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Abstract
Indexes play a vital role in decision support systems by

reducing the cost of answering complex queries. A popular
methodology for choosing indexes that is adopted by database
administrators as well as automatic tools is: (a) Consider
poorly performing queries in the workload. (b) For each
query, propose a set of candidate indexes that potentially
benefits the query. (c) Choose a subset from the candidate
indexes in (b). Unfortunately, such a strategy can result in
significant storage and index maintenance cost. In this paper,
we present a novel technique called index merging to address
the above shortcoming. Index merging can take an existing
set of indexes (perhaps optimized for individual queries in the
workload), and produce a new set of indexes with
significantly lower storage and maintenance overhead, while
retaining almost all the querying benefits of the initial set of
indexes. We present an efficient algorithm for index merging,
and demonstrate significant savings in index storage and
maintenance by virtue of index merging, through experiments
on Microsoft SQL Server 7.0.

1. Introduction
Decision support systems and data warehouses rely on

indexes for achieving good performance. Picking appropriate
indexes for such systems is guided by workload information
that is representative of the queries posted against the server.
Such a workload may consist of customer benchmarks or
queries logged by the system. Database administrators (DBA-
s) and index selection tools exploit the workload information
to create/add appropriate indexes for the database. One
popular methodology for choosing indexes consists of the
following steps: (a) Consider poorly performing queries in the
workload (b) For each query, consider a set of candidate
indexes that potentially benefits the query (c) Choose a subset
of the indexes proposed in (b). Such a methodology is not
only adopted by DBA-s, but is also at the heart of modern
index selection tools [CNITW98, CN97].

The above methodology suffers from the key shortcoming
that the space of indexes considered is generated by looking
at the workload one query at a time. A set of indexes chosen

using this methodology can therefore result in excessive
storage requirements as well as index maintenance cost.
Consider for example, the Q1 and Q3 queries of the TPC-D
benchmark. Q1 benefits significantly from an index I1 on the
lineitem table on columns (l_shipdate, l_returnflag,
l_linestatus, l_quantity, l_extendedprice, l_discount, l_tax). I1

is a covering index for Q1, i.e., it contains all columns from
lineitem required to answer the query. Similarly, a covering
index I2 on columns (l_shipdate, l_orderkey, l_extendedprice,
l_discount) is beneficial for query Q3. However, a single
index I’ on the columns (l_shipdate, l_returnflag, l_linestatus,
l_quantity, l_extendedprice, l_discount, l_tax, l_orderkey) can
reduce (a) the storage requirement by 38% and (b) the index
maintenance cost for batch insertions by 22%, while the
combined cost of queries Q1 and Q3 increases by only 3%
compared to the case when both I1 and I2 exist.

 Unfortunately, identifying candidate indexes by analyzing
interactions among multiple queries in the workload at once is
difficult since that could lead to an explosion in the space of
candidate indexes considered, particularly for complex or
large workloads. Therefore, in this paper we have pursued an
alternative approach. We present a novel technique called
index merging that uses a given set of indexes and derives a
new set of indexes that significantly reduces the storage and
maintenance overheads while retaining almost all querying
benefits of the given initial set of indexes. Thus, index
merging technique is able to take as input a set of indexes that
has been optimized for individual queries in the workload and
is able to generate a new set of indexes that is superior. To
illustrate the benefits of index merging, consider for example
the TPC-D database [TPC93] and the 17 queries defined in
the benchmark. If we build indexes by tuning each query
individually, then the storage space required for the indexes
exceeds the data size by about a factor of 5. However, by
applying index merging to the set of indexes generated by
tuning queries individually, we can reduce the storage
requirement to about 2.3 times the data size, even though the
average cost of the queries increases only by about 5%
compared to the initial set.

Naturally, an index merging component should be an
integral part of an index selection tool to enable choosing
indexes that have low storage and maintenance overhead. In
fact, we have incorporated the index merging techniques into



the index selection tool that we built for Microsoft SQL
Server 7.0 [CNITW98, CN97] and have obtained significant
benefit. We note that index merging can be a valuable tool in
itself, that can improve any given set of initial indexes.

1.1 Outline of the paper
To the best of our knowledge, this is the first paper to

study the concept of index merging, implement index merging
on a commercial DBMS system (Microsoft SQL Server 7.0)
and present experimental results. The rest of the paper is
organized as follows. In Section 2 we discuss related work.
Section 3 is the heart of our paper. In this section, we present
a formal framework for index merging and define the problem
of finding a set of indexes that exploits index merging. We
present an architecture that modularizes the above search
problem, and also describe an efficient algorithm for finding a
set of indexes that minimizes the storage overhead given an
upper bound on the increase in the workload execution time
that can be tolerated. In Section 4 we describe the results of
experiments based on our implementation of a client utility
for index merging on Microsoft SQL Server 7.0, which show
that our algorithm produces good solutions on several
databases and workloads. We present our conclusions in
Section 5.

2. Related Work
In the past, there has been lots of work in the area of index

selection [CBC93,CN97,FON92,FST88,GHRU97,RS91]. In
all prior work on index selection that we are aware of, every
index considered by the algorithms is part of an “optimal” set
of indexes for at least one query in the workload. Index
merging however, is concerned with the space of indexes that
is derived from an existing set of indexes that have been
created for individual queries in the workload. Thus, the
indexes explored are not necessarily optimal for any query in
the workload. Moreover, unlike the focus of index selection,
which is to minimize the cost of the queries under a given
storage constraint, index merging aims to minimize storage
under a given cost constraint.

The problem of finding the right set of “merged” indexes
from an initial set of indexes is similar to finding appropriate
vertical partitions for a given database and workload
[C92,CY90,DP88,HN79,HS75,M83,NCWD84,NR89].
However, there are two key differences between these
problems. First, an index is a redundant vertical slice of the
base relation, whereas a vertical partition physically separates
columns of the base relation. This distinction significantly
affects query optimization since if an index is not available
the optimizer can still scan the base relation, whereas if the
columns required for a query are not available in a vertical
partition, the optimizer must join multiple partitions to answer
the query. Second, unlike a vertical partition, indexes can also
be used for selection via lookup. Thus, algorithms for index
merging must be sensitive to this issue.

Finally, we differ from most previous work in index
selection and vertical partitioning except [FST88,CN97] in
that (a) we use workload information to guide the index

merging process (b) we rely on the optimizer’s cost estimates
of a query for evaluating the merit of a merged set of indexes,
rather than using an approximate external cost model.

3. Index Merging
In this section we present a framework for index merging

and define the problem (Section 3.1), outline our solution to
the this problem (Section 3.2), and describe the three
important components in our architecture for index merging:
Merging a given pair of indexes (Section 3.3), Search
Strategy (Section 3.4), and Cost Evaluation (Section 3.5).

3.1 Framework for Index Merging
In this paper, we use the term configuration to mean a set

of indexes. We use the term storage of an index to mean the
space required to store the index on disk. The storage of a
configuration C is the sum of the storage of indexes in C. We
now define what it means to merge two or more indexes.
Intuitively, merging preserves the property that if prior to
being merged, an index contained the columns required to
answer a query, then the resulting index after merging also
contains the columns required to answer the query.

Definition 1. Merging a Set of Indexes. A set of indexes I =
{I 1, I2,… IN} are said to be merged to form index M if (a)
Every column of each index in I is present in M and (b) M
contains no columns that are not present in some index Ij ∈ I.
The indexes I1, I2, …, IN are referred to as the parent indexes
and M is referred to as a merged index.

We note that if the indexes I1 I2, … IN contain a total of k
distinct columns, then k! different mergings of the N indexes
are possible since each permutation of the columns
determines a different index.

Example 1. Merging two indexes
Consider the lineitem table in the TPC-D benchmark. Let I1

be a 4-column index on (l_shipdate, l_discount,
l_extendedprice, l_quantity). Let I2 be a 3-column index on
(l_orderkey, l_discount, l_extendedprice). Then a total of 5!
mergings of the two indexes are possible, and two such
merged indexes are:
M1 = (l_shipdate, l_discount, l_extendedprice, l_quantity,
l_orderkey) and
M2 = (l_orderkey, l_shipdate, l_discount, l_extendedprice,
l_quantity)

Note that a merged index may not retain the indexing benefits
of its parent indexes. For example, M2 cannot be used
efficiently for lookup (i.e. an index seek operation) to answer
a query with an equality/range condition on l_shipdate.
Although a set of indexes can be merged in many possible
ways, a class of merges that is of particular interest is called
index preserving merges. Intuitively the goal of an index
preserving merge is to try to maintain (at least partially) the
index seek benefit of the indexes being merged.



Definition 2. Index Preserving Merge
An index preserving merge of a given set of indexes I = {I1, I2

, … IN} is an index M constructed using a succession of
merges as follows:
(1) M consists of all columns of one of the indexes Ij∈I, in

the same order as in Ij.  I = I – {Ij}.
(2) Append to M all columns (that do not already appear in

M) of an index Ik ∈I in the same order as in Ik.
I = I – {I k}.

(3) Repeat Step (2) until I is empty.

Example 2. Index preserving merge
In Example 1 above, M1 is an index preserving merge since it
has I1 as its leading prefix followed by the (distinct) columns
from I2 appended in order. M2 is not an index preserving
merge since neither I1 nor I2 is a leading prefix of M2. The
only other index preserving merge possible in this case is
(l_orderkey, l_discount, l_extendedprice, l_shipdate,
l_quantity)

In Definition 2 we note that (a) the indexes from I are
merged in some pre-determined order, and (b) one of the
indexes, Ij,  becomes a leading prefix of M. Thus the index
lookup benefits of Ij are preserved in M. Furthermore, an
index preserving merge has desirable behavior when we
merge two indexes where one is a prefix of another. For
example, if we merge an index on columns (A, B) with an
index on (A,B,C) an index preserving merge will always
produce the merged index (A,B,C), thereby preserving the
index lookup benefit of both parent indexes. Finally, we
observe that if we are merging p indexes, at most p! index
preserving merges are possible.

Definition 3. Minimal Merged Configuration
A configuration C’ = {J1, J2, …, Jk} is said to be a minimal
merged configuration with respect to an initial configuration
C = {I1, I2, … IN} if
• Each Ji, 1≤ i ≤k, (k ≤ N), is either one of the indexes Ip, 1

≤ p ≤ N, or is the result of merging two or more indexes
in C.

• For all p, q, Jp and Jq do not share a parent index from C
(see Definition 1).

Thus, a minimal merged configuration C’ is guaranteed to
have no more indexes than the initial configuration C. When
C’ contains one or more merged indexes, the number of
indexes in C’ will be less than that of C. In such cases the
storage required for C’ can be significantly less than that of C.
Although the Definition 3 does not require the use of index
preserving merges, in this paper we restrict our study to the
space of minimal merged configurations derived using only
index preserving merges.

We now state the index merging problem as follows:
Input:
• An initial configuration C = {I1, I2, …IN}
• A workload W of queries {Q1, Q2, … QP}

• An upper bound U , on the cost of the workload, referred
to as the cost-constraint.

Goal: Find a minimal merged configuration C’ = {J1, J2, …
Jk} , k<= N with respect to C, such that
• Cost(W, C’) ≤ U, where Cost(W, C’) is the cost (or

estimated cost) of executing the workload when the
database configuration is C’.

• C’ has the lowest storage among all merged
configurations, derived using only index preserving
merges, satisfying the cost- constraint U.

We call the above problem the Storage-Minimal Index
Merging problem. In this paper, we focus on solutions to the
Storage-Minimal Index Merging problem. Note that this
formulation has the attractive property that it guarantees an
upper bound on performance degradation due to index
merging. Although not explored in this paper, we note that a
dual formulation of the problem is possible where the goal is
to minimize the cost of the workload subject to a maximum
storage constraint. We refer to the second formulation of the
problem as the Cost-Minimal Index Merging problem.

3.2 Our Approach
The architecture of our solution to the index merging

problem is presented in Figure 1. As explained in the
introduction, our approach is to take into account the
workload information faced by the system. Although
determining a representative workload for a system is itself a
challenging task, there are several reasonable solutions. For
example, the database administrator may use organization
specific representative workloads. Another approach is to
generate a log of SQL queries (and updates) at the server.
Most database systems today offer a mechanism to log events
at the server. For example, in Microsoft SQL Server, the SQL
Server Profiler provides this capability.

We explore the space of possible merged configurations
carefully by using three important components in our
architecture. First, we approach the index merging process by
a sequence of pair-wise merging of indexes. Therefore, in the
context of index preserving merges, the important issue is

Figure 1. Architecture of index merging algorithm.
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how the indexes are ordered during merging. This
functionality is provided in our architecture by the MergePair
module (Section 3.3), which takes as input a pair of indexes
and produces a merged index. The Search strategy module is
responsible for deciding the sequence of pair-wise mergings
required to arrive at a good overall merged configuration. We
describe our search strategy in Section 3.4. The search
strategy uses the Cost Evaluation module, which takes as
input a workload W and a configuration M, and returns the
cost of the workload W for the configuration M. We denote
this function as Cost (W, M). The cost evaluation module
must be able to provide the cost even when M contains
merged indexes which do not physically exist in the database.
We describe alternative implementations of Cost (W, C) in
Section 3.5. In one implementation, the cost evaluation
module needs to communicate with the database server to
obtain the cost of a query. The block arrow from the cost
evaluation module to the server represents the interfaces in
the server for obtaining this cost. The choices made in these
three modules are responsible for the quality as well as
running time of the algorithm for index merging.

3.3 Merging a Pair of Indexes
In this section we present two alternatives for merging a

pair of indexes using an index preserving merge. The first
alternative uses the cost of queries and the usage of indexes in
the initial configuration C to determine the order of indexes,
whereas the second alternative relies only on syntactic
information in the workload. For purposes of comparison in
our experimental evaluation, we also use the MergePair-
Exhaustive procedure, which considers all possible ways2 of
merging a given pair of indexes, i.e. is not restricted to index
preserving merges.

The MergePair module also needs to compute the expected
storage space taken up by a merged index, i.e. its size. The
size of an index can be accurately predicted if we know the
on-disk structure used to store the index. For example, if
indexes are stored as B+-Trees, we can estimate the number
of pages required for the index, given the width of columns in
the index and the number of tuples in the relation on which
the index is defined.

3.3.1 Merging based on Cost and Index Usage
Our approach to merging a pair of indexes is based on the

observation that indexes can be used in two fundamental
ways: index seek and index scan. Index seek is used to
retrieve a subset of the rows from a table. For example, if a
query has a condition in the WHERE clause such as T.a = 10,
then an index on column T.a can be used for index seek to
answer the query by retrieving all rows from T that match the
condition. Index scan is used to read in a subset of the
columns of a table, i.e. a vertical slice, that contains the
columns referenced in a query. For example, if a query only
references columns A and B from a table, then an index on
(A,B) can be used to scan for the data rather than scanning the

                                                
2 If there are altogether k distinct columns in the two indexes, then there
are k! ways of merging the two indexes.

entire table. It is important to differentiate between these two
types of index usage since, when merging indexes, the order
of the columns in the merged index affects its usage for index
seek but not index scan. For example, consider indexes I1=
(A,B) and I2=(B,C). If we generate the merged index M =
(B,C,A), then M is not useful for answering queries with
conditions on A using index seek. However, M can still be
used to answer queries that reference only the columns A and
B using an index scan (although at a slightly higher cost due
to the additional column C).

Figure 2 presents the procedure MergePair-Cost, for
merging a pair of indexes I1 and I2. Seek-Cost (W, I) denotes
the cost of all queries in the workload W where I was used for
index seek. The MergePair-Cost procedure always generates
an index preserving merge by making the index with the
higher Seek-Cost the leading prefix of the merged index. This
heuristic attempts to minimize the increase in the cost of
queries due to merging. The underlying intuition is that the
absence of an index for lookup typically has a multiplicative
effect on the cost of a query.   Since the leading columns of M
are the same as those of Leading, M can be used for index
seek in queries where Leading was previously being used for
index seek. M can also be used for index scan in queries in
which Leading and Trailing were being used for index scan,
since the order of columns in M is not relevant for index scan.
Thus the only queries that are likely to increase in cost
significantly are those where Trailing was being used for
index seek.

The MergePair-Cost procedure requires computing the
Seek-Cost of an index in the initial configuration for the given
workload. This information can be gathered by examining the
plan and cost of each query in W for the initial configuration.
Most database systems support such a mechanism to obtain
the plan and cost of a query, without having to execute the
query. In Microsoft SQL Server, this functionality is provided
by the Showplan mechanism.

1. If Seek-Cost(W, I1) ≥ Seek-Cost(W, I2)
2. Then Leading = I1, Trailing = I2.
3. Else Leading = I2, Trailing = I1.
4. Generate M by performing an index preserving merge

of I1 and I2 where the leading prefix of M is Leading.
5. Return M

Figure 2. The MergePair-Cost procedure.

1. Assign a frequency to each index I1 and I2 based
on the number of appearances of the leading
column of the index in (a) A condition
(selection/join) (b) An  Order By clause (c) A
Group By clause (d) A Select clause.

2. Generate an index preserving merged index M of
I1 and I2 where the index with the higher
frequency is the leading prefix of M

3. Return M

Figure 3. The MergePair-Syntactic procedure.



3.3.2 Merging based on Query Syntax
In order to evaluate the importance of cost and index

usage information in merging a pair of indexes, we present a
third implementation of MergePair that we refer to as
MergePair-Syntactic (shown in Figure 3). The decision of
which index precedes the other during a merge is not made
based on index usage information, but only on the parsed
information of queries in the workload. Our experiments
show that such a procedure that ignores the cost and index
usage performs relatively poorly in practice.

3.4 Search Strategy
Given an initial configuration C consisting of N indexes,

an obvious search strategy is to exhaustively enumerate every
possible merged configuration with respect to C derived using
MergePair, and pick the solution that results in maximum
storage savings that also meets the given cost constraint U.
Although such an Exhaustive algorithm is guaranteed to give
the optimal solution, it is infeasible in practice (e.g. N=20)
since the number of possible merged configurations grows
rapidly as we increase N, even when we restrict ourselves to
minimal merged configurations.

3.4.1 Greedy Search Strategy
Our solution to the search problem is to use a greedy

search strategy for enumerating the space of merged
configurations. The greedy algorithm, outlined in Figure 4,
iteratively finds better merged configurations. It uses the
function MergePair, which takes as input a pair of indexes
and returns a merged index and its expected storage
requirement. In each execution of the outer loop (Steps 2-10)
the algorithm considers all merged configurations obtained by
replacing a pair of indexes in the current configuration (C’)
with a single merged index. Among all such merged
configurations considered, the algorithm picks the merged
configuration C’’,  that results in the largest storage reduction
compared to C’, that also satisfies the cost constraint U. The
algorithm then repeats the outer loop with C’’ as the current
configuration. The algorithm terminates when no merged
configurations satisfying the cost constraint are found in an
iteration.

In practice this strategy performs extremely well and our
experiments show that it produces reduction in storage
comparable to the Exhaustive algorithm (which considers all
possible minimal merged configurations derived using
MergePair). Furthermore, unlike the Exhaustive algorithm,
the greedy algorithm runs in polynomial time in the number
of indexes in the initial configuration.

3.4.1.1 Analysis of Greedy Algorithm
If the number of indexes in the initial configuration is N,

the work done in the first iteration is O (N2 log(N)), which is
the time to order the merged pairs by storage improvement
(Step 5). In all iterations after the first, the work done is O
(N2) since the only new pairs considered are those resulting
from the newly added merged index from the previous
iteration. Since the outer loop is executed at most (N-1) times,
the overall running time of the algorithm is O (N3).

We note that the function Cost (W, C’’) can potentially be
expensive to compute if (a) the workload is large or (b) an
accurate costing technique such as the optimizer-estimated
cost is used (see Section 3.5). In such cases, checking whether
the cost constraint is satisfied in Step 7 can dominate the
running time of the algorithm.

In practice we observe that the algorithm executes much
faster than the expected worst case running time of O (N3).
One reason is that the number of configurations for which we
invoke Cost (W, C’’) per iteration is relatively small since a
merge that results in large storage reduction is also likely to
result in a small increase in workload cost; thereby making it
likely to satisfy the cost-constraint in Step 7. This is true since
a large storage reduction by merging two indexes implies that
the indexes have a high degree of overlap in their columns
(e.g. when one index is a prefix of another).

3.5 Cost Evaluation
The search strategies for index merging (described in

Section 3.4) require availability of the function Cost (W, C),
which returns the total cost of all queries in the workload
when the database configuration is C. In this section, we
present possible alternatives for implementing this cost
function. A good implementation of the cost evaluation
module is crucial since an inaccurate cost estimate can result
in poor quality of the resulting merged configuration. An
important requirement on the cost evaluation module is that it
must be able to estimate the cost even though the merged
indexes in C do not physically exist in the database.

The obvious solution is to implement Cost (W, C) by
materializing the indexes in C and executing the queries in the
workload to obtain the cost. While the execution cost
provides accurate information to the algorithm, it is
prohibitively expensive to obtain and can cause serious
disruption to operational queries since it requires creating
(and dropping) indexes. Therefore, in practice, using the
execution cost is infeasible.

3.5.1 No-Cost Model
The purpose of the cost evaluation module is to be able to
determine if a given merged configuration satisfies the cost-

Figure 4. The Greedy Algorithm

1. C’ = C /* C is the initial configuration */
2. Do /* Loop forever */
3. Let S = Set of all merged pairs of indexes in C’

using the MergePair procedure
4. If S is empty Return C’
5. For each merged index M in descending order of

storage reduction (Let Ia and Ib be the parent
indexes of M.)

6. C’’ = C’ – {I a} –{I b} + {M}
7. If (Cost (W, C’’)  ≤ U)   C’ = C’’;  Break
8. End For
9. If no merged configuration satisfies cost-

constraint in Step 7, Return  C’
10. End Do



constraint (see Section 3.1 for definition). Therefore a
simplistic model (which we refer to as the No-Cost model) is
to assume that the cost constraint is met by a merged
configuration if and only if merged indexes in the
configuration satisfy certain syntactic constraints. The No-
Cost model requires that (a) the width of each merged index
in the configuration not exceed a certain percentage f, of the
width of the base relation on which the index is defined, and
(b) the width of a merged index not exceed the width of either
of its parent indexes by a percentage higher than p. We note
that such syntactic properties on the indexes can be enforced
by the MergePair module. While this model is simple and
requires little computational effort, it introduces new
thresholds like f and p that need to be determined
appropriately for a given system. Another drawback of the
No-Cost model is that it cannot guarantee that the final
merged configuration will satisfy the given cost-constraint.

3.5.2 External Cost Model
Much of the previous work in vertical partitioning and

index selection relies on an external cost model for
implementing the Cost function, i.e. they are not “in-sync”
with the optimizer. An external cost model is attractive since,
it can lead to a very inexpensive implementation of the Cost
function.  However, there are two reasons why an external
cost model is not desirable. First, building an accurate
external cost model to account for the cost of complex SQL
queries is hard. Modern query processors use innovative
techniques such as index intersection, and join techniques that
use indexes, which make it hard to model externally. Second,
since the query optimizer itself evolves over time, the cost
model has to be updated and maintained to remain faithful to
the query optimizer, which incurs a substantial software-
engineering overhead.

3.5.3 Optimizer-Estimated Cost
The query optimizer component of a database system

routinely predicts the cost of a query for a configuration C
without actually executing the queries. Most database systems
support interfaces for exposing this cost information, e.g.
Showplan in Microsoft SQL Server, EXPLAIN in IBM/DB2.
However, we are still faced with the problem that not all
indexes in C exist in the database. Thus, we have to ensure
that the query optimizer is able to predict Cost (W, C) even
when one or more indexes in C are non-existent. Fortunately,
the optimizer does not rely on physical existence of indexes,
but merely on statistical information on the columns of the
indexes. Such statistical information consists of a histogram
on the column(s) of the indexes and density information. This
statistical information can be gathered inexpensively using
sampling, without compromising accuracy significantly
[CMN98]. We refer to the statistical information for non-
existing indexes as hypothetical (or “what-if”) indexes.
Therefore, when presented with a configuration C consisting
of one or more hypothetical indexes, the optimizer can still
predict Cost (W, C) by first constructing the necessary
hypothetical indexes, and then optimizing the query. More
details on this mechanism are available in [CN98].

For large workloads, obtaining the optimizer cost
estimates can be expensive since the query optimizer must be
invoked once per query. However, several techniques can be
used to alleviate this problem. First, for a given configuration
C, the cost needs to be obtained only for relevant queries in
W (i.e. queries for which indexes in C are potentially
relevant). Second, workload compression techniques can be
used to reduce the number of optimizer invocations. The
simplest form of workload compression is to detect
(syntactically) identical queries in the workload and replace
all identical queries by a single query (with an adjusted
frequency). Another effective method of workload
compression is to only consider the k most expensive queries
in the workload such that a significant fraction of the total
workload cost is covered by these queries. Finally, a search
algorithm that uses the optimizer’s cost estimates can be
partially supplemented by an external cost model to reduce
the number of optimizer invocations and the number of
hypothetical indexes that must be built. Thus, before invoking
the optimizer for evaluating Cost (W, C), the search algorithm
may consult an external cost model for an estimated cost, and
invoke the optimizer only if the external cost model predicts
that the cost-constraint can be met. The exploration of more
sophisticated external cost models to supplement optimizer
cost estimates is part of our future work.

4. Experiments
The goal of the experiments is to evaluate each of the three

components of index merging presented in Section 3: (a)
MergePair (b) Search strategy and (c) Cost Evaluation
strategy. In this section we present a set of experiments that
shows the effectiveness of our proposed techniques for index
merging.

4.1 Implementation
We have implemented the index merging algorithm as a client
of Microsoft SQL Server 7.0. The implementation mirrors the
architecture presented in Figure 1, i.e., consists of three
modules (a) Search module (b) MergePair module and (c)
Cost Evaluation Module. Modularizing the components
allows us to easily substitute one implementation of a module
with another and observe the difference in the behavior of the
algorithm. We had implemented the interfaces in the server
for optimizing a query for a hypothetical configuration in the
context of our work on index selection. We refer the reader to
[CN98] for further details on these interfaces.

4.2 Experimental Setup
4.2.1 Databases

We experimented with three databases: TPC-D 1GB, and
two synthetically generated databases Synthetic1 and
Synthetic2. Synthetic1 had 5 tables with the number of
columns in the each table being varied between 5 and 25.
Synthetic2 had 10 tables with the number of columns in each
table being varied between 5 and 45. In both schemas,
columns of varying width (between 4 and 128 bytes) were
included. The total size of Synthetic1 was approximately



200MB and Synthetic2 was approximately 1.2 GB. The data
values in each column were randomly generated based on a
Zipfian distribution. The Zipf value for the distribution was
picked randomly from the values 0, 1, 2, 3, 4. (0 implies
uniform distribution, whereas 4 is highly skewed data).

4.2.2 Workloads
For each database, we generated two classes of workloads.

The first class consists of randomly generated projection-only
queries where indexes are predominantly used as covering
indexes (see Section 1 for examples). The second class of
workloads consisted of randomly generated complex queries
(containing joins, aggregations etc.) using the automatic query
generation tool Rags [S98]. In each class, we randomly
generated two workloads with 30, and 50 queries
respectively.

4.2.3 Initial Set of Indexes
The initial set of indexes determines the space of possible
merged configurations proposed by the algorithms. We varied
this parameter by considering initial configurations of size 5,
10, 15, 20, 25, 30 indexes. Indexes were selected using the
Index Tuning Wizard [CNITW98] that is part of Microsoft
SQL Server 7.0, which can be used to pick indexes for an
individual query. We picked a query at random from the
workload and created indexes recommended by the Index
Tuning Wizard for optimizing the performance of that query.
This process was repeated until the required number of
indexes were generated.

4.3 Results
In this section we show through our experiments that:
• The greedy search strategy produces substantial

reduction in storage.
• The optimizer-cost based strategy for cost evaluation is

significantly better than the No-Cost model approach.
• The quality of index merging depends on the use of cost

and index usage information in MergePair.
• The reduction in index maintenance cost due to index

merging is substantial.

4.3.1 Comparison of Search Algorithms
(A) Quality of solution

In our first experiment we compare the quality of the
solution produced by (a) Exhaustive algorithm which uses the
optimizer-estimated cost, (b) Greedy search algorithm which
using the optimizer-estimated cost (Greedy-Cost-Opt) and (c)
Greedy search algorithm using the No-Cost model described
in Section 3.5.1 (Greedy-Cost-None). We used f = 60%, and p
= 25% for the No-Cost model since that yielded best results
for Greedy-Cost-None. Due to the exponential increase in the
number of merged configurations explored by the Exhaustive
algorithm we present results for the initial number of indexes
(N) = 5 for each database. We used the complex query
workload consisting of 30 queries in each case. Figure 5
shows the percentage reduction in storage achieved by each
algorithm. The greedy algorithm that uses optimizer-

estimated cost information of queries to guide the search
(Greedy-Cost-Opt) performs almost as well as the exhaustive
algorithm in each case, yielding only less than 4% storage
reduction compared to Exhaustive for the Synthetic2
database. The figure also shows that the greedy algorithm that
uses no cost model (Greedy-Cost-None) suffers a significant
drop in quality. This experiment shows that the greedy
approach performs well when cost evaluation uses optimizer-
estimated cost. We observed similar results when we varied
the cost-constraints (see Section 3.1). However, we do not
present these additional results due to lack of space.

(B) Running time
Figure 6 shows that the running time of the greedy

algorithms is a small percentage of the running time of the
Exhaustive algorithm. The figure also shows that Greedy-
Cost-Opt incurs a moderate overhead in running time as
compared to Greedy-Cost-None. We note that in most cases,
Greedy-Cost-Opt explored a very small number of merged
configurations in the inner loop (Steps 5-8 in Figure 4) of the
algorithm. Thus the number of hypothetical indexes created
and number of optimizer invocations were relatively small.
We conclude that the increased running time of the Greedy-
Cost-Opt algorithm is a price worth paying for the high
quality recommendations that it yields.

4.3.2 Comparison of MergePair procedures
In this experiment we compare the quality of solutions

produced by the Greedy search algorithm when using the
MergePair-Cost, MergePair-Syntactic and MergePair-
Exhaustive procedures respectively (presented in Section 3.3).
Due to the exponential nature of MergePair-Exhaustive, we
present the results for the initial number of indexes (N) = 5,
using the Greedy-Cost-Opt algorithm, for a cost constraint of
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10%. Figure 7 shows that despite restricting itself to the space
of index preserving merges, the MergePair-Cost procedure
gives almost as much reduction in storage as MergePair-
Exhaustive. This is due to the fact that it takes into account
cost and index usage information. On the other hand,
MergePair-Syntactic, which also uses index preserving
merges but relies only on syntactic information of queries in
the workload, is substantially worse in quality. This
experiment shows that restricting the space of possible
merges to index preserving merges works well when
combined with query cost and index usage information.

4.3.3 Comparison of Index Maintenance Cost
In our final experiment we demonstrate the reduction in

index maintenance cost due to index merging. To study the
effect of batch updates in a decision support environment, we
inserted 1% of the tuples into the two largest tables in each
database. We did this when the database consisted of (a) the
initial configuration, and (b) the merged configuration
produced by the Greedy-Cost-Opt algorithm. We repeated
this for different number of indexes in the initial
configuration. Figure 8 shows that index merging results in
substantial savings in index maintenance cost for each
database. This experiment shows that in addition to reducing
the storage requirements, index merging can also help
significantly reduce the batch insertion time in a typical
decision support system.

5 Conclusion
In this paper, we have introduced the concept of index

merging and identified the important components of the index
merging problem. Index merging helps identify indexes that
can significantly reduce storage, index maintenance and
administrative costs in a database. Our experiments indicate
that a greedy search strategy that uses optimizer-estimated
cost of workload for evaluating the merit of a merged
configuration (i.e., the Greedy-Cost-Opt algorithm), is an
excellent algorithm for index merging.
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