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ABSTRACT 
Location-based computing (LBC) is becoming increasingly im-
portant in both industry and academia. A key challenge is the 
pervasive deployment of LBC technologies; to be effective they 
must run on a wide variety of client platforms, including laptops, 
PDAs, and mobile phones, so that location data can be acquired 
anywhere and accessed by any application. Moreover, as a nas-
cent area, LBC is experiencing rapid innovation in sensing tech-
nologies, the positioning algorithms themselves, and the applica-
tions they support. Lastly, as a newcomer, LBC must integrate 
with existing communications and application technologies, in-
cluding web browsers and location data interchange standards. 

This paper describes our experience in developing the Place Lab 
architecture, a widely used first-generation open source toolkit for 
client-side location sensing. Using a layered, pattern-based archi-
tecture, it supports modular development in any dimension of 
LBC, enabling the field to move forward more rapidly as these 
innovations are shared with the community as pluggable compo-
nents. Our experience shows the benefits of domain-specific ab-
stractions, and how we overcame high-level language constraints 
to support a wide array of platforms in this emerging space. We 
also describe our experience in re-engineering parts of the archi-
tecture based on the needs of the user community, including in-
sights on software licensing issues. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – Do-
main-specific architectures; D.2.13 [Software Engineering]: Re-
usable Software – Domain Engineering;  

General Terms 
Algorithms, Design 

Keywords 
Location-based computing, pervasive computing, ubiquitous 
computing, software architecture 

1. INTRODUCTION 
Location-based computing (LBC) is now possible on a variety of 
platforms for use in developing and deploying rich context-aware 
applications. However, location-based computing depends heavily 
on the technologies on which it is deployed and how it is applied. 
In order to achieve effective, pervasive deployment of location 
technologies, the supporting software must run on a variety of 
platforms including laptops, PDAs, and mobile phones. These 
devices vary widely in their computing power, operating system 
environment, sensing technologies, and in the types of application 
deployed on them. Developing a portable location-based comput-
ing software architecture to support these platform demands is 
challenging. Moreover, LBC is a nascent research area, and the 
positioning algorithms are still in a period of rapid innovation. 
Examples of recent positioning algorithms involve using particle 
filters [8] or fingerprinting techniques [4]. A driver for innovation 
in positioning algorithms is the emergence of new sensing tech-
nologies. Radio beacon technologies such as 802.11, Bluetooth, 
GSM, and infrared are all being used for positioning. The posi-
tioning capabilities of other technologies are also being actively 
explored, including new technologies such as ultra wide-band, and 
with novel uses of existing technologies such as sound hardware 
[14]. Lastly, location-based computing must integrate with exist-
ing communications and application technologies in order to 
prove useful. The ability to incorporate location into an applica-
tion without significant effort is useful in promoting the greater 
aspect of context-awareness to affect application behavior. 

Place Lab is a widely used first-generation open source toolkit for 
client-side location-based computing. Previously, we described 
our radio beacon-based approach to location inference and pro-
vided experimental results [12]. In this paper we describe our 
experiences and lessons learned in developing, deploying, and 
evolving the software architecture of Place Lab. Place Lab sup-
ports multiple platforms and development in three different di-
mensions: applications, positioning algorithms, and sensing tech-
nologies. The Place Lab toolkit, available through 
SourceForge.net and placelab.org, has been downloaded more 
than 8287 times in the 18 months since its initial release in April 
2004. The download activity reflects the high interest in exploring 
location-based computing. Place Lab is in use by several universi-
ties as part of research projects and classroom instruction.  

We first detail the requirements for pervasive client-side deploy-
ment of a location-based computing architecture, and then de-
scribe the Place Lab architecture. We then discuss several experi-
ences that demonstrate the architecture’s effectiveness as well as 
its limitations, and close with a summary of lessons learned that 
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others may find useful in developing toolkits for mobile comput-
ing.  

Our experiences with Place Lab show the multi-faceted benefits 
of application-specific abstractions, and how we overcame high-
level language constraints to support a wide array of platforms in 
this emerging space. We also describe our experience in re-
engineering part of the architecture based on demands from the 
user community, and licensing concerns in handling a successful 
open-source project from a corporate research environment when 
it is widely adopted by developers in both industry and academia.  

2. RELATED APPROACHES 
Place Lab falls into the general category of fusion architectures.  
Conceptually, a fusion architecture refines raw streams of data 
from possibly many sources into a sequence of high-level infer-
ences. Fusion architectures have a place in wide-scale defense 
systems, context-aware computing, and sensor networks, to name 
a few examples.  The purpose of such an architecture is to sepa-
rate the different aspects of the data processing into logical algo-
rithmic components that can be independently improved, re-
placed, or composed.  A dominant theme in fusion architectures is 
the pipelining, stacking, or layering of the components into a se-
quence of processing stages that successively refine a data stream 
into inferences. 

An example fusion architecture for defense systems is the U.S. 
Department of Defense’s JDL1 data fusion conceptual architec-
ture, which contains five phases of situation modeling, proceeding 
from top to bottom [18]: (1) sub-object (signal-level) data associa-
tion and estimation, (2) object refinement (or determination), (3) 
situation estimation, (4) significance estimation (prediction), and 
(5) process refinement (improvement of the fusion process). 
The fusion approach is common in location-based systems. The 
seven-layer Location Stack architecture focuses on the inference 
of location-related information [9], and provides an infrastructure 
for location-sensing based on Bayesian inference [8]. ActiveCam-
pus is a server-centric database-oriented fusion architecture for 
extensible, integrated application design [7]. It employs a multi-
stage mediator-observer design pattern [19] to create the stages of 
processing. The event-driven database model provides for decou-
pling of components yet tight integration: the storing of a lower-
level data element into the database triggers an event that causes 
the next stage of processing to begin; the storing of that stage’s 
results triggers another event that starts the next stage of process-
ing. New inference components can be added by registering for 
the appropriate events. 

The Context Toolkit is a small set of highly interoperable generic 
base classes from which a programmer can derive specific sub-
classes for the development of a streaming peer-to-peer networked 
context-aware application [6]. The primary classes are a Context 
Widget, which abstracts away a sensor as a data stream, a Context 
Interpreter, which provides a mapping of one type of context 
element to another, and a Context Aggregator, a context widget 
that fuses data streams from multiple widgets. The data element 
streamed between widgets is a generic key-value pair.  

Place Lab follows the general lines of a layered, event-streaming 
fusion architecture. Like ActiveCampus, it makes heavy use of the 
mediator/observer design pattern, and its components map to 
those of the Context Toolkit. What distinguishes it is its focus on 
                                                                    
1JDL stands for “Joint Directors of Laboratories”. 

location sensing, client-side inference, portability, and the ex-
pected presence of the application itself on the client.  

3. LOCATION-BASED COMPUTING  
      REQUIREMENTS 
The academic and industrial research communities are particularly 
active in three aspects of location-based computing: sensing, sen-
sor fusion in positioning algorithms, and applications. There is 
also substantial activity in the area of personal computing devices 
that might deploy location-based applications. Our motivation is 
to provide a toolkit to serve as a “playground” for researchers and 
developers in each area, by minimizing the overhead required to 
explore their aspect of location-based computing. We also want to 
provide modularity for software components in each area, facili-
tating interoperability. Ideally, a new sensor fusion algorithm and 
a new sensor type could be developed independently, but would 
be able to operate together without any modification to either. 

While modularity is a goal, providing this through pure abstrac-
tion is not useful to the research or developer communities. For 
example, the 802.11 and GSM radio technologies have very dif-
ferent characteristics. If data from these two sources is abstracted 
so that they are indistinguishable, this hinders the development of 
algorithms that handle those sources differently to achieve better 
accuracy. We therefore desire “lossless” abstractions between 
modules, in which useful abstractions can be made, but essential 
details remain accessible.  

Our final priority is supporting a wide range of platforms, so that 
an application relying on many different form factors are all sup-
ported. A cross-platform toolkit has the additional advantage of 
providing platform independence for the code developed, thus 
allowing code to be more easily reused between applications that 
are otherwise very different.  

3.1 Sensing 
Sensing involves observations about the environment, such as 
nearby radio access points. There are many different ways of con-
ducting sensor measurements. Some of these result in direct posi-
tioning information, such as the Global Positioning System (GPS).  
Others provide data that can indirectly indicate location, such as 
observing an 802.11 access point that is known to be mounted on 
a particular building.  

We wish to provide an API that allows different sensor types to be 
easily integrated into the architecture. Beyond the type of data that 
sensors produce, we identify at least three distinct ways in which 
sensor types differ and a LBC architecture must flexibly support. 
First, some sensors are implemented such that their natural inter-
face is synchronous, polling the environment in some way, while 
others are asynchronous, generating events in reaction to the envi-
ronment. Second, some sensors may generate groups of simulta-
neous data that are connected by belonging to the same “scan” in 
a given timeframe, while other sensors may generate individual 
readings that are conceptually independent of one another. (Note 
that, according to our principle of not hiding potentially important 
distinctions in the data, we cannot simply present a group of read-
ings as multiple individual readings). Third, sensors may be local 
(i.e., running on the same device as the user’s application) or re-
mote (i.e., running on another device that the user is carrying). 

3.2 Fusion 
The fusion stage includes any sort of transformation from raw 
sensor measurements to information such as a coordinate position 



 

or a place name. The architecture should allow for flexible fusion 
of the sensed data. In addition to the sensor data, it might need to 
make use of persistent information about the environment. For 
example, observing several nearby access points and relating them 
with persistent information about where they are located can help 
determine one’s current position. 
As with the sensor stage, fusion algorithms may be developed that 
naturally operate synchronously or asynchronously. Some may 
support sensor data from only a certain sensor type, others from 
broad classes of sensor types.  Also, the fusion might be carried 
out on the same device as the application, or on a remote device to 
the application (e.g. on a computing server, if the application de-
vice is underpowered).  Similarly, any persistent storage that is 
necessary for fusion might be available either locally or remotely 
(making use of network connectivity). 

3.3 Applications 
The range of potential location-aware applications is quite broad 
[16], [17], and it is unrealistic to expect that a single toolkit could 
provide seamless support for every unanticipated need. Nonethe-
less, an LBC architecture must aim to make it easy to prototype or 
“upgrade” a wide range of applications.  

Two dimensions of existing work that we wish to support in the 
space of location-based computing are existing applications and 
existing location data standards that applications use. A signifi-
cant number of location-aware applications have been developed 
alongside a particular type of location sensor. For example, loca-
tion-enhanced map applications typically use GPS for positioning, 
but GPS is limited to outdoor environments. A powerful ability 
would be to simply plug in an indoor positioning technology 
without any software changes. In the latter category, we find loca-
tion standards such as NMEA [1] and JSR-179 [3], which numer-
ous applications are built on (e.g., many applications relying on 
GPS information understand NMEA).   
A third dimension, application support, is in how location infor-
mation is presented to applications. Although some applications 
might understand global latitude/longitude coordinates, others 
might expect locations relative to some base point (e.g., the corner 
of a building).  

4. THE PLACE LAB ARCHITECTURE 
Place Lab is a client-side location-inferencing architecture de-
signed to meet the above requirements. In this section we begin 
with an architectural overview, then describe how the platform is 
abstracted away, and finally discuss the components of the archi-
tecture in detail. Key to the Place Lab approach is the predomi-
nant use of flexibility over generality. Parnas has motivated why 
flexibility should be preferred over generality, noting problems 
such as performance and extended development time [15].  The 
former is a problem on mobile platforms, the latter a problem in a 
timely area like LBC. Moreover, generality is hard to attain in an 
area in which much of the terrain is still unexplored. 

4.1 Overview 
Place Lab is a fusion architecture based on a layered mediator-
observer hybrid design pattern (Figure 1). Conceptually, in each 
layer of the architecture a location Tracker receives locative 
Measurement objects from the layer below (e.g., {timestamp, 
remote beacon ID, signal strength}), correlates it to persistent loca-
tion meta data from a read-only repository called a Mapper (e.g., 
{beacon ID, {latitude, longitude}}), infers a location, and then 
publishes a location inference event as a higher-level Measure-

ment, known as an Estimate when an actual location is included 
(e.g., {timestamp, latitude, longitude, error radius}). Feeding the 
Trackers at the bottom of the layered architecture are one or more 
Spotters that gather raw sensor outputs and abstract them as initial 
Measurement events. The Placelab façade object groups and hides 
the above components. Optionally, a separate adapter can provide 
a standard location-reporting interface to the application (e.g., 
GPS serial port emulation). At the top of the architecture, loca-
tion-based applications process a stream of location events from 
the service or directly from the Placelab object.     

The rules governing the use of the architecture make it flexible in 
its ability to be extended or adapted. For one, the distinction of a 
read-only Mapper from a dynamic Tracker separates data-oriented 
and algorithm-oriented innovation in location tracking. This per-
mits greater mixing and matching of development in each area, 
and also isolates platform-independent tracking algorithms from 
store-dependent mapping services. Two, the ability to stack 
Trackers on top of Spotters enables the composition of independ-
ent innovations in different aspects of tracking. At its simplest, 
Place Lab could be instantiated with a GPS Spotter and no Track-
ers (Figure 2a). Using one Tracker, Place Lab could be instanti-
ated with a GSM Spotter and a Bluetooth Spotter feeding an Inter-
sectionTracker that performs fusion of these measurements 
(Figure 2b). The fusion aspect is important because Bluetooth has 
a range of 10-30 meters, while GSM ranges on the order of kilo-
meters, but has wide geographic coverage. Fusing both these 
technologies enables more accurate positioning and wider cover-
age. On a PC, it could be instantiated with an 802.11 (WiFi) Spot-

 
Figure 1. The Place Lab Architecture. Boxes are major compo-
nents. Solid arrows are calls; dashed arrows are events. Coordi-
nate acts as a library extension of the Java environment. All 
events are of subtype Measurement, permitting flexible composi-
tion of Spotters and Trackers. Each Tracker effectively has its 
own Mapper, but they may be combined for ease of implementa-
tion. Nominally run in a J2ME environment, the Coordinate 
abstraction hides the possible absence of floating point number 
support. The Placelab object hides the separate components, and 
a separate adapter can provide a standard location-reporting in-
terface (e.g., GPS serial port emulation) to the application. 



 

ter, a CentroidTracker, and a SmoothingTracker above that 
smoothes the incoming Estimates into a more probable path 
(Figure 2c). Such a configuration could be painlessly upgraded by 
replacing the CentroidTracker with a newly developed Finger-
printTracker, with no change required to the Spotter or Smooth-
ingTracker (Figure 2d). 

This conceptual view of the architecture reflects our goal of pro-
viding seamless interoperability of independently developed com-
ponents. In addition, three other overarching architectural issues 
had to be addressed to adhere to our requirements outlined in the 
previous section. 

One, an asynchronous event-driven model is not appropriate to all 
applications. For example, some applications update their location 
information only on request from the user. Others are imple-
mented sequentially and use polling to acquire updates. Conse-
quently, all Spotters and Trackers provide an alternative synchro-
nous method-call interface. Generally, superclasses implement the 
emulation of one in terms of the other, so that subclasses are not 
burdened with satisfying these error-prone details.  

Two, a consumer of Estimate events may need the source data 
from which they were computed, especially in a research envi-
ronment. Therefore, when a Tracker creates a new Estimate, it 
provides a link back to the Measurements or Estimates that con-
tributed to it. Consequently, each Estimate inexpensively refer-
ences its provenance, making it available to subsequent trackers.  

Three, for performance reasons, the Mappers in a particular in-
stantiation of the architecture might be fused, perhaps as one big 
hash table, a database with multiple tables, or a sequential tuple 
store. These implementation details are of course abstracted away 
from the Trackers, each of which views the Mapper as its own.  
This abstraction of independence is assisted by the fact that the 
Mappers are effectively read-only.  

4.2 Platform Abstraction 
We decided to implement Place Lab on Java 2 Micro Edition 
(J2ME). This is a subset of the Java 2 Standard Edition (J2SE) 
framework, and only uses Java 1.1 facilities. J2ME was chosen 
because many mobile phones support it, using the Mobile Infor-
mation Device Profile (MIDP) and Connected Limited Device 
Configuration (CLDC) libraries. Since Java virtual machines are 

available for PC and PDA platforms, J2ME allows much of Place 
Lab’s core code to be directly reusable across these three plat-
forms. The upwards compatibility of J2ME with J2SE also per-
mits PC-specific components to take advantage of the full J2SE 
facilities without loss of flexibility in the overall architecture. 

4.2.1 Real Number Support 
There are a number of differences between Java implementations 
on the PC/PDA and phone platforms that required special atten-
tion. The most notable of these is that floating point arithmetic is 
not available on many mobile phone models, but location coordi-
nates, notably latitude/longitude, are normally represented as real 
number quantities. Five digits of decimal precision are required to 
achieve one-meter location precision with decimal lati-
tude/longitude measurements.  

Many of the solutions considered were determined to be unten-
able. Using integer representations of coordinates throughout 
Place Lab was rejected since programmers would not be able to 
use the coordinate systems that were familiar to them. Using an 
abstracted representation for a number, instantiated as a fixed-
point or floating-point number depending on the platform, was 
rejected since Java does not allow the basic arithmetic operators 
like + and * to be defined for new types. All arithmetic operations 
would have to be coded using long-hand method calls (i.e., 
x.add(y).times(z)), which was deemed to be too inconvenient. It 
also would have been computationally expensive. 

The chosen solution was based on the observation that most ma-
nipulations of coordinates do not need to access the numerical 
values of the coordinates themselves. A Coordinate abstract data 
type class, with suitable method definitions, can hide the 
fixed/floating distinction from much of the code. For example, 
application code that needs to compute the distance between two 
coordinates A and B can invoke A.distanceFrom(B) to obtain an 
integer value in meters. Programmers whose needs are not sup-
ported by existing methods have a choice between writing new 
methods (allowing their code to operate seamlessly across fixed 
and floating platforms) or casting the Coordinate to the true fixed 
or floating subtype, and sacrificing portability for simplicity of 
development. We incorporated a factory class called Types that 
detects the availability of floating point (using Java’s Sys-

       
       (a)            (b)       (c)             (d) 
Figure 2. Four actual Place Lab instantiations. (a) Using only a GPS Spotter, (b)  Running on a phone platform using a GSM Spotter 
and a Bluetooth Spotter with an Intersection Tracker and a Record Management System (RMS) Mapper, (c) 802.11 Spotter with a Cen-
troid Tracker and a Smoothing Tracker stacked on top using a Java DataBase Connectivity (JDBC) Mapper, and (d) 802.11 Fingerprint 
Tracker and a Smoothing Tracker stacked on top. 

 



 

tem.getProperty method) and manufactures the appropriate 
Coordinates for the platform, thus abstracting away this particular 
platform difference from the programmer. 

4.2.2 Cross-Platform Libraries 
Another difference between PC/PDA and mobile phone platforms 
is in the libraries available. In particular, persistent storage access 
and user interfaces are both provided by different libraries on the 
two types of platforms.  
Persistent storage is treated similarly to real numbers in that the 
supported storage abstractions are one level up from the typical 
primitive abstractions (e.g., open, read, write, seek, close), which 
would not perform well on many platforms. However, one appro-
priate high-level abstraction with two obvious implementation 
alternatives does not exist; the anticipated usage patterns over the 
persistent store affect which storage structure would be most effi-
cient. Consequently, storage-centric Place Lab services are de-
clared as Java interfaces (e.g., User Preferences and Mapper 
(4.3.2)) and a few obvious class implementations are provided.   

User interface abstraction is more difficult to achieve, given the 
rich functionality available (and expected) today. Since it is the 
application that interacts with users, and not Place Lab itself, 
cross-platform user interfaces are not addressed in Place Lab. 

4.2.3 Native Interfaces 
The final issue with using the Java platform is that many types of 
location sensors are not intrinsically supported; Java classes can-
not directly access these sensors. The Java Native Interface (JNI) 
is useful here, allowing platform-specific sensor “drivers” to be 
written in another language and accessed by Java.  Current mobile 
phones, do not support the JNI; instead, a “loopback networking” 
paradigm is used to virtualize a sensor as a generic operating sys-
tem service that Java can access, such as a network stream. More 
details on handling sensors are found in the next subsection. 

4.3 Architecture Components 
We now describe the components of Place Lab, namely Spotters, 
Mappers, Trackers, and the interfaces provided for applications. 

4.3.1 Spotters 
Spotters are the components that abstract away the hardware that 
senses the environment. In the cases where native code is required 
to interface with the hardware, we have implemented the smallest 
feasible native part, and performed as much logic as possible in 
the Java component. This facilitates code reuse; for example, our 
802.11 spotter uses a different native part on the Pocket PC 
(PDA), Mac OS X (PC), Windows XP (PC) and Linux (PC) plat-
forms, but share the same Java part.  Maximizing the reuse oppor-
tunities required careful design. The four standard spotters im-
plemented in Place Lab are 802.11, GSM, Bluetooth, and GPS. 
These technologies are varied in how they obtain data from their 
data source. The 802.11 and GSM spotters require a native code 
module that is accessed synchronously; however for Bluetooth, a 
Java API standard (JSR-82 [2]) is available that returns measure-
ments asynchronously. Supporting these different data access 
methods, as well as exposing a flexible synchronous or asynchro-
nous interface to outside components led us to the spotter class 
hierarchy shown in Figure 3.  

At the top level, the Spotter interface exposes synchronous and 
asynchronous modes of interaction for outside components to use. 

The interface also defines the generic methods to support these 
operations. The AbstractSpotter class implements the 
Spotter interface, establishing a framework for the emulation 
of synchronous calls with asynchronous events, and vice versa. 
The AbstractSpotter is extended by the Synchro-
nousSpotter and the AsynchronousSpotter classes. 
The SynchronousSpotter provides facilities for emulating 
the asynchronous interface with synchronous hardware. The 
AsynchronousSpotter provides the converse emulation. The 
result of this hierarchy is that spotter implementations can sub-
class either the synchronous or asynchronous spotter class, which-
ever is more natural for the spotter, and the other interface is auto-
matically emulated. 
The GPSSpotter superclass handles the parsing of NMEA data 
formats provided by GPS devices. Ideally, GPSSpotter would 
extend the SynchronousSpotter or Asynchro-
nousSpotter class, but differences in its subclasses prevent it 
from doing so. The SynchronousSpotter is designed to only 
work with synchronous hardware, but GPS devices are not syn-
chronous since several lines of NMEA data must be correlated 
together to get a coordinate position. The Asynchro-
nousSpotter is designed to use its own thread system to per-
form queries in the background. In contrast, the Seri-
alGPSSpotter subclass uses a separate library that notifies 
the subclass whenever NMEA data is available from the serial 
port, which the subclass then gathers and processes. This is essen-
tially a streaming interface that separates the SerialGPSSpot-
ter from the AsynchronousSpotter method of gathering 
data. The other subclass, BluetoothGPSSpotter, communi-
cates with a GPS device over Bluetooth that is continuously 
streaming NMEA data. Its natural interface is asynchronous, 
properly fitting the subclass under the AsynchronousSpot-
ter. However, the GPSSpotter class handles NMEA data 
parsing, so the BluetoothGPSSpotter needs to extend 
GPSSpotter. Therefore, since both spotters require NMEA data 
processing capabilities, but the SerialGPSSpotter does not 
fit into the synchronous or asynchronous interface, GPSSpotter 
extends AbstractSpotter directly. 

 
Figure 3. Spotter Hierarchy Diagram. Beacon technology spot-
ters extend the Synchronous or Asynchronous spotter depending 
on the interface. GPS devices are treated as serial ports that 
produce NMEA data. The GPS Spotter class handles NMEA 
parsing and allows for synchronous or asynchronous access. 

 



 

Spotters communicate with other components using Measure-
ment objects. A Measurement captures a spotter’s observed 
readings and the timestamp of its capture. Beacon-based spotters 
(e.g., 802.11, GSM, Bluetooth) construct BeaconMeasure-
ment objects that are made up of one more BeaconReading 
objects, while the GPS spotter streams PositionMeasure-
ment objects that contain Coordinate objects.  

4.3.2 Mappers 
Mappers are static databases of information that are used by 
trackers to retrieve location information for spotter measurements. 
The data stored in a mapper always includes a location coordinate, 
but may include other useful information such as coverage radius. 
The data to populate a mapper can come from a mapping data-
base, or user-defined files containing known beacon locations. 
Mappers can also be populated by war-driving data.2 Constructing 
the dataset for a mapper can be non-trivial [12]. The cache of data 
stored in a mapper can be for any size area scale ranging from 
single cities to the entire world. 

Mappers are sensitive to the platform. For example, a mapper 
using the Java DataBase Connectivity (JDBC) or Java DataBase 
Manager (JDBM) libraries would work well on a PC, but would 
not function on a mobile phone. The Mapper interface defines 
the methods a mapper must implement to insert, query, and re-
trieve data from the persistent store (Figure 4). The Abstract-
Mapper class implements the Mapper interface to provide a 
superclass for all Mapper classes to extend. The superclass also 
implements caching of data for quick accesses. To date we have 
implemented several mappers for the PC using JDBC and JDBM, 
a mapper for the mobile phone that uses MIDP’s Record Man-
agement System (RMS) interface, and a mapper that draws data 
from Wigle.net, a world wide 802.11 beacon database. Mapper 
objects can be composed through a CompoundMapper to search 
through multiple sources of data. 
Mappers are generic with respect to the data they store. To 
achieve this, each entry in the database is represented as a serial-
ized object that includes the name of the class–a subclass of Bea-
con–that represents it. The Beacon abstract class is a factory 
that uses reflection to construct and initialize the appropriate Bea-
con subclass object for the mapper. 
                                                                    
2 War-driving is the act of driving around with a mobile device 

equipped with a GPS device and a radio (typically an 802.11 
card but sometimes a GSM phone or Bluetooth device) in order 
to collect a trace of network availability. 

4.3.3 Trackers 
Trackers are the system components that produce position esti-
mates. The tracker utilizes the stream of spotter observations as 
Measurement objects, together with persistent data from Map-
pers, to calculate a single position Estimate. In doing so, 
Trackers may perform sensor fusion by combining data from mul-
tiple types of sensors with different characteristics. Estimate 
objects are a subclass of Measurement allowing the estimates 
of one tracker to be used as input to another tracker (Figure 2c). 
The complexity of trackers varies enormously, from simply find-
ing the centroid of recently seen beacons’ positions to trackers 
that take into account signal strength, propagation models, envi-
ronment information, and physical world models.  

The Tracker class defines the methods that trackers must im-
plement (Figure 5). Each tracker must implement a method to 
update its position estimate when it receives a new spotter meas-
urement, filtering out any unwanted measurements. For example, 
some trackers may not be able to understand GPS Measurements. 
If an application or another tracker is registered with the tracker, 
the update of a tracker’s estimate will result in estimate event 
being announced.  Regardless, the updated estimate is available 
through a procedural interface as well. Multiple trackers can be 
composed using a CompoundTracker. The Compound-
Tracker updates each individual tracker separately and returns a 
compound estimate that contains the estimates from each tracker. 
Numerous trackers have been implemented in Place Lab [5]. 

4.3.4 Platform/Application Adapter—Façade 
When Place Lab is instantiated, it must be adapted to the platform, 
available sensors, and the application. In a few cases, runtime 
checks are used to detect the available sensors, but generally the 
configuration is determined by how the Placelab adapter ob-
ject is subclassed and instantiated. The Placelab constructor 
accepts a tracker, mapper, and list of spotters, and composes them 
into the specified configuration. An application then obtains loca-
tion information by communicating with the Placelab object 
by one of several means, described below. 

Place Lab currently runs in many different platform configura-
tions, as shown in Figure 6. Several Placelab objects and sub-
classes exist to provide convenient preconfigured combinations 
for several platforms. For example, because of platform limita-
tions and available spotter technologies, the PlacelabPC object 
for the PC platform instantiates a different set of spotters than the 
PlacelabPhone object for the phone platform. 

 
Figure 4. The Mapper Hierarchy. Each class that extends Ab-
stractMapper is able to hold any Beacon type. JDBC and JDBM 
run on PCs, RMS runs on phones. The Wigle.net mapper uses 
802.11 data from the Wigle website. A CompoundMapper can 
combine any of these other Mappers. 

 

 
Figure 5. An Excerpt of the Tracker Hierarchy. All trackers 
extend the Tracker class. Most trackers are single beacon-based 
and extend the Beacon Tracker class. A Compound Tracker can 
combine several Trackers together. 

 



 

Place Lab provides five interfaces for communicating location 
information to applications; one directly connects to the Placelab 
object, and the others provide the Placelab data as an existing 
standard service. The availability of these services means that an 
application that already uses location via an existing standard may 
require no modification to use Place Lab. 

1. Direct Linking. Applications may communicate with the 
Placelab object directly. For applications that use a pre-
configured Place Lab object, they can invoke a single method 
to start the location tracking service. The application can use ei-
ther an asynchronous or synchronous interface to obtain posi-
tion estimates from Place Lab.  

2. Daemon. For some applications, it may be desirable or neces-
sary to not link them directly to Place Lab. To support such ap-
plications, Place Lab can be run as a daemon and be queried via 
a simple HTTP interface. This interface allows programs writ-
ten in a wide range of languages and styles to use Place Lab. 

3. Web Proxy. A web proxy interface uses Place Lab functional-
ity to support location-enhanced web services by augmenting 
outgoing HTTP requests with extension headers that denote the 
user’s location. By configuring web browsers to use this proxy 
(in the same way one uses a corporate firewall’s proxy), web 
services that understand the extension headers can provide loca-
tion-based service to the user. 

4. JSR 179. To support existing Java location-based applications, 
Place Lab can provide location through the JSR-179 Java loca-
tion API [3]. 

5. NMEA 0183. Place Lab provides a virtual serial-port interface 
that mimics an external GPS unit by emitting NMEA 0183 
navigation sentences in the same format generated by GPS 
hardware. Since many applications (e.g., Microsoft MapPoint) 
already understand NMEA, they can seamlessly take advantage 
of location functionality developed using Place Lab (which 
might operate indoors, unlike GPS). 

 

The Place Lab source tree consists of 28,537 non-comment source 
statements (NCSS). Of this, 1344 NCSS are devoted to core func-
tionality, 2996 NCSS to the different spotters, 1411 NCSS to dif-
ferent mappers, and 2400 NCSS to several trackers.  

5. EXPERIENCE 
The Place Lab toolkit, available through SourceForge.net and 
placelab.org, has been downloaded more than 8287 times in the 
18 months since its release in April 2004. A key question is how 
adaptable Place Lab has shown itself to be, and what lessons we 
can take away from this experience. First, we provide some data 
to shed light on the level and kinds of use Place Lab is seeing in 
the software community. Second, we discuss three informal case 
studies on three unanticipated extensions of Place Lab. In the next 
section, we conclude with some lessons learned in developing and 
publicizing the Place Lab toolkit. 

5.1 Example Place Lab Applications 
At the University of Washington and Dartmouth, Place Lab has 
been used as a part of several class projects in location-aware 
computing. Researchers are currently using Place Lab to conduct 
experiments with graph-based tracking algorithms, multi-floor 
location estimation, and GSM fingerprinting. Campus-wide instal-
lations are already running at the University of California, San 
Diego and Georgia Institute of Technology, providing location-
based services for researchers to study how they are used in those 
settings. Several location-aware applications using Place Lab also 
have been developed by the user community: 

• Topiary is a rapid prototyping tool developed at UC Berkeley 
for designing location-enhanced applications [13]. A Topiary 
prototype can be run on one mobile device while the designer 
monitors the user’s interactions from a second device. In this 
mode, the user’s location is determined in a Wizard-of-Oz-style 
by the designer who changes the user’s location by clicking on 
a map. Topiary has been extended to also use live location es-
timates from Place Lab running on the user’s device. Place Lab 
has proven especially useful because it can operate indoors and, 
permitting Topiary to be used in a wide variety of settings. 

• A2B is an online catalog of web pages that allows users to add 
new geocoded pages (pages tagged with location metadata) or 
query for nearby pages (http://a2b.cc/). The location can be 
provided automatically by an application talking to a GPS unit. 
A2B extended their interface to support HTTP requests from 
clients running the Place Lab web proxy. Devices running the 
proxy can talk directly to A2B in any web browser and auto-
matically use their location-based lookup service. 

5.2 Case Studies of Adaptation 
5.2.1 Motorola V300 
The Motorola V300 is a popular phone supporting Java J2ME, 
with several hardware and software differences from the Symbian 
Series 60 phones already supported.  We now discuss the relevant 
differences and their implications for the Place Lab toolkit. 

The V300 does not provide native programmability like Symbian 
models, and instead provides for directly accessing GSM beacon 
information within Java. However, this method only provides 
access to the Cell ID variable, as opposed to the cell ID, area ID, 
network code, and country code variables available on the Series 
60 phones. Without these three other pieces of information, it is 
impossible to form a unique key to look up a beacon’s location in 
the Mapper. This is because cell IDs may be reused across differ-
ent areas, telephony providers, or countries.   

We first dealt with the different means of access, using a runtime-
detection approach in GSMSpotter (Figure 3), which expects to 
get the location via a native component accessed through a loop-

Operating 
Systems 

Architec-
tures 802.11 GSM Blue-

tooth  

Windows XP x86 ● ●* ● 

Linux x86, ARM, 
XScale ●   

Mac OS X Power PC ●   

Pocket PC  ARM, XScale ● ●* ● 

Symbian Series 60 
phones  ● ● 

Figure 6. Platform configurations that Place Lab currently 
runs on. All platforms also can access GPS devices for loca-
tion. Place Lab is able to use GSM on the Windows XP and 
Pocket PC platforms because of a remote GSM spotter over 
Bluetooth, discussed in Section 5.2. 

 



 

back. The code was extended to initially call Sys-
tem.getProperty(“Cell ID”) to see if it returned a valid 
(e.g., non-null) cell ID. If so, this means the software is running 
on a device that does not need a native component. Otherwise the 
spotter will attempt to use the native component to obtain GSM 
information. For this change, one method was modified in 
GSMSpotter and another added, for a total change of 11 NCSS. 

Second, we modified the RMSMapper component (Figure 4) to 
handle non-unique keys. Since the V300 only provides one part of 
a four-part key (cell ID:area ID:MCC:MNC), the RMSMapper 
cannot do a direct lookup to find matching beacons. Conse-
quently, the RMSMapper was modified to find the relevant bea-
cons using only a matching cell ID. If more than one beacon 
matches, all the matching beacons are returned. A list of matching 
beacons is already expected by trackers, so no modification to a 
tracker is necessary unless the tracker algorithm specifically de-
pends upon uniqueness.3 One method was modified and another 
method was added, for a total change of 39 NCSS.  

With these small and local modifications the Place Lab software 
was successfully ported to the V300 device. No modifications 
were needed for the Tracker or existing applications. 

5.2.2 Remote GSM Spotter 
Providing a local interface to an existing remote spotter displays a 
unique dimension of flexibility. A remote spotter provides the 
ability to combine the strengths of two platforms to achieve a 
superior result.  In this case, we demonstrate making GSM meas-
urements available on a laptop, thus achieving virtually ubiquitous 
location sensing of the mobile phone platform [12] on a device 
with considerable computational power and GUI capabilities.  

In particular, we extended Place Lab to provide a GSM-over-
Bluetooth spotter. The remote spotter requires a new class that 
runs on the master device and an application on the phone to ob-
tain the needed GSM measurements.  

The first change was to develop a J2ME MIDlet for the phone that 
advertises itself as a remote GSM spotter over the Bluetooth inter-
face. The GSMBTMidlet application uses GSMSpotter with-
out modification to obtain the cell measurements, and stores them 
in a buffer. The application required 210 NCSS.  
The second modification was to add a RemoteGSMSpotter 
class that discovers the remote GSM spotter service and periodi-
cally polls the phone via Bluetooth to read the buffer of cell read-
ings. The RemoteGSMSpotter extends the Synchro-
nousSpotter (Figure 3), fitting easily into the Spotter 
abstraction. Since much spotter functionality is abstracted away in 
SynchronousSpotter, the RemoteGSMSpotter required 
only 108 NCSS. It can be instantiated on any device that is 
equipped with a Bluetooth radio. It is currently in use on the Win-
dows XP and Pocket PC platforms (Figure 6). 

5.2.3 Fingerprint Tracker 
The location-aware computing literature is full of location estima-
tion algorithms. Not all algorithms fit the typical Place Lab model 
of estimating a device’s position from the positions of well-known 
beacons. For example, RADAR uses a technique known as fin-
gerprinting: it relies on the fact that at a given position, a user 
                                                                    
3 Trackers are generally written in a defensive manner, since in-

consistencies abound, such as access points being moved or re-
porting non-conformant ID’s. 

may hear different beacons with certain signal strengths; this set 
of beacons and their associated signal strengths represent a fin-
gerprint that is unique to that position [4]. RADAR compares the 
readings generated by the spotter to a database of pre-collected 
fingerprints from previous war drives, and places the user at (or 
near) the fingerprint(s) that most closely match the readings ob-
tained from the spotter. RADAR uses Euclidean distance in signal 
space as its comparison function. A related algorithm, RightSpot 
uses relative rank ordering based on signal strength as its com-
parison function [11]. Thus, adding a fingerprinting tracker to 
Place Lab is a good test of its adaptability. 

The fingerprint tracker depends on a different kind of mapper that, 
instead of aggregating information for each beacon into a single 
location estimate, keeps track of all the raw fingerprints gathered 
during previous mapping war drives.  Each fingerprint is com-
posed of a set of { beacon-id, signal-strength } tuples obtained in 
a scan and the location where the scan was taken. The mapper is 
queried with a measurement to find all fingerprints that share 
beacons with the supplied measurement. By not requiring a strict 
fingerprint match, the algorithm is tolerant to missing or newly 
deployed beacons. To support efficient retrieval of this kind from 
the large fingerprint corpus, a modular hashing method using 
MySQL’s bitwise comparisons was formulated. As a conse-
quence, a special fingerprint mapper was implemented, rather than 
using the existing JDBC mapper or JDBM mapper. 
The FingerprintTracker receives a set of readings from a 
spotter, queries the FingerprintMapper for all matching 
fingerprints, and estimates the position of the user based on either 
the RADAR or the RightSpot algorithm. Details of these algo-
rithms and their use in Place Lab are available [5]. 

The FingerprintTracker is 106 NCSS, and the Finger-
printMapper is 315 NCSS. The resulting tracker is an interop-
erable component of Place Lab, usable on any PC/PDA platform 
that can provide 802.11 measurements. However, the novel per-
formance and functional requirements for the mapper entailed 
implementing a new one from scratch, making this case study a 
limited success. Another iteration on this project could result in 
the mapper being subclassed from one of the existing mappers, or 
perhaps generalizing the fingerprint mapper to be independent of 
the fingerprint data representation, admitting wider reuse. 

5.2.4 Support for Place-Based Location 
A barrier to deploying location-based applications with Place Lab 
is the requirement for a geographic mapping of access points. 
Mapping data is not always available, which can hinder work in 
location-based applications. Two location-based applications that 
used Place Lab circumvented this requirement by using place 
names instead of coordinates [16], [17]. By place, we mean per-
sonal or conceptual places like “home” or “can buy stamps here”. 
These place-based applications simply appropriate the spotters, 
and build their own tracker and mapper. In essence, finger prints 
are mapped to place names. There is still a requirement to visit a 
place once before it can be identified, but this barrier is much 
lower than having a coordinate map from wardrives for an area. 
We found that supporting place names is important to promote the 
development of more location-based applications by the user 
community. Therefore, we re-engineered part of the architecture 
to make place a first-class citizen in the toolkit, giving developers 
the appropriate abstractions. 

Our approach to supporting place is similar to BeaconPrint, which 
maps radio fingerprints to place names [10]. Whenever a person 



 

visits a place, he must name that place, so that the fingerprints are 
associated in the place mapper. The place mapper keeps track of 
all the raw fingerprints for a place gathered during the wardrive 
step. The mapper is queried with a measurement to find all finger-
prints that share beacons with the supplied measurement, and 
returns the associated place names. 
The PlaceTracker receives a set of readings from a spotter, 
queries the PlaceMapper for matching fingerprints, and returns 
a PlaceEstimate, which contains a list of nearby places based 
on their Euclidean distance in signal space. The introduction of a 
PlaceEstimate led us to change the existing Estimate class 
into an abstract class, and define a LatLonEstimate class to 
support coordinate-based location. Both PlaceEstimate and 
LatLonEstimate extend Estimate. Thus, applications can 
use either place-based or coordinate-based location through the 
standard Placelab adapter. 
Our approach to integrating place is open to the criticism of re-
quiring an additional mapper, as with the fingerprint case study. 
However, the PlaceTracker is a step towards making place a first 
class citizen in the architecture. Use of the new abstractions in 
three additional place-based applications let researchers focus on 
application-level issues. Delivering a PlaceEstimate not only en-
ables applications to use meaningful location information beyond 
coordinates, but it also enables developers to explore different 
methods for place detection and naming. One alternative approach 
to place naming that the architecture allows for is to derive place 
names from coordinate locations. This is possible by having a 
coordinate-based tracker feed into a place-based tracker. Making 
both place names and coordinates available in a location toolkit is 
valuable in promoting innovation in algorithms and applications.  

5.2.5 Windows Mobile Smartphone 
Throughout the Place Lab development process, many more loca-
tion-based applications were developed and deployed for the mo-
bile phones than all the other platforms combined. This is not 
surprising since phones afford more mobility than laptops or 
PDAs. The phone is also the most constrained platform, with defi-
ciencies such as the lack of Java Native Interface (JNI) and unim-
plemented APIs by the manufacturers (e.g., vibration and photo 
capabilities) that can enhance location-based applications. These 
constraints prevented developers from integrating location tech-
nology using Place Lab with platform tools such as audio, video, 
and address books. We thus saw an opportunity in migrating Place 
Lab to a C# implementation to target the Windows Mobile Smart-
phone because it offers tighter integration with the platform, such 
as one’s Outlook calendar. 

The reimplementation was essentially a straightforward transla-
tion. Some of the native spotter implementations had to change, 
but their exported APIs remained the same. The feature footprint 
of C# .NET Compact Framework was a good fit to that used in 
our J2ME implementation. Our solutions for staying within that 
footprint with domain-level abstractions to replace missing system 
services also carried over well. Upward platform compatibility 
was also preserved, including operation on non-Windows plat-
forms (i.e., Macintosh and Linux) through Mono, an open source 
implementation of the .NET framework. This success demon-
strates a unique kind of architectural flexibility with respect to its 
lack of dependence on one-of-a-kind language features. 

5.3 Licensing the Place Lab Toolkit 
One of Intel’s business motivations for Place Lab was to create 
interest in LBC systems, hence the decision to make the software 
freely available. We chose the GNU Public License (GPL) be-
cause many researchers were familiar with it, and several software 
libraries that could accelerate the research (e.g., a faster Java Col-
lections Library) were available under the GPL. Using the librar-
ies required that our code be under the GPL as well. We were 
unaware of the substantial concerns that major companies have 
about code licensed under the GPL, mostly due to its viral nature. 

As the project gained visibility, both commercially and within the 
research community, we realized the importance of having an 
appropriate license for Place Lab. Location systems expose a 
user’s privacy to spyware, or other forms of abuse. Thus, it is 
imperative that the software license protect a user’s privacy from 
these possible threats. Our use of GPL components precluded a 
release with a more privacy-oriented license. 

The redevelopment of the C# version of Place Lab for smart-
phones allowed us to start fresh. We made sure not to add external 
code where the license would conflict with our licensing plans. In 
practice, this banned external code and libraries from being added 
into the code base. This care enabled both better user privacy 
protections and greater commercial adoption. 

6. CONCLUSIONS & LESSONS LEARNED 
Location-based computing is an emerging area that is currently 
tackling issues such as sensing, inferencing, and applications. The 
Place Lab client-side architecture for LBC was designed to sup-
port portable modular innovation in each of these topics. Location 
is only one type of context to appear on personal devices, and our 
experiences provide an informal roadmap for future developers of 
context-aware systems. 

The cost of generality—a one-size-fits-all fusion architecture—is 
too high for the expected benefits. The Place Lab architecture 
emphasizes flexibility and adaptability, permitting a customized 
software image to be easily generated for each platform. Prevail-
ing high-level languages are powerful enablers. The aggressive 
use of flexibility over generality in our architecture led to several 
insights that we encapsulate here as lessons learned. 

Use Domain Abstractions for Missing Services. High-level 
languages did not eliminate embedded platform compatibility 
problems, due to the extraordinary constraints imposed by the 
platform and the range of innovation experienced in the domain.  

We recommend that, to hide hardware distinctions, create ab-
stractions that are domain-specific and one-level up from their 
standard level of abstraction. These domain-level abstractions 
provide not only convenience to framework adopters, but also 
good performance because the abstractions are not required to 
completely reproduce the low-level functionality that is not avail-
able natively. In particular, for floating point we created a location 
coordinate abstraction, rather than a general-purpose number ab-
straction. For storage, we provided a beacon mapping abstraction 
rather than a general-purpose storage abstraction. 

Hierarchical Design Patterns add Adaptability. To address the 
variability in platforms and location-based needs, we employed 
interchangeable and stackable building-block design patterns in 
the form of a layered mediator/observer design pattern. The me-
diator/observer design pattern permits reusing and composing 
elements within a fusion layer, extending reusability beyond the 
standard substitutability of fusion layers. Inter-layer type com-



 

patibility provides the flexibility to freely compose layers to 
achieve new types and levels of fusion inference, without need for 
extending the architecture.  Together, these patterns enable gener-
ating a new configuration for a new platform or application, while 
maximizing reuse without the overhead of generality. 

Language is an Architectural Feature. Programming language 
and the way we used it was critical to our architecture.  If used 
wisely, the programming language of choice can play the role of 
an architectural component; changes are not fully localized, but 
the high costs of change are mitigated. 
First, it was not practical to anticipate the most general ways that 
components in our architecture could be composed.  Simple re-
placement or addition of components was insufficient to accom-
modate novel innovations like place and fingerprinting. Yet, the 
power of Java’s type system served to mitigate the propagation of 
those changes in the form of generalizing the types used to com-
municate between components needed.   

Second, the demands of performance and tight integration on 
mobile platforms can require replacing the “language component” 
in a software architecture.  By restricting the use of a program-
ming language to its widely accepted features, other languages 
can be found to be semantically compatible, thus averting disaster.  
The subsets of J2ME and C# .NET Compact Framework that we 
used were largely compatible in their features and type systems, 
enabling a simple translation of the J2ME Place Lab into C#. 

A Flexible Software License Enables Adoption. Our open-
source license of the C# version of Place Lab is designed to pro-
tect a user’s privacy, and avoid the viral nature of the GPL. The 
license is conducive for wide adoption of Place Lab because of its 
flexibility. We attained the desired licensing outcome by follow-
ing three principles: 
• Expose team early to the complexities of software licensing. 
• Have a clear set of licensing goals and making sure those 

goals are articulated often to development team members. 
• Make the trade-offs between rebuilding versus “grabbing 

something off the net” visible to all team members. 
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