
Global Software Servicing: Observational Experiences at Microsoft

Shilpa Bugde
1*

, Nachiappan Nagappan
2
, Sriram Rajamani

3
, G. Ramalingam

3

1
 Symbiosis Center for Information Technology, Pune 411004, India

Shilpa.Bugde@gmail.com
2
 Microsoft Research, Redmond, WA 98052, USA
3
 Microsoft Research, Bangalore 560080, India

{nachin,sriram,grama}@microsoft.com

Abstract

Software servicing in an important software

engineering activity that is gaining significant

importance in the global software development

context. In this paper we report on a study conducted

to understand the processes, practices and problems in

the Windows servicing organization in Microsoft’s

India Development Center. We report on our

observations and experiences from this study on the

main processes and practices adopted for software

servicing in Windows and the main problems

pertaining to information needs and communication

issues. We also discuss our experiences in this study

within the context of prior research defined in the

global software development community to explain the

ways in which Microsoft addresses these common

problems.

1. Introduction

Global Software Development (GSD) is a field of

research that has grown tremendously over the last

decade [4, 8]. Herbsleb and Moitra [8] attribute the

acceleration of GSD to the benefits it enables: (i)

capitalize on the talent pool and use resources

wherever available; (ii) business advantages of new

markets; (iii) quick formation of virtual teams to

capitalize market needs; (iv) improve time to market

by utilizing “around-the-clock” development and (v)

flexibility to capitalize on merger and acquisition

opportunities globally.

The world‟s software maintenance expenditure is

several hundreds of billions of dollars and is expected

to grow substantially in the coming years. According

* Shilpa Bugde was an intern with Microsoft Research, Bangalore
when this work was done.

to a market research analysis the competitiveness of a

software company’s maintenance and support offering

will play a major role in the company’s ability to

retain customers and increase revenue [10]. Microsoft

too spends significant amount of economic resources

for software servicing of its products like Windows,

Office, Visual Studio etc. One of the defining

characteristics of the software service industry is that

huge and complex code bases are maintained and

evolved by programmers and testers who were not part

of the actual development team. With recent trends in

globalization large corporations have opened

development sites in geographically distinct locations,

and in particular, in countries like India and China for

such software servicing tasks. People who work in

these locations have difficulty in getting access to in-

depth knowledge about the code, and the institutional

memory associated with it. Thus, it is interesting to

ask: how do such teams currently operate? With the

objective of answering this question, we conducted a

case study at WinSE, the Windows Servicing group in

Microsoft‟s India Development Center (IDC),

Hyderabad. A point to be noted is that substantial

development of Windows also takes place in IDC but

is unrelated to the direct context of our study and is

hence not discussed.

The format of the study is as follows. We

employed a three phased approach consisting of

interviews, anonymous surveys and shadowing of

engineers. First, we interviewed one person from each

job profile: Software Design Engineer in Test (SDET)

and Software Design Engineer (SDE), as well as

managers in these two disciplines. We were able to

codify the workflows that these people were involved

in for software servicing of the Windows family of

systems. Next, we conducted an anonymous survey of

all the engineers involved in software servicing at IDC

to find out the most time-consuming tasks and sub-

tasks done by SDEs and SDETs, the information needs

associated with each of these tasks, and how these

information needs were met. To complement the

survey, we conducted an ethnographic observation, i.e.

“shadowing” sessions to observe SDEs and SDETs

during their daily work. Finally, we present our

experiences with respect to the process, practices and

problems associated with GSD in terms of a set of

problem dimensions framed by Herblsleb and

Moitra[8].

The organization of this paper is as follows.

Section 2 provides a survey of related work in the GSD

context. Section 3 presents our case study in terms of

the interviews, anonymous survey and shadowing

experiment. Section 4 presents our observations on

how Microsoft alleviates some common problems in

GSD.

2. Related Work

Fred Brooks in the classic Mythical Man-Month

[3] book states that schedule disasters, functional

misfits, and system bugs arise in software systems

from a lack of communication between different teams.

In this section we summarize work related to

communication and coordination in the software field

from a GSD context. The work closest in spirit to ours

is by Herbsleb and Grinter [6] that explores

geographically distributed software development in a

project based on teams working in Germany and UK at

Lucent Technologies. Based on a total of 18

interviews, the prominent coordination factors

identified were integration of the system built by the

teams; specification of programming interfaces;

process mechanisms and documentation. Consequently

the primary barriers to team coordination were lack of

unplanned contact; knowing the right person to contact

about specific issues; cost of initiating the contact;

effective communication and lack of trust. Herbsleb

and Grinter [6] provide recommendations based on

their empirical case study for organizations with

respect to communication barriers and coordination

mechanisms. From a theoretical perspective, Herbsleb

and Mockus [7] formulate and evaluate an empirical

theory (of coordination) towards understanding

engineering decisions from the viewpoint of

coordination within software projects. Open source

development adds a new dimension to team

coordination and communication as often most open

source developers are not joined in a team by any

financial binding, nor are they geographically bound to

a region. Mockus et al. [11] investigate how different

individuals across geographical boundaries contribute

towards open source projects (Apache and Mozilla).

The prominent observation Mockus et al. [11] made

regarding development teams was that in open source

development there is a core group of developers who

control the code base. Further they also observed that

in successful open source systems a group larger by an

order of magnitude than the core will repair defects and

another group larger by another order of magnitude

will report problems. Gutwin et al. [5] observed the

requirements and mechanisms for group awareness in

three open source system (NetBSD, Apache httpd and

subversion). They observed that open source

developers maintain a general awareness of the team

and knowledge about people they plan to work with.

Figure 1: Team locations in our study (approximate)

Hyderabad, India

Redmond, USA

The primary means of awareness were mailing lists

and chat tools: primarily text based communication

mechanisms. For the perspective of experiences with

GSD: Battin et al. [2] describe their experiences with

GSD at Motorola developing a 3G cellular system with

20% of the required staff in the US and the remaining

80% in Tokyo, Beijing, Singapore, Bangalore, and

Adelaide. Bass et al. [1] report on collaboration

experiences at Siemens and the problems learned with

key learning‟s in people and communication-related

aspects of collaboration. Based on semi structured

interviews of 30 engineers in the US, Netherlands and

India, Sengupta et al. [12] show the use of tools for

distributed requirements management and identify

potential areas for research impact in GSD, like

reverse-engineering, and maintenance of informal

knowledge in a human-independent way.

3. Case Study

Our case study was performed with the software

servicing organization at the India Development Center

of Microsoft Corporation located at Hyderabad, India.

The software servicing organization has to deal with

the core engineering team in Redmond, Washington

state (shown in Figure 1), USA located more than ten

time zones away. The servicing organization has more

 Figure 2: SDE workflow

than one hundred full time employees including

experts in the various features of the Windows

operating system like the kernel, shell, networking,

user interface etc. All responses received towards our

study were anonymized to remove any personal

information, motivating the engineers to be more open

in their discussions with us.

3.1 Interviews

In this section, we present the practices followed

by the engineers in IDC for software servicing. We

primarily focused on the work done by Software

Development Engineers (SDEs), who work on

development of bug fixes, and Software Development

Engineers in Test (SDETs) who work on testing related

tasks such as development of tests; test automation;

and ensuring that the fix proposed by the SDE indeed

resolves the bug, and does not introduce any other

regressions. The workflow of SDEs and SDETs

discussed in this section is based on our open-ended

interviews with SDEs, SDETs, and leads.

Most, if not all, work done by SDEs and SDETs

starts from a bug in the bug queue. The SDE workflow

is shown in Figure 2. The SDE starts working on a bug

from the queue, governed by the priority and the

severity of the bug coupled with the experience of the

SDE. The first step is to attempt to reproduce the bug.

This phase is called the “repro”, and takes about 5-15%

of the SDE‟s time. Subsequent to the repro step, the

SDE attempts to find the root cause of the bug, by for

example attaching a debugger, setting up check points,

flags etc. to find a potential fix. Note that if the repro

phase was not successful, the debugging phase is

harder and often starts a thread of discussion with the

SDET on obtaining a reproducible bug accurately.

Once the source of the bug is identified, the SDE

evaluates possible fixes.

Then, the SDE identifies the best fix, and

evaluates the cost and risk associated with the fix. The

cost is a measure of the development and testing effort

associated with this fix. The cost is usually determined

as: High, Medium or Low. The risk is a measure of the

probability of the fix resulting in a problem/failure

when released. Risk is also expressed as one of High,

Medium or Low. This phase of identifying the optimal

fix assigning risk is called “triage”. Triage takes 50-

70% of the SDE‟s time, and within triaging, the

dominant task is debugging. The next step is that of

“verifying the fix”. This phase, involves checking that

the fix does resolve the bug. (This does not involve

comprehensive testing which is done by the SDETs).

As the last stage of the triage process, a decision is

taken on the bug in a meeting made up of senior

engineers. Here the risk of the bug is evaluated again in

the historical context also, i.e. has this area been

problem-prone in the past resulting in significant

amount of rework, what were the root-causes for this

problem, how can this be avoided in the future etc. If it

is decided that this bug will not cause any other

problems to customers the bug is approved to be fixed

in the main code base, and then the fix is made, code

reviewed, and tested. Note that, in this phase, “fixing

the bug” is primarily committing the fix identified in

the triage process to the official code base. The testing

is done by the SDETs and will be discussed as in

Figure 3.

The SDET workflow shown in Figure 3 also starts

from a bug in the queue. The SDET works with PSS

(Product Support Services – team that handles support

phone calls and creates the bug) and first tries to

produce a “repro”. Then, the SDE works on root cause

analysis, and once the cause and fix are identified, the

SDET works on what tests need to be run to check if

the fix breaks any already existing tests and contributes

to the triage phase. The SDET also identifies new tests

to cover the fix. When the bug fix is approved in the

meeting of senior engineers, the SDET works to write

new tests on a private branch of the code base to ensure

that the fix doesn‟t cause any problems with the

existing code base/functionalities. For any anomalies

that are observed the error logs are collected and sent

to the SDEs who debug and fix the problem again

Once tested extensively in the private branch the SDET

signs off on the fix and the SDE „commits‟ the fix to

the main code base.

3.2 Survey analysis

As part of the interviews that we conducted the

important themes in both the SDE and SDET

workflows were identifying the fix and debugging. We

asked both SDEs and SDETs during our interviews as

to how they went about collecting information for

debugging and codified a set of ten sources of

information. These sources are:

a) MSDN library

b) Existing knowledge of system

c) Ask colleagues in servicing – IDC

d) Ask colleagues in servicing – Redmond

e) Ask Windows Product group – IDC

f) Ask Windows Product group – Redmond

g) Search bug database

h) Take help from internal communities

i) Read specification document

j) Look up in the source control system who has

worked on this piece of code before to fix

bugs

 Figure 3: SDET workflow

To assess the extent to which each of these sources

of information was used to cater to problems

associated with information needs we created a survey

where SDEs and SDETs could anonymously select the

extent to which they used these practices. Our survey

was sent to the entire servicing organization in India

(around 100 SDEs and SDETs) and received 32

responses with a response rate of around 30%.

The results of the engineer‟s responses to the

survey are shown in Figure 4 sorted in descending

order (by using sum of Almost Always, Frequently and

Moderate number of times). From the GSD context we

see that discussions with engineers in Redmond for

questions were very rare. None of the 32 respondents

mention that they “almost always” talk with engineers

in the Windows Product group in Redmond. Even very

few talk to colleagues in servicing in Redmond, though

more than 80% of the respondents talk to their

colleagues in servicing at IDC. This indicates that the

SDEs and SDETs in IDC are fairly independent with

their own experts in-house upon whom they rely upon

for their information needs. From an empirical

perspective we evaluate this by carrying out a focused

shadowing described in greater detail in section 3.3.

3.3 Shadow Sessions

In this section we report on the details of the

“shadowing” sessions where we observed four

employees (two SDEs and two SDETs) for two hours

each, interrupting them minimally, and taking careful

notes on their activities. The aim of the shadow session

was to observe as much as possible, and actually

experience the work patterns of the SDEs and SDETs,

their information needs and how they collect it. The

time that they spent doing various tasks was noted and

also the details like frequency of interruptions,

information sources referred to in case of interruptions

and, questions and queries people had during this time

were also collected. This data matched considerably

with the results obtained from the survey confirming

that there was little dependence on the engineers in

Redmond thereby making the servicing organization in

IDC an independent work entity.

Figure 5 illustrates the work patterns of the people

during the shadow session. Each activity is delimited

by a line. More explanation can be found by reading

the key. This key and coding format of the various

activities is motivated by observations done by Ko et

al. [9]

A new insight we gained through our shadow

sessions is that code reading is a prominent task during

debugging. This can be attributed to the fact that

people read code most of the time to “debug” or find

the root cause of the bug. It is interesting to note that

the time people refer to reading bug data is significant.

SDEs and SDETs search the bug database to see if a

similar issue was fixed earlier and get pointers about

what has to be considered while fixing the current

issue. This helps the developers see how prior bugs

were fixed, read the comments for the previous fixes

and documentation to understand the design rationale

behind the choice of those fixes. The bug information

also provides developers with “people” information

regarding who was the person who fixed the bug, who

tested the fix so that if they have any questions they

have a point of contact to start an investigation and

clarify any questions they may have.

Figure 5 also shows that the nature of the work

done by the people is heavily interrupt-driven. These

interrupts can be external interrupts or internal

interrupts. External interrupts mainly arise from

colleagues asking questions regarding bug fixes, prior

experience in fixing a bug in the same area etc. Also, a

person may get internally interrupted when he/she

faces similar hurdles. In such cases he interrupts his

colleague and becomes a source for external interrupt.

Figure 4: Survey responses for source of satisfying information need at IDC

 Instance of time external interrupt occurs. (People calling,

Phones, IMs etc)
 Interaction with people for questions (can be via email,

IM, phone)

 Instance of time a person gets blocked (Cannot figure out
what to do next, Cannot understand what to do next)

 Activities “related” to work – updating bug database,
installing a tool, connecting to a remote machine,

writing formal emails.

 Repro (following repro steps in the, trying out different
settings, configurations to find out system behavior to

check in what other ways a bug can manifest)

 Reading code (code changes)

 Debugging (Manual and automated)

 Unblocking people (not counting responding to

emails). Work done to help unblock others

 Issue awareness (bug database and email)

 No work activity (personal email, IM)

 Code

Change of bug/issue

Figure 5: Coding of shadowing results

0 5 10 15 20 25 30 35 40 45 50 55 60

 IM

 IM

 IM

 IM

 r d r d r
m

 d

p d

d

d

r ---w----- r
p

p IM

Read

 rd rd -------- rd

p rd --------

w
C

w

w

-

-

-

-

-

-

-

-

u

IM
p

C u

u

 IM

 c c a c

w
rd w ---w-----

p
w -----w------ C w

p C p w
m

C -----w------
a w

p

p rd rd IM rd p

p

--

-

--

--

--

--

 rd IM

 p w
w

p C

p m

w p

m

p rd IM

r

d

p rd

--

--

--

--

--

-

m m m

r

r
p rd search p w p -------

m

r

d

p/m

w

rdr

d

u

 --

-

c

4. GSD:A broader perspective at Microsoft

In this section, we take a step back and examine

how Microsoft does software servicing from the

perspective of the main problems facing GSD as

outlined by Herblsleb and Moitra [8]. Herblsleb and

Moitra [8] categorize the main problems in GSD into

six main dimensions namely:

 Strategic issues: determination of projects

that are disjoint architecturally, as much as

possible.

 Cultural issues: understanding various

cultures – norms and practices.

 Inadequate communication: difference in

time zones and the lack of immediate

response to questions.

 Knowledge management: sharing product

and domain knowledge between teams.

 Project and process management issues:
synchronization between project and product

management deadlines.

 Technical issues: bandwidth problems,

problems in replicating code bases in different

geographical locations.

 We now describe how Microsoft addresses the GSD

challenges in each of these dimensions.

1. Strategic issues: determination of projects that are

disjoint architecturally, as much as possible.

In the WinSE team at IDC usually architecturally

disjoint components of a software system or the

complete system like Windows XP SP3 (Service Pack

3) are owned. Figure 6 shows an example architecture

of Windows Server 2003. On the highest level, there

are areas such as “Multimedia” or “Networking” [13].

Areas are further decomposed into components such as

“Multimedia: DirectX” (DirectX is a Windows

technology that enables higher performance in graphics

and sound when users are playing games or watching

video on their PC) and subcomponents such as

“Multimedia: DirectX: Sound” which at the lowest

level is comprised of binaries (.exe, .dll etc.) [13].

When work is divided between geographical locations

it is mostly done according to these architectural

separations to ensure that one area/component as a

whole is owned in one location (in addition to one

location owning the entire system in some cases).

Multimedia
(Area)

Networking
(Area)

...
...

...

DirectX
(Component)

Sound
(Subcomponent)

...

...

Binaries

Figure 6: Architectural definition of Windows [13]

2. Cultural issues: understanding various cultures –

norms and practices.

To address cultural issues strong face-to-face

communication is encouraged. At any given point in

time usually there are some engineers from IDC at

Redmond and vice-versa. Further, most senior

management in Redmond and IDC exchange visits to

familiarize themselves with people in the other site.

Due to this engagement a personal relationship is built

between employees in both centers and this leads to

cultural awareness and understanding amongst

employees. Further, the fact that people in both

locations are full-time employees with similar work

environment in terms of employee benefits,

compensation etc. means that the cultural issues

associated with the outsourcing scenario like short-

term engagement, routine low-end maintenance tasks

etc, are avoided.

3. Inadequate communication: difference in time zones

and the lack of immediate response to questions.

This problem still persists to a large degree as the 10-

12.5 hour time difference causes employees at one end

to stay up later than their normal working hours. This

is alleviated to a large degree by having a round-robin

delegation wherein members of a group in both

Redmond and IDC stay online to answer any questions

for the other team so that one team alone does not have

to work irregular hours. Another possible solution that

is being used is to have a few employees of IDC in

Redmond act as a liason and attend all the Redmond

meetings during the normal day to make sure issues

pertaining to IDC are highlighted in the meetings at

Redmond. This still does not solve the problems

regarding email communications that takes place mid-

day in either location. Also in addition to email,

telephone calls and teleconferencing are strongly

encouraged to enable engineers to clear problems

immediately avoiding lengthy email exchanges and

develop a personal rapport between employees in

different locations.

4. Knowledge management: Sharing product and

domain knowledge between teams.

Most of the senior management in IDC have spent a

significant amount of time working on Windows and

have also worked at Redmond. With such experienced

people available, IDC has a mentoring process wherein

domain experts are usually available onsite, as

determined by our survey results too in section 3.2 and

shadowing session in Section 3.3. Further, a joint

collaboration between Microsoft Research and WinSE

has resulted in the ongoing development of an

integrated knowledge base that stores information on

source code, fixes, bugs, test cases, ownership

information and other development artifacts in a single

repository which can be mined to find similar fixes,

test cases to be re-run after doing a fix, reading though

previous fixes etc. to help engineers identify similar

bug fixes and help in the debugging and triage process.

5. Project and process management issues:

synchronization between project and product

management deadlines.

Project and process management issues are managed

by having a single point of ownership for both the

Redmond and IDC teams. The overall Director of the

servicing organization in IDC and Directors in

Redmond are peers who report to the same upper level

manager who in turn reports to the executives. Having

a common management chain and a single point of

responsibility ensures synchronization between project

and product management deadlines to ensure the

smooth completion of common goals.

6. Technical issues: bandwidth problems, problems in

replicating code bases in different geographical

locations etc.

Microsoft has invested significantly in developing

infrastructure at IDC. There are no bandwidth issues

with several dedicated lines to not cause any efficiency

bottlenecks. Further all the required data (source code,

bug repositories) are run off local servers in IDC so

that there is no dependency for any type of data from

Redmond.

We have so far discussed our experiences with the

process and practices the servicing organization uses in

IDC and the ways in which problems associated with

information need are addressed by minimizing

dependencies, having expert engineers in the servicing

organization, access to all version control and bug

repositories, exchanging visits between IDC and

Redmond etc. Nevertheless there is significant need for

new tools in the GSD community that can make room

for improvement of the current practices and process

employed for GSD. Current research at Microsoft has

focused on tools for

 better communication and coordination;

 better search in code;

 finding similar bug fixes;

 developing a recommendation system with

machine learning techniques to help in the

debugging phase; and

 statistical risk models for bug triage.

These results will be discussed in forthcoming

papers. This paper is primarily intended as an

introduction to GSD at Microsoft with an example with

our experiences. We plan to investigate this line of

research further by discussing our experiences, tools

and process in future studies and collaborating with

researchers and academia outside of Microsoft to build

an empirical body of knowledge in this area.

Acknowledgements

We would like to thank the servicing organization in

IDC and Redmond for their support of this study. We

would also like to thank Jameel Hyder, Jacek

Czerwonka, Koushik Rajaram and Alex Tarvo for their

help in reviewing earlier drafts of this paper. Shilpa

Bugde was an intern with Microsoft Research, India

when this research was performed.

References

[1] M. Bass, Herbsleb, J., Lescher, C., "Collaboration

in Global Software Projects at Siemens: An

Experience Report", Proceedings of International

Conference on Global Software Engineering, pp.

33-39, 2007.

[2] R. D. Battin, Crocker, R., Kreidler, J.,

Subramanian, K., "Leveraging resources in global

software development", IEEE Software, 18(2), pp.

70-77, 2001.

[3] F. P. Brooks, The Mythical Man-Month,

Anniversary Edition: Addison-Wesley Publishing

Company, 1995.

[4] D. Damian, Moitra, D., "Guest Editors'

Introduction: Global Software Development: How

Far Have We Come?" IEEE Software, 23(5), pp.

17-19, 2006.

[5] C. Gutwin, Penner, R., Schneider, K., "Group

awareness in distributed software development",

Proceedings of Conference on Computer

supported cooperative work, pp. 72 - 81, 2004.

[6] J. D. Herbsleb, Grinter, R. E., "Splitting the

Organization and Integrating the Code: Conway's

Law Revisited", Proceedings of International

Conference on Software Engineering, pp. 85-95,

1999.

[7] J. D. Herbsleb, Mockus, A., "Formulation and

preliminary test of an empirical theory of

coordination in software engineering",

Proceedings of European Software Engineering

Conference/Foundations in Software Engineering,

pp. 138-147, 2003.

[8] J. D. Herbsleb, Moitra, D., "Global software

development", IEEE Software, 18(2), pp. 16-20,

2001.

[9] A. J. Ko, DeLine, R., Venolia, G., "Information

Needs in Collocated Software Development

Teams", Proceedings of International Conference

on Software Engineering, pp. pp. 344-353, 2007.

[10] A. Konary, Boariu, A., Notarfonzo, R.,

"Worldwide Software Maintenance 2005-2009

Forecast and Analysis: Continued Growth," IDC

June 2005. (Source: Business Wire,

http://findarticles.com/p/articles/mi_m0EIN/is_20

05_Oct_11/ai_n15685393)

[11] A. Mockus, Fielding, R.T., Herbsleb, J., "Two

case studies of open source software development:

Apache and Mozilla", ACM Transactions on

Software Engineering and Methodology, 11(3),

pp. 309 - 346, 2002.

[12] B. Sengupta, Chandra, S., Sinha, V., "A research

agenda for distributed software development",

Proceedings of International Conference on

Software Engineering, Shanghai, China, pp. 731-

740, 2006.

[13] T. Zimmermann, Nagappan.N., "Predicting

Subsystem Failures using Dependency Graph

Complexities ", Proceedings of International

Symposium on Software Reliability Engineering,

pp. 227-236, 2007.

