similar
decision statistics. Simulations in Figure 2 shows that the proposed
decision statistic has similar performance compared to Benesty’s test
statistic. However, our algorithm is significantly simpler and com-
putationally efficient.

4. HYBRID DOUBLE-TALK DETECTION

In this section, we introduce a hybrid double-talk detector based on
a cross-correlation measure between the microphone and AEC can-
cellation error similar to the idea presented in section III and the
double-talk detection algorithm based on speech detection and dis-
criminator based on real-time recurrent learning (RTRL) presented
in [8]. The architecture for the hybrid double-talk detection algo-
rithm is shown in Figure 3

In this algorithm, we use a different cross-correlation measure
between the cancellation error e and the microphone signal m given
by the estimated cross-correlation function,(ECC):

ECC[t] =
Pm,e[t]

Pe[t]Pm[t]
. (14)

The ECC is the maxima of the correlation in a frame and is updated
using the exponential recursive weighting algorithm [6] [7]

P 2
e [t] = λP 2

e [t − 1] + (1 − λ)e[t]eT[t] (15)

P 2
m[t] = λP 2

m[t − 1] + (1 − λ)m[t]mT [t] (16)

Pm,e[t] = Pm,e[t − 1] + (1 − λ)e[t]mT [t] (17)

where e[t] is the captured cancellation error vector in the time frame
t, m[t] is the captured microphone signal vector at the time frame
t and λ is the exponential weighting factor. Alternatively, we could
also use the MECC test statistic given in (10). Smaller values of
λ provide better tracking capability but worse estimation accuracy.
In practice for slowly time varying signals, 0.9 ≤ λ ≤ 1 is usu-
ally chosen [4]. We observe from (14), the cross-correlation is high
whenever there is a change in the echo-path and/or when the near-
end speech is present. To differentiate the near-end speech from the
echo-path variations we use a speech detector and signal discrimator
based on real time recurrent learned (RTRL) [8] which is described
next.

Frequency domain logistic discriminative speech detectors are
used to detect the presence of speech [9]. The class probability is
estimated as

Pt =
1

1 + exp(−WTχt)
(18)

where Pt is the probability of speech at time frame t, WT are the
trained weights (1×frequencybins) and χt is a vector of extracted
features in each frequency bin at the time frame t. The trained
weights WT are obtained using Real Time Recurrent Learning [10]
and are obtained by off-line training. For a detailed discussion on
speech detectors and their training process, see [8].
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Fig. 3. Hybrid Double-talk Detection Model

We use two detectors at the microphone to detect the presence of
the near-end speech as shown in Figure 3. For the microphone sig-
nal detector (NESD) we use the logarithm of the estimated posterior
SNR as the feature [9]:

χNESD(k, t) = 10{log |M(k, t)|2 − log NNE(k, t)} (19)

where NNE is the noise energy in frequency bin k and time-frame t
at the near-end. The noise power N can be tracked using [11]. In
this paper we use a minima tracker (for each frequency bin we look
back a few frames (e.g. 25) and choose the lowest value of the signal)
followed by smoothing, to track the noise floor [11]. This NESD
detector gives the presence of speech at the microphone, which can
be due to near-end speech or the far-end echo.

To differentiate the near-end speech from the far-end echo we
use a special detector/discriminator SD which requires features that
differentiate the near-end speech from the far-end echo. Thus we use
the logarithm of the ratio of the instantaneous power of the micro-
phone signal M to the instantaneous power of the far-end signal X
as the feature, i.e.

χSD(k, t) = 10{log |M(k, t)|2 − log |X(k, t)|2}. (20)

It was observed in [8] that the extracted features are distinct for
different scenarios. The extracted features are typically largest for
only the near-end speech, smallest for the echo-only case, and in
between for the case of double-talk. Different feature levels corre-
spond to different probability levels; larger features correspond to
higher probabilities. For the echo-only case, the extracted features
are always low independent of the echo-path; hence the special de-
tector/disriminator is independent of the echo-path in the absence of
near-end speech.

We confirm the presence of the near-end speech when both the
detectors indicate the presence of speech. A speech detection based
double-talk detector [8] when used alone for double-talk detection
does not give superior performance. However, the performance can
be improved by combining it with the proposed cross-correlation
measure. The hybrid double-talk detector works as follows:

1. When both the detectors indicate a high probability of the
presence of speech (i.e. PNESD(t) ≥ PThreshold1 and
PSD(t) ≥ PThreshold2 ) and the estimated cross-correlation
ECC(t) ≥ Rth then the captured frame of the microphone
signal is corrupted by the near-end speech.

2. When PNESD(t) ≥ PThreshold1 , PSD(t) < PThreshold2

and ECC(t) ≥ Rth then the signal at the microphone is
echo only due to echo-path change.

3. When PNESD(t) ≥ PThreshold1 , PSD(t) < PThreshold2

and ECC(t) < Rth then the signal at the microphone is
echo only without echo-path change.
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In the first condition, we halt adaptation of the adaptive filter coeffi-
cients, but continue adapting in the last two conditions. The results
in Figure 4 use the ECC, but using the MECC test statistic (8) in the
hybrid double-talk detector may perform equal to or slightly better
than using the ECC test statistic.

5. EXPERIMENTS AND RESULTS

We now introduce simulation results for the proposed double-talk
detectors. The performance is characterized in terms of the proba-
bility of miss (Pm) as a function of near-end to far-end speech ratio
(NFR) under a probability of false alarm (Pf ) constraint [5]. The
probability of miss (Pm) is the probability of not detecting (miss)
double-talk when it is present; therefore a smaller value of Pm in-
dicates better performance. To evaluate the proposed double-talk
detectors we follow [5].

The recorded digital speech sampled at 16 KHz is used as far-
end speech x and near-end speech v and a measured L = 8000
sample (500 ms) room impulse response of a 10′ × 10′ × 8′ room is
used as the loudspeaker-microphone environment h. We compare
our results with the conventional cross-correlation (XECC) based
double-talk detector proposed in [4] and the RTRL based double-
talk detector proposed in [8]. The Pm characteristics of all the four
methods under the constraint of Pf = 0.1 are shown in Figure 4. It is
clear that the hybrid and the proposed normalized detection statistic
(MECC) significantly outperform the conventional (XECC) double-
talk detector over a full-range of NFR values. Also it can be ob-
served that the hybrid double-talk detection scheme outperforms the
RTRL based double-talk detector for most of the NFR values. Thus,
we conclude that the performance of the RTRL based double-talk
detector [8] is improved by combining it with the proposed cross-
correlation measure. At low values of NFR, the RTRL and hybrid
double-talk detector perform better than the MECC algorithm based
on the optimal test statistic. Most likely, the increased performance
is due to improved speech detection capabilities of RTRL in the pres-
ence of noise.

It should be noted that the performance of the proposed normal-
ized decision statistic (MECC) is exactly similar to the Benesty’s test
statistic (XMCC), the best known cross-correlation based double-
talk detector. However, our detection statistic is computationally

very efficient, the detection threshold T is independent of the data
and is insensitive to echo-path variations.

6. CONCLUSIONS

We have proposed two different techniques for double-talk detec-
tion. First, we introduced the novel normalized decision statistic; the
proposed detection statistics meets the needs of an optimal double-
talk detector, is computationally very efficient and converges to the
best known cross-correlation based double-talk detector. Next, we
formulated the hybrid double-talk detection scheme. The hybrid
double-talk detector works on a frame by frame basis; the algorithm
not only detects double-talk but also detects and tracks any echo-path
variations. This is achieved at the cost of increased computational
complexity.
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