SOFTALLOC: A Work Allocation Language with Soft Constraints

Christian Stefansen
University of Copenhagen

Abstract

Today’s business process orchestration languages such
as WS-BPEL and BPML have high-level constructs for
specifying flow of control and data, but facilities for allocat-
ing tasks to humans are largely missing. This paper presents
SOFTALLOC, a work allocation language with soft con-
straints, and explains the requirements and trade-offs that
led to its design, in particular, what soft constraints are,
and how they enable business process definitions to capture
allocation rules, best practices, and organizational goals
without rendering the business processes too strict.

SOFTALLOC combines with virtually any business pro-
cess language and any conceivable legacy system, while
guaranteeing polynomial performance. We present the de-
sign, the formal definition, and an evaluation of SOFT-
ALLOC.

1 Introduction

Computer-orchestrated business processes are increas-
ingly playing a direct role in how companies organize work
and now commonly involve both human resources and com-
puter resources. A widely accepted architecture is to have
a business process orchestration engine that orchestrates the
process by calling upon human resources and computing re-
sources to perform the actual tasks. Tasks can often be han-
dled by many different resources. This is particularly often
the case for human tasks. Therefore the process orchestra-
tion engine must decide in negotiation with the human re-
sources who of the eligible resources ultimately carries out
the task. Assigning a task to a resource is referred to as
allocation.

Allocating tasks to humans is inherently more complex
than allocating to computer resources: in addition to hav-
ing multiple, changing attributes that decide what they can,
may or should do, humans have personal preferences and
they may choose to override the allocation rules at runtime,
e.g. because they possess domain knowledge that is not cap-
tured in the system or because they make conscious, re-
flected violations to speed up processing in cases where the

Sriram Rajamani
Microsoft Research, India

Parameswaran Seshan
SETLabs, Infosys Technologies Ltd.

process description focuses too narrowly on compliance.

Suppose in a standard sales process we wish to say that
the task Receive payment should be carried out by someone
with the role Finance. We can imagine specifying this by
attaching a rule to the task saying:

role = "Finance"

We can then compose small building blocks of rules into
larger rules. Now imagine that we want Receive payment to
be carried out by the user who did Invoice to retain famil-
iarity. We would then add

role = "Finance"
and user = whoDid ("Invoice")

as a rule to Receive payment.

But something is awry here. While we would certainly
prefer the task Receive payment to be done by the same
person who did the invoicing, this is only a preference—
certainly not a strict rule that should be allowed to stand
in the way of timely workflow completion if the designated
person happens to be busy or temporarily absent. We have
just committed one of the most common mistakes in work-
flow specification: we have promoted a soft goal to a strict
rule and thereby created an inflexible system!

Alternatively, we might have removed the rule and only
have said role = "Finance", but that would have left out
useful intentional information about our best practice. So
just specifying the minimal number of constraints is not at-
tractive either.

This example illustrates that allocation constraints can
represent a wide spectrum of specifications: some rules are
best kept strict (e.g. Expense approval must be done by a
Manager) while other rules are simply guidelines (e.g. Re-
plenish printer cartridges should be allocated on a rotation
basis (round robin)). The latter allocation strategy repre-
sents an organizational soft goal, which might have been
“rotate tedious tasks between qualified workers to achieve
a sense of fairness and variation and keep workers happy”.
This is undeniably a laudable goal, but if the company is
experiencing peak load, this goal must temporarily yield to
more mission-critical business goals (e.g. response time vis-
a-vis our customers). Therefore, it cannot be written as a
hard constraint, but leaving it out entirely renders the sys-
tem unable to suggest the preferred person.

Going back to our example what we probably mean
could be written as

role = "Finance"
prefer [10] user = whoDid ("Invoice")

which states that we require a finance person to handle the
activity under all circumstances, but we prefer the person
who did the invoicing in that process. The number 10 rep-
resents a score to indicate how strong a preference this is.
This becomes more interesting, when more preferences are
in play. Consider the following rule for allocating the Credit
approval step in the workflow:

role = "Manager" or role = "Finance"
prefer [10] role = "Manager"
[-queueSize ()]

The rule states that either Manager or Finance should
handle the Credit approval task. A manager is preferred,
but the number of items in the manager’s queue is deducted
from the preference level; i.e. someone with a short queue is
preferred. Indeed, if all managers have more than 10 items
in their work queues, someone from Finance will be pre-
ferred in the interest of time. This shows how soft con-
straints in conjunction with hard constraints can be used to
express soft goals and performance heuristics in allocation.

Such soft constraints can be expressed and combined on
many levels. We can imagine that the company has a gen-
eral policy to prefer the shortest queue and seek to distribute
activities by rotation (round robin):

prefer [-queueSize()]
[rndRobin (1,10)]

This combines with a process-level policy to strongly
prefer a user at the same location as the process:

prefer [15] user.location = proc.location

If we consider Receive payment with the same rule as
before, there are now three combined rules in effect:

role = "Finance"
prefer [10] user = whoDid ("Invoice")
prefer [—-queueSize()]

[rndRobin (1,10)]

prefer [15] user.location = proc.location

We can now try to run the allocation on Receive payment
with the combination of the three levels of rules active. Sup-
pose we have already compiled the necessary information
about each user (where rndRobin is a number [1..10] indi-
cating how long time it has been since that user did Receive
payment):

User role location | queue | rndRobin
Ashok | Finance | India 3 9
Diego | Support | Germany 7 5
John Finance | US 29 2
Julia Finance | Germany 12 3
Uno Finance | Germany 9 8
Assuming that proc.location = "Germany" and
whoDid ("Invoice") = "Julia" the work allocation

language will produce the following suggestion sorted by
score:

User Score | Reasons
Julia 16 | [15] proc.location

[10] whoDid ("Invoice”)

[3] rndRobin [-12] queueSize
Uno 14 | [15] proc.location

[8] rndRobin [-9] queueSize()
Ashok 6 | [9] rndRobin [-3] queueSize()
John -27 | [2] rndRobin [-29] queueSize()

Notice, that Diego does not appear in the table as he does
not satisfy the hard constraint on role. Julia will be able
to see the contents of the score table when she receives the
activity in her queue. This enables her to make an informed
choice if for some reason she decides to re-allocate the task.
In other words, soft constraints allow users to see the in-
tensional information that has a bearing on the allocation,
while they can retain their possibility to re-allocate based
on any extra runtime knowledge they may have. By show-
ing its reasoning the language supports the users in making
an informed decision.

1.1 Contributions

This paper defines a declarative work allocation lan-
guage, SOFTALLOC, that (a) supports soft constraints, (b)
plugs into any business process language in an aspect-
like manner, (c) can be used with a wide range of plat-
forms/legacy systems, (d) allows rules on many organiza-
tional levels to be combined, and (e) runs fast enough to
allocate and re-allocate at runtime. Let us examine the rea-
sons and implications:

Supports hard constraints and soft constraints The in-
troduction and use of soft constraints in a work alloca-
tion language alleviates serious issues with workflows
that are either too rigid or too lenient (see Stefansen
and Borch [14] for a detailed discussion).

Plugs into any business process language A work alloca-
tion language definition that is orthogonal to the busi-
ness process language, meaning that it can combine
with any of the popular languages currently being
used.

Plugs into any platform/legacy system Carries the same
advantages.

Permits composition of rules in several scopes Rules
can be attached to activities, to scopes, to entire work-
flows, to people and to the entire system as policies.
The compositional design of the language ensures that
it is meaningful and well-defined to compose rules on
several different levels.

Runs in P-time (provided that the user-defined functions
do so.) The allocation can always be solved in poly-
nomial time, making it feasible to rerun the allocation
as often as needed during execution, but it is yet able
to express a wide range of heuristics to improve work-
flow performance and human resource utilization.

The language has been implemented, tested, and evalu-
ated in Infosys’ PEAS platform, and it is slated for inclusion
in the PEAS platform with a GUI that is being developed.
We would like to stress early that the paper does not con-
tribute an interface to be used directly by business process
analysts, designers or users. For that purpose the syntax is
too low-level, and it therefore remains future work to design
a user interface for the language.

2 Background and requirements

This project was done in collaboration with Infosys
Technologies Ltd., India. Infosys uses WS-BPEL [8] and
BPML, and typical applications include sales support, bank-
ing and business process outsourcing (BPO) projects.

While dedicated systems and professional workflow sys-
tems have support for allocation [11], popular process lan-
guages, including WS-BPEL [8] and BPML, do not. Since
such languages are now taking over the role of dedicated
workflow products to achieve a broad SOA integration,
there is an increasing need for allocation facilities. Some
products and initiatives address this (e.g. BPEL 4 People
[6]), but they remain in an embryonic stage.

In short, there is a need to augment existing business pro-
cess languages with allocation support. There is also a need
that those allocation rules support soft constraints so as to
be able to guide the users whilst avoiding over-specification
that leads to rigid systems.

2.1 Expressiveness requirements

To map out the allocation constraints that the language
must be able to express we (1) compiled a large selection
of actual business processes, and (2) cross-checked the re-
quirements with the existing research on resource allocation
patterns [11, 5, 13]. The most important scenarios were:

Users <customizable>, User
database
—

L] Alocation TP
engine
History/

runtime

<customizable>
~

N [—

Java
code

—

Figure 1. The architectural context of work al-
location

Allocate to creator The entire process is allocated to the
resource who instantiated it.

Multiple roles An activity is allocated to several roles. A
resource having at least one of the roles mentioned is
required.

Soft constraints The ability to specify that some rules are
violable, while others are not. The former are referred
to as soft constraints, and they carry an integer score.
This score is used to give a preference between the re-
sources that satisfy the hard constraints.

Multiple resources An activity is allocated to several re-
sources, all of whom need to collaborate on the activ-

1ty.

Scalar properties For some attributes there are several lev-
els, e.g., 1 (Novice), 2 (Medium), 3 (Expert). In such
cases it must be possible to specify (a) a minimum skill
level for some needed skill (e.g. Java level 2) or (b) a
soft preference for assigning the task to the resource
with the highest skill level.

Overflowing When the queues of some people become
too long, an overflow group can be used for alloca-
tion. This amounts to soft constraints based on queue
length/expected average waiting time.

Minimize makespan This is just one of many goals one
can try to optimize. The soft constraints we have fo-
cused on here intentionally cannot perform full opti-
mization because performance has been prioritized—
instead we can express local greedy heuristics that in
practice perform quite well.

One may justifiedly wonder how runtime negotiation is
handled, i.e. the situation where activities are not given di-
rectly to a user, but allocated through some protocol of of-
fer/accept to a group of users. Or activities are escalated

and re-allocated. Or activities are allocated to a queue as-
sociated with many users rather than to one particular user.
These issues are certainly as important as the work alloca-
tion rules we have discussed, but since they are established
protocols that rarely, if ever, change, they are better han-
dled as an integral part of the BPM engine itself. The ar-
chitecture is such that the BPM engine handles all runtime
requests and then queries the allocation engine for a sug-
gestion when allocation/re-allocation is needed due to some
change in the state of the system (see Figure 1).

Also notice that the process engine, not the language,
decides how queues are handled, e.g. if resources can au-
tonomously override task priorities, skip jobs in the queue,
etc. If we wish to assign activities to a queue shared by
many users, this is handled by inserting that queue’s name
in the list of potential users that is given to the allocation en-
gine. The allocation engine will then obliviously consider
the queue as if it were a user.

Patterns In addition to the allocation scenarios above, a
large number of “resource patterns” have been proposed
[11]. Since we handle runtime negotiation in the process en-
gine, only a few of these patterns apply: user data patterns
(Direct allocation, Role-based allocation, Capability-based
allocation, Organizational allocation), history-based pat-
terns (Separation of duties, Retain familiar, History-based
allocation), scope patterns (Case handling), and runtime in-
formation patterns (Deferred allocation).

Time of allocation When an activity can be started we
say that it is enabled. E.g., in the process expression a;
(bllc); d(a,thenb and c in any order, then d) the ac-
tivity a is the only enabled activity. After a has been com-
pleted, both b and c are enabled. Allocation can happen at
three conceptually different times:

1. Early allocation happens before the task is enabled
and helps the system predict/guess bottlenecks early
and avoid them through different allocation. The sys-
tem may even speculatively allocate beyond branches
(even if outcome of the branch is not yet known),
which of course works best in conjunction with the
ability to re-allocate.

2. Allocation on enablement allocates an activity exactly
when it becomes enabled. This is simple to model, to
implement, and to understand for humans interacting
with the system.

3. Late allocation allocates as late as possible, i.e. if all
suitable resources still have items in the queue, the
process execution engine might as well postpone al-
location until someone’s queue is (almost) empty, and
only then allocate the activity. Late allocation can be

problematic for human workers in terms of planning
because they only see a partial list of the tasks that po-
tentially need their attention.

The language designed here can support all three modes
or a combination thereof, because the allocation rules can
simply be re-evaluated to obtain a new allocation when de-
sired by the allocation engine. In other words this is orthog-
onal to the language design.

2.2 Contextual requirements

Some important requirements can be derived immedi-
ately from the business context and the architectural con-
text:

e The language must work in tandem with any process
model (e.g. WS-BPEL, BPMN, EPCs, Petri net-based
models) that the BPMS uses.

e Because the environment (user database, log formats,
legacy interfaces) is different in every organization, the
functions that read these must be externalizable.

e Oftentimes organizations have soft goals on many dif-
ferent levels. Therefore the language should allow sev-
eral levels of rules to combine easily and seamlessly, so
that e.g. general policies can be changed without man-
dating a change to all subordinate processes.

e It is essential that the allocation engine can recom-
pute a new suggestion immediately when changes oc-
cur. This precludes NP-hard computation so the lan-
guage must be able to express only polynomial-time
performance heuristics. For this reason we do not al-
low freely interdependent allocation rules; an alloca-
tion rule for a task can only depend on the allocation of
other tasks that are guaranteed to have completed (no
cyclic allocation dependencies). For the same reason
time scheduling (i.e. specifying that an activity must
be done at a particular time) is not possible, though
scheduling constraints can be introduced in a limited
way as external functions.

3 Language definition

This section describes the syntax, type system, and se-
mantics of SOFTALLOC. We assume that the workflow is
specified using WS-BPEL, BPML or some comparable busi-
ness process notation. The only assumption we make is that
a workflow contains a finite set of tasks, each of which is
uniquely named.

The syntax of the allocation language SOFTALLOC is
given in Figure 2. A rule has a pick prefix that speci-
fies the number of users needed to perform the task, and

rule = (pick const)? clauses
clauses = (where exp)?
(prefer pair¥)?
exp = expopexp | unary-op exp | value |
function (exp, ..., exp) |
user | task | process
pair n= [exp]exp
op = o+ = x| /<> =] <]
and | or
unary-op = + | - | not
function = procsStr | userStr |
queueSize | rndRobin |
whoDid |
process.id —— procStr(process,"id")
user.id —— userStr (user,"id")
role —— userStr (user,"role")
exp <>exp —— not exp=exp
whoDid (id) —— whoDid (process, id)
queueSize () —— queueSize (user)
rndRobin (id,id’) —— rndRobin (user,id,id’)

Figure 2. Work allocation language core
grammar (top), implementation-specific
operators and functions (middle), and
implementation-specific rewrites (bottom)

two clauses. The where clause specifies a hard constraint,
which is a set of users from which allocations can be made
to this task, and the prefer clause specifies a list, where
each element is a pair of a score and a soft constraint. Im-
plicitly, they define a scoring function to order the set of
users given by the where clause. The only allowed vari-
ables are in the language are user and task and process.
The language is parameterized over the set of operators,
functions, and types; in Section 3.1 we explain this in more
detail. This means that a large number of extensions to the
language can be made without re-working the core seman-
tics. Thus, the properties described here are valid for any
valid set of operators, functions, and types that one might
wish to use, as we describe later.

If none of the keywords pick, where or prefer are
present, the given expression is assumed to be the where
clause, i.e. exp without any top-level keywords means pick
1 where exp with no prefer clause.

For completeness Figure 2 also shows an example of
implementation-specific operators and functions and syn-

O(value) =T
value : T

user : string

task : string process : string

expr : T1 exps : T2 Qop, [11,72]) =T
€Tp1 Op eTpz i T
exrpr i T1 Qop, [11]) =7
op exp1 i T
€rp1 i Ti,...,exPn i Tn T = Q(function, [11,...,Tn])
function(expi,...,expn) : T
erp : bool pexp; :int,..., pexp, :int
n :int cexp, : bool, ... cexpm : bool

pick n where exp
prefer [pexpi] cexpy--- [pexpm] cexpm

Figure 3. Type system

tactic rewrites (for syntactic sugar). This example extension
corresponds to the functions we have used in the examples
throughout the paper. Interested readers are encouraged to
consult the technical report [15] for more details on how the
example extension interacts with the core language.

An allocation rule is well-typed if and only if after syn-
tactic rewrites it has a derivation in the type system given
in Figure 3. The language has only static types, types are
inferred (no explicit type declarations).

Types are given by 7 ::= int | string | bool | 3, where
[represents any additional types that are given given as
parameters as part of an implementation-specific extension
of the language.

In addition to the types (3, any parameters to instantiate
the language come with (1) a domain V of values, which
contains the set I/ of users, the set 7 of tasks, and the set
‘P of process instance identifiers, (2) a domain F of func-
tion and operator symbols, (3) a function © : V — 7 that
maps values to types, and (4) a function 2 : F — 7 —~ 7
that maps functions and input types to output types. Intu-
itively, the type system requires hard constraints and soft
constraints to be of type bool, and scores to be of type int.

3.1 Denotational semantics

When the process execution engine calls upon the work
allocation engine to allocate a user to a task, it sends the
allocation rules that apply to that task along with a set of
users, the name of the task to be allocated, and the current
process instance id. In response the work allocation engine
sends back a subset of those users as well as their scores

I'[where exp prefer [perpi] cexps -+ [pexpm) cexpy](U,t,p) =
{(u,8) |[ueU A Alexp](u,t,p) = true
A Hﬂ[peacpl] cexpy - - [pexpm] cexpm]] (u,t,p) = S}

[(pexp1] cexpy -« [pexpm] cexpm] =
Mu, t,p) . cond(Afcezpi](u, t,p), Alpexpi](u,t,p),0) + - -
+ cond(A[cexpy] (u,t,p), Alpexpm](u,t,p),0)

Alvalue] = M u,t,p) . value Alexpy op exps] = M u,t,p).eval(op,

Aluser] = A(u,t,p).u Alexp](u,t,p), Alexpa](u, t, p))

Aftask] = Mu,t,p).t Alop exp] = A(u,t,p) . eval(op, Alexp](u,t,p))
Alprocess] = Au,t,p).p Alfunc(expy,...,exp,)] = A(u,t,p).eval(func,

A[[explﬂ(uv tap)v ey A[[expnﬂ(uv tap))

Figure 4. Denotational semantics

(and leaves it up to the BPM engine to handle runtime ne-
gotiations).

This is reflected by the denotational semantics, which
maps a clause and a triple of a set of users, a task, and a
process instance id, to a function from users to integer val-
ues (denoted by V;,:). The semantic functions have the
following signatures:

T[] : clauses — (2 x T x P) = U — Vi
Al : exp—>UXT xP)—=V
O[] : pairt — (U xT xP) = Vjins

The definitions of these denotations are shown in Figure 4.
The definitions use two auxiliary functions, eval and cond.
The function eval is used to evaluate external functions that
are defined in the parameters given to instantiate the lan-
guage. Formally, eval : 7 — V* — V maps a function
or operator symbol, and a list of values to a return value.
In an instantiation of the language, every defined function
is required to be a total map from a list of values of appro-
priate argument types to a value of the appropriate return
type. The function cond : (V x V x V) — V returns its
second argument if the first argument is t rue, and its third
argument otherwise.

Given a well-typed rule r = pick n ¢, with a user
database U, a current task ¢, and a process instance id p,
the denotation I'[c] (U, t, p) yields a partial map from users
to their scores. Using this partial map, the allocation engine
chooses n users for the task ¢ in process instance p heuristi-
cally based on their scores (and other criteria, such as avail-
ability of the users). For more definitions and the progress
and preservation theorem see the technical report [15].

Definition 1 (Composition of rules) Given two rules
where exp prefer pairs and where exp’ prefer pairs’

their composition is defined as follows:

I'[where exp prefer pairs](U,t,p)
® D[where exp’ prefer pairs'|(U,t,p) =
{(u,8) J[ueU A Alexp](u,t,p) = true
A Alexp'](u,t,p) = true
A [pairs pairs'|(u,t,p) = s}

For almost any concrete instantiation of the language
with a sane and operator, this definition will be equivalent
to

['[where exp and exp’ prefer pairs pairs'|(U,t, p).
4 Evaluation

The prototype has been tested and evaluated, and it is
slated for inclusion in Infosys’ BPM platform, PEAS, with
a GUI that is being developed. To prove tangible busi-
ness benefits based on more than just anecdotal evidence,
an empirical study is necessary; this remains future work.

To evaluate the domain fit we applied two methods: (1) a
patterns-based analysis and (2) qualitative discussions ses-
sions with industry experts, who confirmed that the lan-
guage fits well with the needs for human-intentisive work-
flows (e.g., insurance claims, call centers).

A patterns-based analysis in the style of Russell et
al. [11] yields a first approximation of the domain fit of an
allocation language. The analysis proceeds by evaluating if
the language supports, partially supports or does not sup-
port each of the patterns in a suite of 43 patterns collected
from industry and research. Table 1 shows a patterns-based
evaluation of our work allocation language juxtaposed with
the outcome of related patterns-based analyses. Note that

Research |Open src.| Commercial
- g
T (2Z|alE| .|

HEEEEHEEETE

HRERREHBEEHE

SEHEHEEEESEE:
Pattern A IEEIREIEHE R
Direct allocation | + | + [+ |+ | - |+ | + |+ [+| + | +
Role-based + |+ [+ ++]+ +]+] + |+
Separat. of duties |+/-| + [+| - | - |- | - |+ |[+|+-| +
Case handling YA Y e
Retain familar ot I I I N S I N S S
Capability-based | + | - [+|-|-|-| - |- [+|+]| +
History-based A S N N N A I E A
Organizational B A I e e) H I I S
Round robin I o A B B R P VA VS
Random | -] - - -] - - -] |+
Shortest queue | +/-|+/-[+| - | - |-| - | -|-| + |+-
Mult. resources + [2?2020 ?
Soft constraints + | 22?7
Combine patterns| + | 2 [2| 21222 [?2]?|?

Table 1. A patterns-based comparison. Our
evaluation is in the columns and rows in izal-
ics; the rest of the table is the result of related
research by others [11, 10, 12, 16]. + indi-
cates full support, x/- indicates partial sup-
port (e.g. through coding a bit), and - indi-
cates no support. B4P/WS-HT is short for
BPEL 4 People/WS-HumanTask.

only the 11 patterns that specify who is ultimately allowed
to perform a task are included (cf. our discussion in Sec-
tion 2.1) plus 3 new patterns. As mentioned earlier the lan-
guage did not set out to specify runtime negotiation rules
because these are more elegantly handled by the process
engine. To be deemed to have a good domain fit and satisfy
the requirements, SOFTALLOC must have fully support (+)
or partially support (+/-) most of the desired patterns, and it
must support soft constraints.

The patterns-based analysis shows that SOFTALLOC
does indeed have a good domain fit. In fact, SOFTALLOC
supports or partially supports the entire set of patterns in-
side the scope of the work. In many of the other products
+/- means that the pattern requires coding/workarounds ev-
ery time it is used; in SOFTALLOC +/- means that an inter-
face to the existing systems of the company has to be coded
once to get full support.

Some limitations apply to this methodology: whereas
our language fares quite well in the comparison, the
patterns-based analysis itself inadequately captures the ex-
pressive power of our language. The last three rows (Multi-
ple resources, Soft constraints, and Combine patterns) illus-

trate this. E.g., soft constraints are not a single pattern, but
an idea that could easily be expanded to comprise an entire
suite of patterns in its own right. The patterns-based analy-
sis falls short here because the inventors of the analysis did
not anticipate soft constraints. This clearly shows the limi-
tation of approaches with some finite set of patterns chosen
without any particular guiding principle other that what is
available in current products. Similarly, the patterns-based
analysis does not mention if patterns can be combined and
if so with what constraints.

5 Related work

In the introduction we stated that we aim for a work allo-
cation language that “(a) supports soft constraints, (b) plugs
into any business process language in an aspect-like man-
ner, (c) can be used with a wide range of platforms/legacy
systems, (d) allows rules on many organizational levels to
be combined, and (e) runs fast enough to allocate and re-
allocate at runtime”. In examining the related work it is
useful to keep these key features in mind:

Allocation does have some similarities with the schedul-
ing done in a multiprocessor system, but in the case of
work allocation the processors (i.e. the human resources)
are rarely homogeneous. In this way the problem area
seems closer related to Grid scheduling, and indeed some
interesting ideas have cropped up in the Grid scheduling
field (makespan reduction [2], algorithms/heuristics [17]).
However, these either do not support soft constraints (a) or
require full opmization (e).

We have already discussed the work on resource patterns
by Russell et al. [11]. Senkul and Toruslu [13] have sug-
gested a simple allocation language, which in their proposal
is translated into the constraint language Oz and solved by a
constraint solver. The approach solves the entire workflow
(or the entire set of running workflows) in one go, and it is
therefore not clear how the approach would accommodate
runtime flexibility whilst being scalable—in other words it
does not have feature (e). Another approach uses defeasible
logic [4], and BPEL 4 People has attempted to make WS-
BPEL better suited for human-intensive workflows [6], but
these do not address soft constraints (a) and composition
(d).

There exists a variety of business rule languages
(e.g. OMG’s SVBR[9]) and thus it would seem obvious to
take one of these as a starting point as it naturally plugs in
many contexts (b,c) and composes well (d). As we exam-
ined these languages we found that there was no direct fa-
cility for soft constraints (a). It could be mimicked in some
cases, but at the cost of significant extra complexity.

Ways of solving NP-hard scheduling problems have been
studied for decades in operations research, where the sur-
vey by Ernst is a good place to start [3]. Although such

approaches have superior expressiveness in modeling soft
constraints (a), they are markedly more complicated to use,
even for programmers, and they cannot generally guarantee
optimal solutions in P-time (e).

Interdisciplinary papers have proposed auction/game
theory-based [7] and Al-based [1] approaches to work al-
location. These algorithms behave as dynamic systems and
thus usually adapt very well to shifts in the supply and de-
mand of tasks. However, they do not consider soft con-
straints directly (a).

6 Conclusion and future work

The patterns-based analysis shows that SOFTALLOC can
express all patterns for which it was designed and all ex-
amples that were deemed necessary. Industry expert inter-
views further supported the conclusion that SOFTALLOC
has a good fit to human-intensive workflows. The use of
soft constraints has proven very beneficial, and as intended
the language integrates with any system we have seen so
far. The language was not built for direct use by business
process designers/analysts. Instead a GUI (both for users
and allocation rule designers) is being developed in the pro-
duction setting where the language is to be used. The GUI
coupled with the textual form presented in this paper will
allow both programmers and domain specialists to use the
language in their preferred way and support conflict detec-
tion.

Based on the discussion of resource patterns it would be
interesting to construct a collection of soft constraint pat-
terns or even develop new measures of expressiveness to be
able to benchmark languages.

More benefits are yet to be reaped: by capturing work al-
location rules directly, performance simulation can be used
to identify bottlenecks, estimate capacity requirements, and
suggest what resources to add. This is an important im-
provement over previous systems, where the lack of integra-
tion made performance analysis a non-routine job requiring
specialized skills. In systems where work allocation rules
are captured in a general-purpose language, workflow per-
formance simulation is often infeasible.

Another promising idea is to leverage runtime statistics
to improve the allocation optimization. Runtime statistics
could include average completion time probability of task
type per agent, inferred probability of delay, etc. All these
statistics will result in more soft constraints that the sched-
uler can use in conjunction with the user-specified ones.

Acknowledgements

The authors would like to thank Shriram Krishnamurthi and
the reviewers for some very useful comments.

References

(1]

(2]

(3]

(4]

(3]

(6]
(7]
(8]
(9]

(10]

(1]

[12]

(13]

(14]

[15]

(16]

(17]

S. Abdallah and V. Lesser. Learning the task allocation
game. In AAMAS 06, pages 850-857, New York, 2006.
ACM Press.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy. Task scheduling strategies for workflow-
based applications in grids. In CCGRID 05, pages 759-767.
IEEE Computer Society, 2005.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff
scheduling and rostering: A review of applications, methods
and models. Eur. J. Op. Res., 153, 2004.

G. Governatori, A. Rotolo, and S. Sadiq. A model of dy-
namic resource allocation in workflow systems. In ADC 04,
pages 197-206. Australian Computer Society, Inc., 2004.
Y. Hamadi and C.-G. Quimper. The smart workflow foun-
dation. Technical Report MSR-TR-2006-114, Microsoft Re-
search, November 2006.

M. Kloppmann, D. Koenig, and F. Leymann. BPEL 4 Peo-
ple. Technical report, IBM and SAP, July 2005.

E. Koutsoupias. Selfish task allocation. Bulletin of EATCS,
81:79-88, 2003.

OASIS Open, Inc. WS-BPEL 2.0 Committee Specification,
May 2006.

OMG. Semantics of business vocabulary and business rules
(SBVR). Technical report, Object Management Group, Sep.
2006. Second SBVR Interim Specification.

N. Russell, A. H. ter Hofstede, W. M. van der Aalst, and
D. Edmond. newYAWL: Achieving comprehensive patterns
support in workflow for the control-flow, data and resource
perspectives. Technical Report BPM-07-05, Eindhoven Uni-
versity of Technology, 2007.

N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P.
van der Aalst. Workflow resource patterns. Technical report,
Eindhoven University of Technology, 2005.

N. Russell and W. M. P. van der Aalst. Work distribution
and resource management in bpel4people: Capabilities and
opportunities. In Z. Bellahsene and M. Léonard, editors,
CAiSE, volume 5074 of Lecture Notes in Computer Science,
pages 94-108. Springer, 2008.

P. Senkul and I. H. Toroslu. An architecture for workflow
scheduling under resource allocation constraints. Informa-
tion Systems, 30(5):399-422, July 2005.

C. Stefansen and S. E. Borch. Using soft constraints to
guide users in flexible business process management sys-
tems. International Journal of Business Process Integration
and Management, 2008.

C. Stefansen, S. Rajamani, and P. Seshan. A work allocation
language with soft constraints. Technical report, SETLabs,
Infosys Technologies Ltd., Bangalore, India, March 2008.
P. Wohed, B. Andersson, A. H. ter Hofstede, and N. R.
W. M. van der Aalst. Patterns-based evaluation of open
source BPM systems: The cases of jBPM, OpenWFE, and
Enhydra Shark. Technical Report BPM-07-12, Eindhoven
University of Technology, 2007.

S. Zhang, Y. Wu, and N. Gu. Adaptive grid workflow
scheduling algorithm. In Grid and Cooperative Computing
Workshops, volume LNCS 3252, pages 140-147, 2004.

