

Experiences with Place Lab: An Open Source Toolkit
for Location-Aware Computing

Timothy Sohn† William G. Griswold† James Scott‡ Anthony LaMarca*
Yatin Chawathe* Ian Smith* Mike Y. Chen*

†Computer Science and Engineering
University of California, San Diego

{tsohn,wgg}@cs.ucsd.edu

‡Intel Research Cambridge
james.w.scott@intel.com

*Intel Research Seattle
{anthony.lamarca, yatin.chawathe,

ian.e.smith, mike.y.chen}@intel.com

ABSTRACT
Location-based computing (LBC) is becoming increasingly im-
portant in both industry and academia. A key challenge is the
pervasive deployment of LBC technologies; to be effective they
must run on a wide variety of client platforms, including laptops,
PDAs, and mobile phones, so that location data can be acquired
anywhere and accessed by any application. Moreover, as a nas-
cent area, LBC is experiencing rapid innovation in sensing tech-
nologies, the positioning algorithms themselves, and the applica-
tions they support. Lastly, as a newcomer, LBC must integrate
with existing communications and application technologies, in-
cluding web browsers and location data interchange standards.

This paper describes our experience in developing the Place Lab
architecture, a widely used first-generation open source toolkit for
client-side location sensing. Using a layered, pattern-based archi-
tecture, it supports modular development in any dimension of
LBC, enabling the field to move forward more rapidly as these
innovations are shared with the community as pluggable compo-
nents. Our experience shows the benefits of domain-specific ab-
stractions, and how we overcame high-level language constraints
to support a wide array of platforms in this emerging space. We
also describe our experience in re-engineering parts of the archi-
tecture based on the needs of the user community, including in-
sights on software licensing issues.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Do-
main-specific architectures; D.2.13 [Software Engineering]: Re-
usable Software – Domain Engineering;

General Terms
Algorithms, Design

Keywords
Location-based computing, pervasive computing, ubiquitous
computing, software architecture

1. INTRODUCTION
Location-based computing (LBC) is now possible on a variety of
platforms for use in developing and deploying rich context-aware
applications. However, location-based computing depends heavily
on the technologies on which it is deployed and how it is applied.
In order to achieve effective, pervasive deployment of location
technologies, the supporting software must run on a variety of
platforms including laptops, PDAs, and mobile phones. These
devices vary widely in their computing power, operating system
environment, sensing technologies, and in the types of application
deployed on them. Developing a portable location-based comput-
ing software architecture to support these platform demands is
challenging. Moreover, LBC is a nascent research area, and the
positioning algorithms are still in a period of rapid innovation.
Examples of recent positioning algorithms involve using particle
filters [8] or fingerprinting techniques [4]. A driver for innovation
in positioning algorithms is the emergence of new sensing tech-
nologies. Radio beacon technologies such as 802.11, Bluetooth,
GSM, and infrared are all being used for positioning. The posi-
tioning capabilities of other technologies are also being actively
explored, including new technologies such as ultra wide-band, and
with novel uses of existing technologies such as sound hardware
[14]. Lastly, location-based computing must integrate with exist-
ing communications and application technologies in order to
prove useful. The ability to incorporate location into an applica-
tion without significant effort is useful in promoting the greater
aspect of context-awareness to affect application behavior.

Place Lab is a widely used first-generation open source toolkit for
client-side location-based computing. Previously, we described
our radio beacon-based approach to location inference and pro-
vided experimental results [12]. In this paper we describe our
experiences and lessons learned in developing, deploying, and
evolving the software architecture of Place Lab. Place Lab sup-
ports multiple platforms and development in three different di-
mensions: applications, positioning algorithms, and sensing tech-
nologies. The Place Lab toolkit, available through
SourceForge.net and placelab.org, has been downloaded more
than 8287 times in the 18 months since its initial release in April
2004. The download activity reflects the high interest in exploring
location-based computing. Place Lab is in use by several universi-
ties as part of research projects and classroom instruction.

We first detail the requirements for pervasive client-side deploy-
ment of a location-based computing architecture, and then de-
scribe the Place Lab architecture. We then discuss several experi-
ences that demonstrate the architecture’s effectiveness as well as
its limitations, and close with a summary of lessons learned that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

others may find useful in developing toolkits for mobile comput-
ing.

Our experiences with Place Lab show the multi-faceted benefits
of application-specific abstractions, and how we overcame high-
level language constraints to support a wide array of platforms in
this emerging space. We also describe our experience in re-
engineering part of the architecture based on demands from the
user community, and licensing concerns in handling a successful
open-source project from a corporate research environment when
it is widely adopted by developers in both industry and academia.

2. RELATED APPROACHES
Place Lab falls into the general category of fusion architectures.
Conceptually, a fusion architecture refines raw streams of data
from possibly many sources into a sequence of high-level infer-
ences. Fusion architectures have a place in wide-scale defense
systems, context-aware computing, and sensor networks, to name
a few examples. The purpose of such an architecture is to sepa-
rate the different aspects of the data processing into logical algo-
rithmic components that can be independently improved, re-
placed, or composed. A dominant theme in fusion architectures is
the pipelining, stacking, or layering of the components into a se-
quence of processing stages that successively refine a data stream
into inferences.

An example fusion architecture for defense systems is the U.S.
Department of Defense’s JDL1 data fusion conceptual architec-
ture, which contains five phases of situation modeling, proceeding
from top to bottom [18]: (1) sub-object (signal-level) data associa-
tion and estimation, (2) object refinement (or determination), (3)
situation estimation, (4) significance estimation (prediction), and
(5) process refinement (improvement of the fusion process).
The fusion approach is common in location-based systems. The
seven-layer Location Stack architecture focuses on the inference
of location-related information [9], and provides an infrastructure
for location-sensing based on Bayesian inference [8]. ActiveCam-
pus is a server-centric database-oriented fusion architecture for
extensible, integrated application design [7]. It employs a multi-
stage mediator-observer design pattern [19] to create the stages of
processing. The event-driven database model provides for decou-
pling of components yet tight integration: the storing of a lower-
level data element into the database triggers an event that causes
the next stage of processing to begin; the storing of that stage’s
results triggers another event that starts the next stage of process-
ing. New inference components can be added by registering for
the appropriate events.

The Context Toolkit is a small set of highly interoperable generic
base classes from which a programmer can derive specific sub-
classes for the development of a streaming peer-to-peer networked
context-aware application [6]. The primary classes are a Context
Widget, which abstracts away a sensor as a data stream, a Context
Interpreter, which provides a mapping of one type of context
element to another, and a Context Aggregator, a context widget
that fuses data streams from multiple widgets. The data element
streamed between widgets is a generic key-value pair.

Place Lab follows the general lines of a layered, event-streaming
fusion architecture. Like ActiveCampus, it makes heavy use of the
mediator/observer design pattern, and its components map to
those of the Context Toolkit. What distinguishes it is its focus on

1JDL stands for “Joint Directors of Laboratories”.

location sensing, client-side inference, portability, and the ex-
pected presence of the application itself on the client.

3. LOCATION-BASED COMPUTING
 REQUIREMENTS
The academic and industrial research communities are particularly
active in three aspects of location-based computing: sensing, sen-
sor fusion in positioning algorithms, and applications. There is
also substantial activity in the area of personal computing devices
that might deploy location-based applications. Our motivation is
to provide a toolkit to serve as a “playground” for researchers and
developers in each area, by minimizing the overhead required to
explore their aspect of location-based computing. We also want to
provide modularity for software components in each area, facili-
tating interoperability. Ideally, a new sensor fusion algorithm and
a new sensor type could be developed independently, but would
be able to operate together without any modification to either.

While modularity is a goal, providing this through pure abstrac-
tion is not useful to the research or developer communities. For
example, the 802.11 and GSM radio technologies have very dif-
ferent characteristics. If data from these two sources is abstracted
so that they are indistinguishable, this hinders the development of
algorithms that handle those sources differently to achieve better
accuracy. We therefore desire “lossless” abstractions between
modules, in which useful abstractions can be made, but essential
details remain accessible.

Our final priority is supporting a wide range of platforms, so that
an application relying on many different form factors are all sup-
ported. A cross-platform toolkit has the additional advantage of
providing platform independence for the code developed, thus
allowing code to be more easily reused between applications that
are otherwise very different.

3.1 Sensing
Sensing involves observations about the environment, such as
nearby radio access points. There are many different ways of con-
ducting sensor measurements. Some of these result in direct posi-
tioning information, such as the Global Positioning System (GPS).
Others provide data that can indirectly indicate location, such as
observing an 802.11 access point that is known to be mounted on
a particular building.

We wish to provide an API that allows different sensor types to be
easily integrated into the architecture. Beyond the type of data that
sensors produce, we identify at least three distinct ways in which
sensor types differ and a LBC architecture must flexibly support.
First, some sensors are implemented such that their natural inter-
face is synchronous, polling the environment in some way, while
others are asynchronous, generating events in reaction to the envi-
ronment. Second, some sensors may generate groups of simulta-
neous data that are connected by belonging to the same “scan” in
a given timeframe, while other sensors may generate individual
readings that are conceptually independent of one another. (Note
that, according to our principle of not hiding potentially important
distinctions in the data, we cannot simply present a group of read-
ings as multiple individual readings). Third, sensors may be local
(i.e., running on the same device as the user’s application) or re-
mote (i.e., running on another device that the user is carrying).

3.2 Fusion
The fusion stage includes any sort of transformation from raw
sensor measurements to information such as a coordinate position

or a place name. The architecture should allow for flexible fusion
of the sensed data. In addition to the sensor data, it might need to
make use of persistent information about the environment. For
example, observing several nearby access points and relating them
with persistent information about where they are located can help
determine one’s current position.
As with the sensor stage, fusion algorithms may be developed that
naturally operate synchronously or asynchronously. Some may
support sensor data from only a certain sensor type, others from
broad classes of sensor types. Also, the fusion might be carried
out on the same device as the application, or on a remote device to
the application (e.g. on a computing server, if the application de-
vice is underpowered). Similarly, any persistent storage that is
necessary for fusion might be available either locally or remotely
(making use of network connectivity).

3.3 Applications
The range of potential location-aware applications is quite broad
[16], [17], and it is unrealistic to expect that a single toolkit could
provide seamless support for every unanticipated need. Nonethe-
less, an LBC architecture must aim to make it easy to prototype or
“upgrade” a wide range of applications.

Two dimensions of existing work that we wish to support in the
space of location-based computing are existing applications and
existing location data standards that applications use. A signifi-
cant number of location-aware applications have been developed
alongside a particular type of location sensor. For example, loca-
tion-enhanced map applications typically use GPS for positioning,
but GPS is limited to outdoor environments. A powerful ability
would be to simply plug in an indoor positioning technology
without any software changes. In the latter category, we find loca-
tion standards such as NMEA [1] and JSR-179 [3], which numer-
ous applications are built on (e.g., many applications relying on
GPS information understand NMEA).
A third dimension, application support, is in how location infor-
mation is presented to applications. Although some applications
might understand global latitude/longitude coordinates, others
might expect locations relative to some base point (e.g., the corner
of a building).

4. THE PLACE LAB ARCHITECTURE
Place Lab is a client-side location-inferencing architecture de-
signed to meet the above requirements. In this section we begin
with an architectural overview, then describe how the platform is
abstracted away, and finally discuss the components of the archi-
tecture in detail. Key to the Place Lab approach is the predomi-
nant use of flexibility over generality. Parnas has motivated why
flexibility should be preferred over generality, noting problems
such as performance and extended development time [15]. The
former is a problem on mobile platforms, the latter a problem in a
timely area like LBC. Moreover, generality is hard to attain in an
area in which much of the terrain is still unexplored.

4.1 Overview
Place Lab is a fusion architecture based on a layered mediator-
observer hybrid design pattern (Figure 1). Conceptually, in each
layer of the architecture a location Tracker receives locative
Measurement objects from the layer below (e.g., {timestamp,
remote beacon ID, signal strength}), correlates it to persistent loca-
tion meta data from a read-only repository called a Mapper (e.g.,
{beacon ID, {latitude, longitude}}), infers a location, and then
publishes a location inference event as a higher-level Measure-

ment, known as an Estimate when an actual location is included
(e.g., {timestamp, latitude, longitude, error radius}). Feeding the
Trackers at the bottom of the layered architecture are one or more
Spotters that gather raw sensor outputs and abstract them as initial
Measurement events. The Placelab façade object groups and hides
the above components. Optionally, a separate adapter can provide
a standard location-reporting interface to the application (e.g.,
GPS serial port emulation). At the top of the architecture, loca-
tion-based applications process a stream of location events from
the service or directly from the Placelab object.

The rules governing the use of the architecture make it flexible in
its ability to be extended or adapted. For one, the distinction of a
read-only Mapper from a dynamic Tracker separates data-oriented
and algorithm-oriented innovation in location tracking. This per-
mits greater mixing and matching of development in each area,
and also isolates platform-independent tracking algorithms from
store-dependent mapping services. Two, the ability to stack
Trackers on top of Spotters enables the composition of independ-
ent innovations in different aspects of tracking. At its simplest,
Place Lab could be instantiated with a GPS Spotter and no Track-
ers (Figure 2a). Using one Tracker, Place Lab could be instanti-
ated with a GSM Spotter and a Bluetooth Spotter feeding an Inter-
sectionTracker that performs fusion of these measurements
(Figure 2b). The fusion aspect is important because Bluetooth has
a range of 10-30 meters, while GSM ranges on the order of kilo-
meters, but has wide geographic coverage. Fusing both these
technologies enables more accurate positioning and wider cover-
age. On a PC, it could be instantiated with an 802.11 (WiFi) Spot-

Figure 1. The Place Lab Architecture. Boxes are major compo-
nents. Solid arrows are calls; dashed arrows are events. Coordi-
nate acts as a library extension of the Java environment. All
events are of subtype Measurement, permitting flexible composi-
tion of Spotters and Trackers. Each Tracker effectively has its
own Mapper, but they may be combined for ease of implementa-
tion. Nominally run in a J2ME environment, the Coordinate
abstraction hides the possible absence of floating point number
support. The Placelab object hides the separate components, and
a separate adapter can provide a standard location-reporting in-
terface (e.g., GPS serial port emulation) to the application.

ter, a CentroidTracker, and a SmoothingTracker above that
smoothes the incoming Estimates into a more probable path
(Figure 2c). Such a configuration could be painlessly upgraded by
replacing the CentroidTracker with a newly developed Finger-
printTracker, with no change required to the Spotter or Smooth-
ingTracker (Figure 2d).

This conceptual view of the architecture reflects our goal of pro-
viding seamless interoperability of independently developed com-
ponents. In addition, three other overarching architectural issues
had to be addressed to adhere to our requirements outlined in the
previous section.

One, an asynchronous event-driven model is not appropriate to all
applications. For example, some applications update their location
information only on request from the user. Others are imple-
mented sequentially and use polling to acquire updates. Conse-
quently, all Spotters and Trackers provide an alternative synchro-
nous method-call interface. Generally, superclasses implement the
emulation of one in terms of the other, so that subclasses are not
burdened with satisfying these error-prone details.

Two, a consumer of Estimate events may need the source data
from which they were computed, especially in a research envi-
ronment. Therefore, when a Tracker creates a new Estimate, it
provides a link back to the Measurements or Estimates that con-
tributed to it. Consequently, each Estimate inexpensively refer-
ences its provenance, making it available to subsequent trackers.

Three, for performance reasons, the Mappers in a particular in-
stantiation of the architecture might be fused, perhaps as one big
hash table, a database with multiple tables, or a sequential tuple
store. These implementation details are of course abstracted away
from the Trackers, each of which views the Mapper as its own.
This abstraction of independence is assisted by the fact that the
Mappers are effectively read-only.

4.2 Platform Abstraction
We decided to implement Place Lab on Java 2 Micro Edition
(J2ME). This is a subset of the Java 2 Standard Edition (J2SE)
framework, and only uses Java 1.1 facilities. J2ME was chosen
because many mobile phones support it, using the Mobile Infor-
mation Device Profile (MIDP) and Connected Limited Device
Configuration (CLDC) libraries. Since Java virtual machines are

available for PC and PDA platforms, J2ME allows much of Place
Lab’s core code to be directly reusable across these three plat-
forms. The upwards compatibility of J2ME with J2SE also per-
mits PC-specific components to take advantage of the full J2SE
facilities without loss of flexibility in the overall architecture.

4.2.1 Real Number Support
There are a number of differences between Java implementations
on the PC/PDA and phone platforms that required special atten-
tion. The most notable of these is that floating point arithmetic is
not available on many mobile phone models, but location coordi-
nates, notably latitude/longitude, are normally represented as real
number quantities. Five digits of decimal precision are required to
achieve one-meter location precision with decimal lati-
tude/longitude measurements.

Many of the solutions considered were determined to be unten-
able. Using integer representations of coordinates throughout
Place Lab was rejected since programmers would not be able to
use the coordinate systems that were familiar to them. Using an
abstracted representation for a number, instantiated as a fixed-
point or floating-point number depending on the platform, was
rejected since Java does not allow the basic arithmetic operators
like + and * to be defined for new types. All arithmetic operations
would have to be coded using long-hand method calls (i.e.,
x.add(y).times(z)), which was deemed to be too inconvenient. It
also would have been computationally expensive.

The chosen solution was based on the observation that most ma-
nipulations of coordinates do not need to access the numerical
values of the coordinates themselves. A Coordinate abstract data
type class, with suitable method definitions, can hide the
fixed/floating distinction from much of the code. For example,
application code that needs to compute the distance between two
coordinates A and B can invoke A.distanceFrom(B) to obtain an
integer value in meters. Programmers whose needs are not sup-
ported by existing methods have a choice between writing new
methods (allowing their code to operate seamlessly across fixed
and floating platforms) or casting the Coordinate to the true fixed
or floating subtype, and sacrificing portability for simplicity of
development. We incorporated a factory class called Types that
detects the availability of floating point (using Java’s Sys-

 (a) (b) (c) (d)
Figure 2. Four actual Place Lab instantiations. (a) Using only a GPS Spotter, (b) Running on a phone platform using a GSM Spotter
and a Bluetooth Spotter with an Intersection Tracker and a Record Management System (RMS) Mapper, (c) 802.11 Spotter with a Cen-
troid Tracker and a Smoothing Tracker stacked on top using a Java DataBase Connectivity (JDBC) Mapper, and (d) 802.11 Fingerprint
Tracker and a Smoothing Tracker stacked on top.

tem.getProperty method) and manufactures the appropriate
Coordinates for the platform, thus abstracting away this particular
platform difference from the programmer.

4.2.2 Cross-Platform Libraries
Another difference between PC/PDA and mobile phone platforms
is in the libraries available. In particular, persistent storage access
and user interfaces are both provided by different libraries on the
two types of platforms.
Persistent storage is treated similarly to real numbers in that the
supported storage abstractions are one level up from the typical
primitive abstractions (e.g., open, read, write, seek, close), which
would not perform well on many platforms. However, one appro-
priate high-level abstraction with two obvious implementation
alternatives does not exist; the anticipated usage patterns over the
persistent store affect which storage structure would be most effi-
cient. Consequently, storage-centric Place Lab services are de-
clared as Java interfaces (e.g., User Preferences and Mapper
(4.3.2)) and a few obvious class implementations are provided.

User interface abstraction is more difficult to achieve, given the
rich functionality available (and expected) today. Since it is the
application that interacts with users, and not Place Lab itself,
cross-platform user interfaces are not addressed in Place Lab.

4.2.3 Native Interfaces
The final issue with using the Java platform is that many types of
location sensors are not intrinsically supported; Java classes can-
not directly access these sensors. The Java Native Interface (JNI)
is useful here, allowing platform-specific sensor “drivers” to be
written in another language and accessed by Java. Current mobile
phones, do not support the JNI; instead, a “loopback networking”
paradigm is used to virtualize a sensor as a generic operating sys-
tem service that Java can access, such as a network stream. More
details on handling sensors are found in the next subsection.

4.3 Architecture Components
We now describe the components of Place Lab, namely Spotters,
Mappers, Trackers, and the interfaces provided for applications.

4.3.1 Spotters
Spotters are the components that abstract away the hardware that
senses the environment. In the cases where native code is required
to interface with the hardware, we have implemented the smallest
feasible native part, and performed as much logic as possible in
the Java component. This facilitates code reuse; for example, our
802.11 spotter uses a different native part on the Pocket PC
(PDA), Mac OS X (PC), Windows XP (PC) and Linux (PC) plat-
forms, but share the same Java part. Maximizing the reuse oppor-
tunities required careful design. The four standard spotters im-
plemented in Place Lab are 802.11, GSM, Bluetooth, and GPS.
These technologies are varied in how they obtain data from their
data source. The 802.11 and GSM spotters require a native code
module that is accessed synchronously; however for Bluetooth, a
Java API standard (JSR-82 [2]) is available that returns measure-
ments asynchronously. Supporting these different data access
methods, as well as exposing a flexible synchronous or asynchro-
nous interface to outside components led us to the spotter class
hierarchy shown in Figure 3.

At the top level, the Spotter interface exposes synchronous and
asynchronous modes of interaction for outside components to use.

The interface also defines the generic methods to support these
operations. The AbstractSpotter class implements the
Spotter interface, establishing a framework for the emulation
of synchronous calls with asynchronous events, and vice versa.
The AbstractSpotter is extended by the Synchro-
nousSpotter and the AsynchronousSpotter classes.
The SynchronousSpotter provides facilities for emulating
the asynchronous interface with synchronous hardware. The
AsynchronousSpotter provides the converse emulation. The
result of this hierarchy is that spotter implementations can sub-
class either the synchronous or asynchronous spotter class, which-
ever is more natural for the spotter, and the other interface is auto-
matically emulated.
The GPSSpotter superclass handles the parsing of NMEA data
formats provided by GPS devices. Ideally, GPSSpotter would
extend the SynchronousSpotter or Asynchro-
nousSpotter class, but differences in its subclasses prevent it
from doing so. The SynchronousSpotter is designed to only
work with synchronous hardware, but GPS devices are not syn-
chronous since several lines of NMEA data must be correlated
together to get a coordinate position. The Asynchro-
nousSpotter is designed to use its own thread system to per-
form queries in the background. In contrast, the Seri-
alGPSSpotter subclass uses a separate library that notifies
the subclass whenever NMEA data is available from the serial
port, which the subclass then gathers and processes. This is essen-
tially a streaming interface that separates the SerialGPSSpot-
ter from the AsynchronousSpotter method of gathering
data. The other subclass, BluetoothGPSSpotter, communi-
cates with a GPS device over Bluetooth that is continuously
streaming NMEA data. Its natural interface is asynchronous,
properly fitting the subclass under the AsynchronousSpot-
ter. However, the GPSSpotter class handles NMEA data
parsing, so the BluetoothGPSSpotter needs to extend
GPSSpotter. Therefore, since both spotters require NMEA data
processing capabilities, but the SerialGPSSpotter does not
fit into the synchronous or asynchronous interface, GPSSpotter
extends AbstractSpotter directly.

Figure 3. Spotter Hierarchy Diagram. Beacon technology spot-
ters extend the Synchronous or Asynchronous spotter depending
on the interface. GPS devices are treated as serial ports that
produce NMEA data. The GPS Spotter class handles NMEA
parsing and allows for synchronous or asynchronous access.

Spotters communicate with other components using Measure-
ment objects. A Measurement captures a spotter’s observed
readings and the timestamp of its capture. Beacon-based spotters
(e.g., 802.11, GSM, Bluetooth) construct BeaconMeasure-
ment objects that are made up of one more BeaconReading
objects, while the GPS spotter streams PositionMeasure-
ment objects that contain Coordinate objects.

4.3.2 Mappers
Mappers are static databases of information that are used by
trackers to retrieve location information for spotter measurements.
The data stored in a mapper always includes a location coordinate,
but may include other useful information such as coverage radius.
The data to populate a mapper can come from a mapping data-
base, or user-defined files containing known beacon locations.
Mappers can also be populated by war-driving data.2 Constructing
the dataset for a mapper can be non-trivial [12]. The cache of data
stored in a mapper can be for any size area scale ranging from
single cities to the entire world.

Mappers are sensitive to the platform. For example, a mapper
using the Java DataBase Connectivity (JDBC) or Java DataBase
Manager (JDBM) libraries would work well on a PC, but would
not function on a mobile phone. The Mapper interface defines
the methods a mapper must implement to insert, query, and re-
trieve data from the persistent store (Figure 4). The Abstract-
Mapper class implements the Mapper interface to provide a
superclass for all Mapper classes to extend. The superclass also
implements caching of data for quick accesses. To date we have
implemented several mappers for the PC using JDBC and JDBM,
a mapper for the mobile phone that uses MIDP’s Record Man-
agement System (RMS) interface, and a mapper that draws data
from Wigle.net, a world wide 802.11 beacon database. Mapper
objects can be composed through a CompoundMapper to search
through multiple sources of data.
Mappers are generic with respect to the data they store. To
achieve this, each entry in the database is represented as a serial-
ized object that includes the name of the class–a subclass of Bea-
con–that represents it. The Beacon abstract class is a factory
that uses reflection to construct and initialize the appropriate Bea-
con subclass object for the mapper.

2 War-driving is the act of driving around with a mobile device

equipped with a GPS device and a radio (typically an 802.11
card but sometimes a GSM phone or Bluetooth device) in order
to collect a trace of network availability.

4.3.3 Trackers
Trackers are the system components that produce position esti-
mates. The tracker utilizes the stream of spotter observations as
Measurement objects, together with persistent data from Map-
pers, to calculate a single position Estimate. In doing so,
Trackers may perform sensor fusion by combining data from mul-
tiple types of sensors with different characteristics. Estimate
objects are a subclass of Measurement allowing the estimates
of one tracker to be used as input to another tracker (Figure 2c).
The complexity of trackers varies enormously, from simply find-
ing the centroid of recently seen beacons’ positions to trackers
that take into account signal strength, propagation models, envi-
ronment information, and physical world models.

The Tracker class defines the methods that trackers must im-
plement (Figure 5). Each tracker must implement a method to
update its position estimate when it receives a new spotter meas-
urement, filtering out any unwanted measurements. For example,
some trackers may not be able to understand GPS Measurements.
If an application or another tracker is registered with the tracker,
the update of a tracker’s estimate will result in estimate event
being announced. Regardless, the updated estimate is available
through a procedural interface as well. Multiple trackers can be
composed using a CompoundTracker. The Compound-
Tracker updates each individual tracker separately and returns a
compound estimate that contains the estimates from each tracker.
Numerous trackers have been implemented in Place Lab [5].

4.3.4 Platform/Application Adapter—Façade
When Place Lab is instantiated, it must be adapted to the platform,
available sensors, and the application. In a few cases, runtime
checks are used to detect the available sensors, but generally the
configuration is determined by how the Placelab adapter ob-
ject is subclassed and instantiated. The Placelab constructor
accepts a tracker, mapper, and list of spotters, and composes them
into the specified configuration. An application then obtains loca-
tion information by communicating with the Placelab object
by one of several means, described below.

Place Lab currently runs in many different platform configura-
tions, as shown in Figure 6. Several Placelab objects and sub-
classes exist to provide convenient preconfigured combinations
for several platforms. For example, because of platform limita-
tions and available spotter technologies, the PlacelabPC object
for the PC platform instantiates a different set of spotters than the
PlacelabPhone object for the phone platform.

Figure 4. The Mapper Hierarchy. Each class that extends Ab-
stractMapper is able to hold any Beacon type. JDBC and JDBM
run on PCs, RMS runs on phones. The Wigle.net mapper uses
802.11 data from the Wigle website. A CompoundMapper can
combine any of these other Mappers.

Figure 5. An Excerpt of the Tracker Hierarchy. All trackers
extend the Tracker class. Most trackers are single beacon-based
and extend the Beacon Tracker class. A Compound Tracker can
combine several Trackers together.

Place Lab provides five interfaces for communicating location
information to applications; one directly connects to the Placelab
object, and the others provide the Placelab data as an existing
standard service. The availability of these services means that an
application that already uses location via an existing standard may
require no modification to use Place Lab.

1. Direct Linking. Applications may communicate with the
Placelab object directly. For applications that use a pre-
configured Place Lab object, they can invoke a single method
to start the location tracking service. The application can use ei-
ther an asynchronous or synchronous interface to obtain posi-
tion estimates from Place Lab.

2. Daemon. For some applications, it may be desirable or neces-
sary to not link them directly to Place Lab. To support such ap-
plications, Place Lab can be run as a daemon and be queried via
a simple HTTP interface. This interface allows programs writ-
ten in a wide range of languages and styles to use Place Lab.

3. Web Proxy. A web proxy interface uses Place Lab functional-
ity to support location-enhanced web services by augmenting
outgoing HTTP requests with extension headers that denote the
user’s location. By configuring web browsers to use this proxy
(in the same way one uses a corporate firewall’s proxy), web
services that understand the extension headers can provide loca-
tion-based service to the user.

4. JSR 179. To support existing Java location-based applications,
Place Lab can provide location through the JSR-179 Java loca-
tion API [3].

5. NMEA 0183. Place Lab provides a virtual serial-port interface
that mimics an external GPS unit by emitting NMEA 0183
navigation sentences in the same format generated by GPS
hardware. Since many applications (e.g., Microsoft MapPoint)
already understand NMEA, they can seamlessly take advantage
of location functionality developed using Place Lab (which
might operate indoors, unlike GPS).

The Place Lab source tree consists of 28,537 non-comment source
statements (NCSS). Of this, 1344 NCSS are devoted to core func-
tionality, 2996 NCSS to the different spotters, 1411 NCSS to dif-
ferent mappers, and 2400 NCSS to several trackers.

5. EXPERIENCE
The Place Lab toolkit, available through SourceForge.net and
placelab.org, has been downloaded more than 8287 times in the
18 months since its release in April 2004. A key question is how
adaptable Place Lab has shown itself to be, and what lessons we
can take away from this experience. First, we provide some data
to shed light on the level and kinds of use Place Lab is seeing in
the software community. Second, we discuss three informal case
studies on three unanticipated extensions of Place Lab. In the next
section, we conclude with some lessons learned in developing and
publicizing the Place Lab toolkit.

5.1 Example Place Lab Applications
At the University of Washington and Dartmouth, Place Lab has
been used as a part of several class projects in location-aware
computing. Researchers are currently using Place Lab to conduct
experiments with graph-based tracking algorithms, multi-floor
location estimation, and GSM fingerprinting. Campus-wide instal-
lations are already running at the University of California, San
Diego and Georgia Institute of Technology, providing location-
based services for researchers to study how they are used in those
settings. Several location-aware applications using Place Lab also
have been developed by the user community:

• Topiary is a rapid prototyping tool developed at UC Berkeley
for designing location-enhanced applications [13]. A Topiary
prototype can be run on one mobile device while the designer
monitors the user’s interactions from a second device. In this
mode, the user’s location is determined in a Wizard-of-Oz-style
by the designer who changes the user’s location by clicking on
a map. Topiary has been extended to also use live location es-
timates from Place Lab running on the user’s device. Place Lab
has proven especially useful because it can operate indoors and,
permitting Topiary to be used in a wide variety of settings.

• A2B is an online catalog of web pages that allows users to add
new geocoded pages (pages tagged with location metadata) or
query for nearby pages (http://a2b.cc/). The location can be
provided automatically by an application talking to a GPS unit.
A2B extended their interface to support HTTP requests from
clients running the Place Lab web proxy. Devices running the
proxy can talk directly to A2B in any web browser and auto-
matically use their location-based lookup service.

5.2 Case Studies of Adaptation
5.2.1 Motorola V300
The Motorola V300 is a popular phone supporting Java J2ME,
with several hardware and software differences from the Symbian
Series 60 phones already supported. We now discuss the relevant
differences and their implications for the Place Lab toolkit.

The V300 does not provide native programmability like Symbian
models, and instead provides for directly accessing GSM beacon
information within Java. However, this method only provides
access to the Cell ID variable, as opposed to the cell ID, area ID,
network code, and country code variables available on the Series
60 phones. Without these three other pieces of information, it is
impossible to form a unique key to look up a beacon’s location in
the Mapper. This is because cell IDs may be reused across differ-
ent areas, telephony providers, or countries.

We first dealt with the different means of access, using a runtime-
detection approach in GSMSpotter (Figure 3), which expects to
get the location via a native component accessed through a loop-

Operating
Systems

Architec-
tures 802.11 GSM Blue-

tooth

Windows XP x86 ● ●* ●

Linux x86, ARM,
XScale ●

Mac OS X Power PC ●

Pocket PC ARM, XScale ● ●* ●

Symbian Series 60
phones ● ●

Figure 6. Platform configurations that Place Lab currently
runs on. All platforms also can access GPS devices for loca-
tion. Place Lab is able to use GSM on the Windows XP and
Pocket PC platforms because of a remote GSM spotter over
Bluetooth, discussed in Section 5.2.

back. The code was extended to initially call Sys-
tem.getProperty(“Cell ID”) to see if it returned a valid
(e.g., non-null) cell ID. If so, this means the software is running
on a device that does not need a native component. Otherwise the
spotter will attempt to use the native component to obtain GSM
information. For this change, one method was modified in
GSMSpotter and another added, for a total change of 11 NCSS.

Second, we modified the RMSMapper component (Figure 4) to
handle non-unique keys. Since the V300 only provides one part of
a four-part key (cell ID:area ID:MCC:MNC), the RMSMapper
cannot do a direct lookup to find matching beacons. Conse-
quently, the RMSMapper was modified to find the relevant bea-
cons using only a matching cell ID. If more than one beacon
matches, all the matching beacons are returned. A list of matching
beacons is already expected by trackers, so no modification to a
tracker is necessary unless the tracker algorithm specifically de-
pends upon uniqueness.3 One method was modified and another
method was added, for a total change of 39 NCSS.

With these small and local modifications the Place Lab software
was successfully ported to the V300 device. No modifications
were needed for the Tracker or existing applications.

5.2.2 Remote GSM Spotter
Providing a local interface to an existing remote spotter displays a
unique dimension of flexibility. A remote spotter provides the
ability to combine the strengths of two platforms to achieve a
superior result. In this case, we demonstrate making GSM meas-
urements available on a laptop, thus achieving virtually ubiquitous
location sensing of the mobile phone platform [12] on a device
with considerable computational power and GUI capabilities.

In particular, we extended Place Lab to provide a GSM-over-
Bluetooth spotter. The remote spotter requires a new class that
runs on the master device and an application on the phone to ob-
tain the needed GSM measurements.

The first change was to develop a J2ME MIDlet for the phone that
advertises itself as a remote GSM spotter over the Bluetooth inter-
face. The GSMBTMidlet application uses GSMSpotter with-
out modification to obtain the cell measurements, and stores them
in a buffer. The application required 210 NCSS.
The second modification was to add a RemoteGSMSpotter
class that discovers the remote GSM spotter service and periodi-
cally polls the phone via Bluetooth to read the buffer of cell read-
ings. The RemoteGSMSpotter extends the Synchro-
nousSpotter (Figure 3), fitting easily into the Spotter
abstraction. Since much spotter functionality is abstracted away in
SynchronousSpotter, the RemoteGSMSpotter required
only 108 NCSS. It can be instantiated on any device that is
equipped with a Bluetooth radio. It is currently in use on the Win-
dows XP and Pocket PC platforms (Figure 6).

5.2.3 Fingerprint Tracker
The location-aware computing literature is full of location estima-
tion algorithms. Not all algorithms fit the typical Place Lab model
of estimating a device’s position from the positions of well-known
beacons. For example, RADAR uses a technique known as fin-
gerprinting: it relies on the fact that at a given position, a user

3 Trackers are generally written in a defensive manner, since in-

consistencies abound, such as access points being moved or re-
porting non-conformant ID’s.

may hear different beacons with certain signal strengths; this set
of beacons and their associated signal strengths represent a fin-
gerprint that is unique to that position [4]. RADAR compares the
readings generated by the spotter to a database of pre-collected
fingerprints from previous war drives, and places the user at (or
near) the fingerprint(s) that most closely match the readings ob-
tained from the spotter. RADAR uses Euclidean distance in signal
space as its comparison function. A related algorithm, RightSpot
uses relative rank ordering based on signal strength as its com-
parison function [11]. Thus, adding a fingerprinting tracker to
Place Lab is a good test of its adaptability.

The fingerprint tracker depends on a different kind of mapper that,
instead of aggregating information for each beacon into a single
location estimate, keeps track of all the raw fingerprints gathered
during previous mapping war drives. Each fingerprint is com-
posed of a set of { beacon-id, signal-strength } tuples obtained in
a scan and the location where the scan was taken. The mapper is
queried with a measurement to find all fingerprints that share
beacons with the supplied measurement. By not requiring a strict
fingerprint match, the algorithm is tolerant to missing or newly
deployed beacons. To support efficient retrieval of this kind from
the large fingerprint corpus, a modular hashing method using
MySQL’s bitwise comparisons was formulated. As a conse-
quence, a special fingerprint mapper was implemented, rather than
using the existing JDBC mapper or JDBM mapper.
The FingerprintTracker receives a set of readings from a
spotter, queries the FingerprintMapper for all matching
fingerprints, and estimates the position of the user based on either
the RADAR or the RightSpot algorithm. Details of these algo-
rithms and their use in Place Lab are available [5].

The FingerprintTracker is 106 NCSS, and the Finger-
printMapper is 315 NCSS. The resulting tracker is an interop-
erable component of Place Lab, usable on any PC/PDA platform
that can provide 802.11 measurements. However, the novel per-
formance and functional requirements for the mapper entailed
implementing a new one from scratch, making this case study a
limited success. Another iteration on this project could result in
the mapper being subclassed from one of the existing mappers, or
perhaps generalizing the fingerprint mapper to be independent of
the fingerprint data representation, admitting wider reuse.

5.2.4 Support for Place-Based Location
A barrier to deploying location-based applications with Place Lab
is the requirement for a geographic mapping of access points.
Mapping data is not always available, which can hinder work in
location-based applications. Two location-based applications that
used Place Lab circumvented this requirement by using place
names instead of coordinates [16], [17]. By place, we mean per-
sonal or conceptual places like “home” or “can buy stamps here”.
These place-based applications simply appropriate the spotters,
and build their own tracker and mapper. In essence, finger prints
are mapped to place names. There is still a requirement to visit a
place once before it can be identified, but this barrier is much
lower than having a coordinate map from wardrives for an area.
We found that supporting place names is important to promote the
development of more location-based applications by the user
community. Therefore, we re-engineered part of the architecture
to make place a first-class citizen in the toolkit, giving developers
the appropriate abstractions.

Our approach to supporting place is similar to BeaconPrint, which
maps radio fingerprints to place names [10]. Whenever a person

visits a place, he must name that place, so that the fingerprints are
associated in the place mapper. The place mapper keeps track of
all the raw fingerprints for a place gathered during the wardrive
step. The mapper is queried with a measurement to find all finger-
prints that share beacons with the supplied measurement, and
returns the associated place names.
The PlaceTracker receives a set of readings from a spotter,
queries the PlaceMapper for matching fingerprints, and returns
a PlaceEstimate, which contains a list of nearby places based
on their Euclidean distance in signal space. The introduction of a
PlaceEstimate led us to change the existing Estimate class
into an abstract class, and define a LatLonEstimate class to
support coordinate-based location. Both PlaceEstimate and
LatLonEstimate extend Estimate. Thus, applications can
use either place-based or coordinate-based location through the
standard Placelab adapter.
Our approach to integrating place is open to the criticism of re-
quiring an additional mapper, as with the fingerprint case study.
However, the PlaceTracker is a step towards making place a first
class citizen in the architecture. Use of the new abstractions in
three additional place-based applications let researchers focus on
application-level issues. Delivering a PlaceEstimate not only en-
ables applications to use meaningful location information beyond
coordinates, but it also enables developers to explore different
methods for place detection and naming. One alternative approach
to place naming that the architecture allows for is to derive place
names from coordinate locations. This is possible by having a
coordinate-based tracker feed into a place-based tracker. Making
both place names and coordinates available in a location toolkit is
valuable in promoting innovation in algorithms and applications.

5.2.5 Windows Mobile Smartphone
Throughout the Place Lab development process, many more loca-
tion-based applications were developed and deployed for the mo-
bile phones than all the other platforms combined. This is not
surprising since phones afford more mobility than laptops or
PDAs. The phone is also the most constrained platform, with defi-
ciencies such as the lack of Java Native Interface (JNI) and unim-
plemented APIs by the manufacturers (e.g., vibration and photo
capabilities) that can enhance location-based applications. These
constraints prevented developers from integrating location tech-
nology using Place Lab with platform tools such as audio, video,
and address books. We thus saw an opportunity in migrating Place
Lab to a C# implementation to target the Windows Mobile Smart-
phone because it offers tighter integration with the platform, such
as one’s Outlook calendar.

The reimplementation was essentially a straightforward transla-
tion. Some of the native spotter implementations had to change,
but their exported APIs remained the same. The feature footprint
of C# .NET Compact Framework was a good fit to that used in
our J2ME implementation. Our solutions for staying within that
footprint with domain-level abstractions to replace missing system
services also carried over well. Upward platform compatibility
was also preserved, including operation on non-Windows plat-
forms (i.e., Macintosh and Linux) through Mono, an open source
implementation of the .NET framework. This success demon-
strates a unique kind of architectural flexibility with respect to its
lack of dependence on one-of-a-kind language features.

5.3 Licensing the Place Lab Toolkit
One of Intel’s business motivations for Place Lab was to create
interest in LBC systems, hence the decision to make the software
freely available. We chose the GNU Public License (GPL) be-
cause many researchers were familiar with it, and several software
libraries that could accelerate the research (e.g., a faster Java Col-
lections Library) were available under the GPL. Using the librar-
ies required that our code be under the GPL as well. We were
unaware of the substantial concerns that major companies have
about code licensed under the GPL, mostly due to its viral nature.

As the project gained visibility, both commercially and within the
research community, we realized the importance of having an
appropriate license for Place Lab. Location systems expose a
user’s privacy to spyware, or other forms of abuse. Thus, it is
imperative that the software license protect a user’s privacy from
these possible threats. Our use of GPL components precluded a
release with a more privacy-oriented license.

The redevelopment of the C# version of Place Lab for smart-
phones allowed us to start fresh. We made sure not to add external
code where the license would conflict with our licensing plans. In
practice, this banned external code and libraries from being added
into the code base. This care enabled both better user privacy
protections and greater commercial adoption.

6. CONCLUSIONS & LESSONS LEARNED
Location-based computing is an emerging area that is currently
tackling issues such as sensing, inferencing, and applications. The
Place Lab client-side architecture for LBC was designed to sup-
port portable modular innovation in each of these topics. Location
is only one type of context to appear on personal devices, and our
experiences provide an informal roadmap for future developers of
context-aware systems.

The cost of generality—a one-size-fits-all fusion architecture—is
too high for the expected benefits. The Place Lab architecture
emphasizes flexibility and adaptability, permitting a customized
software image to be easily generated for each platform. Prevail-
ing high-level languages are powerful enablers. The aggressive
use of flexibility over generality in our architecture led to several
insights that we encapsulate here as lessons learned.

Use Domain Abstractions for Missing Services. High-level
languages did not eliminate embedded platform compatibility
problems, due to the extraordinary constraints imposed by the
platform and the range of innovation experienced in the domain.

We recommend that, to hide hardware distinctions, create ab-
stractions that are domain-specific and one-level up from their
standard level of abstraction. These domain-level abstractions
provide not only convenience to framework adopters, but also
good performance because the abstractions are not required to
completely reproduce the low-level functionality that is not avail-
able natively. In particular, for floating point we created a location
coordinate abstraction, rather than a general-purpose number ab-
straction. For storage, we provided a beacon mapping abstraction
rather than a general-purpose storage abstraction.

Hierarchical Design Patterns add Adaptability. To address the
variability in platforms and location-based needs, we employed
interchangeable and stackable building-block design patterns in
the form of a layered mediator/observer design pattern. The me-
diator/observer design pattern permits reusing and composing
elements within a fusion layer, extending reusability beyond the
standard substitutability of fusion layers. Inter-layer type com-

patibility provides the flexibility to freely compose layers to
achieve new types and levels of fusion inference, without need for
extending the architecture. Together, these patterns enable gener-
ating a new configuration for a new platform or application, while
maximizing reuse without the overhead of generality.

Language is an Architectural Feature. Programming language
and the way we used it was critical to our architecture. If used
wisely, the programming language of choice can play the role of
an architectural component; changes are not fully localized, but
the high costs of change are mitigated.
First, it was not practical to anticipate the most general ways that
components in our architecture could be composed. Simple re-
placement or addition of components was insufficient to accom-
modate novel innovations like place and fingerprinting. Yet, the
power of Java’s type system served to mitigate the propagation of
those changes in the form of generalizing the types used to com-
municate between components needed.

Second, the demands of performance and tight integration on
mobile platforms can require replacing the “language component”
in a software architecture. By restricting the use of a program-
ming language to its widely accepted features, other languages
can be found to be semantically compatible, thus averting disaster.
The subsets of J2ME and C# .NET Compact Framework that we
used were largely compatible in their features and type systems,
enabling a simple translation of the J2ME Place Lab into C#.

A Flexible Software License Enables Adoption. Our open-
source license of the C# version of Place Lab is designed to pro-
tect a user’s privacy, and avoid the viral nature of the GPL. The
license is conducive for wide adoption of Place Lab because of its
flexibility. We attained the desired licensing outcome by follow-
ing three principles:
• Expose team early to the complexities of software licensing.
• Have a clear set of licensing goals and making sure those

goals are articulated often to development team members.
• Make the trade-offs between rebuilding versus “grabbing

something off the net” visible to all team members.

7. ACKNOWLEDGMENTS
We thank Place Lab’s contributors and users for their support.

8. REFERENCES
[1] NMEA 0183. http://www.nmea.org/pub/0183/

[2] Java Bluetooth API (JSR-82).
http://www.jcp.org/en/jsr/detail?id=82

[3] Java Location API (JSR-179).
http://www.jcp.org/en/jsr/detail?id=179

[4] Bahl, P. and Padmanabhan, V. RADAR: An In-Building RF-
based User Location and Tracking System. In Proceedings of
IEEE Infocomm 2000, pp. 775-784.

[5] Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J. Accuracy
Characterization for Metropolitan-scale Wi-Fi Localization.
In Proceedings of Mobisys 2005.

[6] Dey, A.K., Salber, D., Abowd, G.D. A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. HCI Journal 16(2-4), 97-166.

[7] Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R.,
Ratto, M., Shapiro, R.B., Truong, T.M. ActiveCampus – Ex-
periments in Community-Oriented Ubiquitous Computing.
IEEE Computer, Vol. 37, No. 10, pp. 73-81, October 2004.

[8] Hightower, J., Borriello, G. Particle Filters for Location Es-
timation in Ubiquitous Computing: A Case Study. In Pro-
ceedings of Ubicomp 2004, pp. 88-106.

[9] Hightower, J., Brumitt, B., Borriello, G. The Location Stack:
A Layered Model for Location in Ubiquitous Computing. In
Proceedings of WMCSA 2002.

[10] Hightower, J., Consolvo, S., LaMarca, A., Smith, I., Hughes,
J. Learning and Recognizing the Places We Go. In Proceed-
ings of Ubicomp 2005.

[11] Krumm, J., Cermak, G., Horvitz, E. RightSPOT: A Novel
Sense of Location for a Smart Person Object. In Proceedings
of Ubicomp 2003, pp. 36-43.

[12] LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J.,
Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter,
F., Tabert, J., Powledge, P., Borriello, G., Schilit, B. Place
Lab: Device Positioning Using Radio Beacons in the Wild.
In Proceedings of Pervasive 2005, pp. 116-133.

[13] Li, Y., Hong, J.I., Landay, J.A. Topiary: A Tool for Prototyp-
ing Location-Enhanced Applications. In Proceedings of User
Interface Software and Technology 2004.

[14] Madhavapeddy, A., Scott, D., Sharp, R. Context-Aware
Computing with Sound. In Proc. of Ubicomp 2003.

[15] Parnas, D. L., Designing Software for Ease of Extension and
Contraction, IEEE Transactions on Software Engineering,
vol. 5, no. 2, pp. 128-138, March, 1979.

[16] Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J.,
Sohn, T., Hughes, J., Iachello, G., Abowd, G. Social Disclo-
sure of Place: From Location Technology to Communication
Practice. In Proceedings of Pervasive 2005, pp. 134-151.

[17] Sohn, T., Li, K. A., Lee, G., Smith, I., Scott, J., Griswold,
W.G. Place-Its: A Study of Location-Based Reminders on
Mobile Phones. In Proceedings of Ubicomp 2005.

[18] Steinberg, A.N., Bowman, C.L., and White, F.E. Revision to
the JDL data fusion model. In Proceedings of SPIE Aero-
Sense (Sensor Fusion: Architectures, Algorithms, and Appli-
cations III), pp. 430-441, Orlando, Florida, 1999.

[19] Sullivan, K.J. and Notkin, D. Reconciling environment inte-
gration and component independence. In Proceedings of the
SIGSOFT ’90, pp. 22-33.

