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ABSTRACT
In this paper we present the first implementation of a P2P content
distribution system that uses Network Coding. Using results from
live trials with several hundred nodes, we provide a detailed per-
formance analysis of such P2P system. In contrast to prior work,
which mainly relies on monitoring P2P systems at particular loca-
tions, we are able to provide performance results from a variety of
novel angles by monitoring all components in the P2P distribution.

In particular, we show that Network Coding is practical in a P2P
setting since it incurs little overhead, both in terms of CPU process-
ing and I/O activity, and it results in smooth, fast downloads, and
efficient server utilization. We also study the importance of topol-
ogy construction algorithms in real scenarios and study the effect
of peers behind NATs and firewalls, showing that the system is sur-
prisingly robust to large number of unreachable peers. Finally, we
present performance results related to verifying network encoded
blocks on-the-fly using special security primitives called Secure-
Random-Checksums.

Categories and Subject Descriptors:C.2.4 [Computer - Commu-
nication Networks]: Distributed Systems-Distributed applications
C.4 [Performance of Systems]: Measurement Techniques

General Terms: Measurement, Performance, Design, Security.

Keywords: peer-to-peer, content distribution, network coding, se-
cure random chesksums, NAT issues.

1. INTRODUCTION
In recent years, a new trend has emerged with peer-to-peer (P2P)
systems providing a scalable alternative for distributing commer-
cial, legal content (e.g. [11, 19, 20]). Such systems use end-user’s
resources to provide a cost-effective distribution of bandwidth in-
tensive content to thousands of users.

This paper presents our experiences with a P2P system that uses
Network Coding. While our previous research showed through
simulations that Network Coding provides efficient and robust dis-
tribution [11], it was believed that Network Coding is not practical
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in real environments because of encoding and decoding overheads,
and because protecting against block corruption is difficult.

We have implemented a prototype Network Coding P2P filecast-
ing system (described in§2), which to the best of our knowledge is
the first system of its kind, and tested it in the distribution of large
files (e.g. several GBytes) over the Internet. Our implementation
also provides efficient support against corruption attacks that try to
disrupt the download. In this paper, we present our experiences
implementing and using such system.

In addition to presenting our field experiences with network cod-
ing, we also present interesting results about general P2P systems.
Next, we summarize the main contributions of this paper:

a) We present the performance of a live P2P filecasting system from
a novel set of angles (§4). In contrast to prior work, which mainly
relied on monitoring P2P systems at particular locations, we were
able to monitor all components in the P2P distribution, and, as a
result, study a number of metrics that were not possible before.
For example, we are able to quantify the content provider’s savings
over time, the dynamics of the topology, the number of unreachable
nodes at any point in time, and the overall system efficiency.

b) We present our experiences with implementing and using Net-
work Coding. We quantify the system requirements and its benefits
in terms of download times. In particular, we show that coding
is feasible and incurs little processing overhead at the server and
the peers (§4.6). Moreover, coding is effective at eliminating the
first/last-blocks problems (§4.8) and uses the server capacity very
efficiently.

e) We evaluate various P2P topology construction algorithms and
quantify their impact in the overall throughput of the system.

c) We study the influence of unreachable nodes (e.g. behind NATs,
firewalls) in the system’s efficiency (§6). We compare the percent-
age of unreachable nodes with the system’s efficiency over time,
and observe that surprisingly the system is highly resilient to large
number of unreachable peers (e.g. as high as 70%).

e) We study the performance of a novel set of security functions
to secure Network Coding systems, which we callSecure Random
Checksums[12], and show that they have a negligible computa-
tional overhead and, hence, on-the-fly verification is possible (§7).

1.1 Network Coding
Network coding is a novel mechanism that promises optimal uti-
lization of the resources of a network topology [1, 6, 18, 26]. With
network coding, every transmitted packet is a linear combination
of all or a subset of the packets available at the sender (similar to
XORing multiple packets). Observe that encoded packets can be



further recombined to generate new linear combinations, enabling
nodes to generate encoded packets without having the full file. The
original information can be reconstructed after receiving enough
linearly independent packets.

Network coding is of great use in large-scale distributed systems,
such as multicast and wireless networks [11, 22]. In this paper we
focus on the use of Network Coding for P2P networks. In con-
trast to the multicast scenario where the benefits of network coding
relate to specific network topologies, in P2P systems the benefits
of network coding mostly stem from solving theblock scheduling
problem at large scales. In particular, network coding improves per-
formance when the number of users in the system increases while
the information that each node has about others remains constant.
More specifically network coding provides the following benefits:

I- The capacity of the seed server is fully utilized by constantly
serving innovative information:

This is a critical point; at time zero the seed server is the only
node holding a copy of the full file. Thus, the download time
achieved by the earliest finishing node is lower bounded by the
time that it takes to put a single copy of each block in the network.
Network coding ensures that this time is optimal since every block
served by the server is unique (refer to Section 4.7).

Note that in general this is hard to realize at large scales. To
guarantee that an individual node does not request a block from the
server that has already been requested by other nodes in the sys-
tem, that individual node needs to know what the other nodes have
downloaded and what they are currently downloading. However,
a particular node often only knows about the content in the nodes
in its neighborhood. As scale increases, the information that each
node has about others in the system decreases, thus, increasing the
probability of requesting overlapping blocks.

The best a node can do is to assume that other nodes in the system
have a similar set (or subset) of the blocks existing in its neighbor-
hood and request non-overlapping blocks accordingly. However (a)
newly arriving nodes, (b) heterogeneous capacities, and (c) churn,
can create swarms where different nodes are missing a very diverse
set of blocks. This makes it harder to estimate what blocks exist in
other parts of the network based on local observations.

For instance, in the extreme case where all nodes are missing
different sets of blocks and the visibility in the network is very
small, the amount of blocks served by the server beforeN different
blocks are placed in the swarm tends toNlogN (see [27]), which
for N=10,000 blocks equals80, 000.

II- Innovative information in a node propagates in optimal time
to those nodes needing it, regardless of the number of hops be-
tween the source and the sink:

Assuming that all nodes have the same capacity, then, the speed
at which information propagates over the P2P network is deter-
mined by the block selection policies and the distance between
nodes. In the case that a given node (source) holds a particular
block which is required in other parts of the network (sinks), net-
work coding will ensure that such block will propagate in a num-
ber of rounds equal to the distance between the source and the
sinks. However, if no coding is used (or even if only source coding
is used), then, the nodes in the path may “waste” several rounds
downloading blocks that the sinks already has. For instance if the
nodes in the path are empty, they will likely request blocks that the
sinks already posses.

Compared to traditional approaches, network coding makes op-
timal use of the available resources in the network without the need
for sophisticated scheduling algorithms and provides a high degree
of robustness, even if nodes suddenly depart the system or if deci-

sions are based only on partial information [11]. An overview of
network coding and its applications is given in [10].

2. SYSTEM OVERVIEW

2.1 Prototype Implementation
We have implemented a network coding based P2P file distribution
system in C#. Our content distribution system consists of three
types of participants: one or more peers, a registrar, and a logger.

Peers are sources and sinks for content data. Peers exchange
encoded information with each other in units that we callblocks.
Content is seeded into the system by a special peer, which we call
server. Peers that finish the download, but remain in the system are
calledseeds.

The registrar enables peer discovery. The active peers period-
ically report to the registrar and the registrar provides a random
subset of the active peers to nodes that have too few neighbors. The
logger is an aggregation point for peer and registrar trace messages.
Every peer in the system reports detailed statistics to the logger; us-
ing those statistics we are able to perform an in-depth evaluation of
the distribution.

The peer is the most complex of the three entities, and its func-
tionality is divided into two components:network transportand
content manager. The network transport maintains connections to
other peers for transferring blocks. We use two connections per
pair of nodes (one for each direction). Each peer maintains 4-8
connections to other peers. Peers periodically drop a neighbor at
random, encouraging cloud diversity and mitigating formation of
isolated peer islands.

The content manager encodes, decodes, validates, and persists
content data. In our experiments, the file is divided into 1000-2000
original blocks; all transfered blocks can be expressed as combina-
tions of the original blocks. To ensure low encoding and decoding
times, we have grouped blocks into so-called segments or genera-
tions [6], where only blocks of the same generation are combined.
This approach, which we call Group Network Coding, results in
more efficient decoding while retaining the network coding advan-
tages. The encoding/decoding operations take place in a Galois
Field (GF(216)).

3. EVALUATING SWARMING SYSTEMS
P2P systems are quickly evolving into a mainstream mechanism for
general content distribution. As such, they are being considered for
a variety of applications ranging from small scale and large scale
file sharing, to software and patch distribution, sensor data distrib-
ution, etc. Each of these applications pose different requirements
on the swarming protocol (e.g. in terms of the population size, ar-
rival patterns, content durability, available seeding resources, will-
ingness to cooperate, etc). Evaluating swarming systems under the
right context is critical to understand their benefits and limitations.
We next highlight some of the key issues when evaluating swarm-
ing systems:

Swarm efficiency with scale: Nodes in swarming systems often
perform local interactions with the goal to optimize the overall ef-
ficiency of the swarm. Such local actions are more or less effective
depending on the visibility that a given node has on the complete
system. For instance, at small scales a node’s view of the system is
usually very good, and local heuristics such as the “Rarest First”
neighborhood policy often achieve efficiencies close to optimal.
However, in a large scale systems with several thousands or mil-
lions of on-line nodes, each node only knows about the behavior of
a very limited portion of the system (e.g. few tens of users), thus,



decisions tend be quasi-random. For instance, “Rarest First” algo-
rithm will not perform well when the nodes are clustered in such a
way that the perception of “rare” for a cluster is different than that
of other clusters. It is thus critical to quantify whether the swarm
efficiency remains high as the system scales.

Nevertheless, evaluating very large swarms (e.g. with more than
several thousand concurrent users ) is often a difficult task (e.g.
computational requirements, lack of data, etc). An alternative ap-
proach is to test smaller swarms and reduce the visibility that each
node has on the overall swarm (e.g. by decreasing the neighbor-
hood size). This approach can be used to efficiently infer the impact
of large scale deployments with small scale systems.

In our prototype application we have limited the maximum node
degree to eight connections (as opposed to 40-80 used in other
swarming systems [8]). We will show that even with such small
number of connections, network coding can achieve very high effi-
ciencies.

Using a small number of connections can also have interesting
side benefits in different scenarios. For instance, commercial P2P
systems that need to keep privacy among users, rely on encrypted
SSL connections among peers. Due to the overhead of opening
such connections, nodes need to minimize the number of SSL con-
nections that they use. Similarly, modern P2P systems often use
special servers to relay connections for nodes behind NATs. Each
new node connection creates load on this server, which can eventu-
ally become the bottleneck of the system.

Partial observations are not enough:One common problem when
evaluating swarming systems is to monitor the performance of the
system from the point of view of a single or few nodes. This could
result in loss of critical information information related to peers in
parts of the network that are not being monitored. What happens to
nodes with different speeds? How about nodes entering the system
at different stages in the download? etc. Such lack of information
often also prevents calculating the best possible performance of the
system, and therefore, it is hard to estimate the overall efficiency.

To ensure that a swarming system is properly evaluated, it is im-
portant to observe the system from various angles and collect in-
formation at multiple points. Besides, it is critical to understand
the upper bound on the capacity of the system, which can only be
determined by knowing the maximum capacity of each node and
their full connectivity pattern.

In our system, we have carefully placed extensive logging at all
points in the system. This permits us to understand how all nodes
are interacting with each other, what kind of connectivity there is
among nodes, how efficiently they are using their upload capacity,
or their connectivity pattern, which are all critical to determine how
efficiently the system is performing.

Impact of arrival patterns: Swarming protocols have different
relative impact in the system at different stages of the download.
It is important to evaluate swarming protocols during the phases
where they play the biggest role. One common mistake is to eval-
uate swarms during stable phases with many seeds or very high
seed capacities. In such scenarios, most nodes are downloading the
content directly from other nodes that have the full file, and block
scheduling techniques across users rarely come into place.

During such stable phases, most nodes also have about the same
set of blocks, and inferring what others are missing is a much eas-
ier task. However, other arrival patterns can have a much more de-
manding impact on the swarming protocol. For instance, if there is
a continuous set of newly arriving nodes in the system, then, the set
of missing blocks across nodes can be very different; while newly
arriving nodes can be satisfied by any block, older nodes need very

specific blocks to finish. This could create a situation where older
nodes in the system do not get priority in downloading their miss-
ing blocks and they are delayed for long periods of time.

Flash crowds are among the most demanding phases in a con-
tent distribution cycle since content resides at a single node, many
users interact at the same time, and there is often a large number of
newly arriving nodes. Flash crowds can last few hours to several
days, after which the distribution cloud moves into a more benign,
stable phase with many seeds and plenty of upload capacity. Actu-
ally, for certain types of content, the stable phase is never reached.
For instance, content that is highly popular and updated frequently,
generates swarms with large number of users requesting the same
file at once and where the file only exists at the original server.
Other arrival patterns can also significantly stress the swarming sys-
tem (e.g. sudden departures, nodes arriving pre-populated, repeated
flash crowds, etc).

In our system, we have considered various arrival patterns, but
focused on flash-crowd events where most users arrive within few
hours of the file being published and the file resides at a single
location with limited upload capacity.

4. RESULTS

4.1 Data Summary
Our prototype implementation was used to distribute four large data
files to hundreds of users across the Internet. The total trial period
included roughly four hundred clients. Clients arrived asynchro-
nously after the notification of each trial commencement. Each
individual trial only handled one single large file and trials did not
overlap in time. Table 1 summarizes the data for all four files deliv-
ered. In this paper, we focus mostly on the results of Trial-4 since
this posed the most stringent load requirements.

During the trial, a single server, which had an upload capacity
of 2.5Mbps was used to publish the file; the same server served as
registrar and logger.

Table 1: Summary of Trials.
Trial 1 Trial 2 Trial 3 Trial 4

Duration (hours) 78 181 97 69
File Size (GB) 3.7 2.8 3.7 3.5

File Blocks 1000 2000 1000 1500
Total Clients 87 94 100 72

Bytes Sent (GB) 129.15 179.63 208.32 143.73
% from Server 33% 44% 19% 16%

% Unreachable Nodes 64% 57% 43% 40%
Avg Download Time (hr) 13 9 16 12

4.2 Individual Peers
Trial participants were diverse in terms of geographical location,
access capacity and access type (e.g. corporate links, DSL/cable
home users, wireless links). Figure 1 shows the user characteristics
for the first trial; the slope of the line that connects point(0, 0) and
a user equals the average download rate of the user. Note that users
were scattered across the world and while most users had download
speeds between 550 Kbps and 1.6 Mbps, others connected through
fast corporate links as well as slow modem connections.

It is interesting to compare the performance of a node behind a
non-reachable NAT (PC NATed) and the performance of the same
node (behind the same access link) without a NAT (PC non NATed).
Note that the non-NATed node gets a much higher throughput than
the NATed one (see Figure 1). The reason being that NATed nodes
cannot be reached by other nodes, and therefore, their pairing pos-
sibilities are significantly reduced.



Figure 1: Summary of participating users (Trial-1). In total, there were 87 machines, out of which 31 were publicly addressable. There was
a great variety of clients both in terms of geographic location, and, also, in terms of access capacities (see the dotted lines).

Figure 2 shows the set of neighbors for each peer over time in
Trial 1. Observe that the set of neighbors for each peer varies from
six to eight peers for downloads (except after completed) and from
four to six peers for uploads for most of the trial duration.

Figure 3 also shows the number sessions for each of the 100
peers that participated in the Trial 3. We define a new session each
time a user resumes its download. Observe that most peers had
multiple sessions (some up to 14), with only 20% of the peers com-
pleting the download in one single session. This indicates a high
level of churn in the system with users coming and going multi-
ple times before they complete. This is an interesting observation
for designining swarming systems. Such behaviour can result in
many nodes entering the system with a diverse set of pre-populated
blocks, which complicates the process of optimal block selection
since local observations may not be representative of the content
existing in other parts of the network.

4.3 System Rates
Using the detailed statistics collected in the logger, we can compute
the overall system throughput, which equals the aggregate down-
load rate, and estimate the contributions of the server, the seeds,
and the clients. We plot those performance statistics for Trial-
4 in Fig. 4. The total throughput of the system follows closely
the total number of active users. The resources contributed by the
server remained constant during the trial and the system maintained
high throughput even during the beginning of the trial, where many
nodes suddenly arrived and no seed nodes existed.

To better understand the system’s performance, we calculate the
user download efficiency. For each user, we record its average and
maximum download rate, and its arrival time in the system (peers
started arriving after time 10hr). The download efficiency of a user
is the ratio of its average download rate over the maximum; ideally
this ratio should equal1, however the system is constrained by the
upload capacities and hence lower ratios are expected. We group
the nodes in three groups based on their arrival time, and we report
the average download efficiency per group in Table 2. Note that
during the last group interval, there was a large number of seeds
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Figure 2: Number of upload and download neighbors for each peer
in Trial 1.



Figure 3: Number of sessions for each peer in Trial 3.
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Figure 4: System Rates over time.

present, while no seeds existed during the first group interval. Ob-
serve that the efficiency is similar for all groups, including the first
group, implying that nodes used the available resources efficiently
even during the early stages of the trial.

4.4 Content Provider Savings
We now study the benefits of using P2P from a content provider’s
point of view. Recall that many hosting sites charge content owners
based on the use of the egress access capacity.1 The savings are
proportional to the ratio of the aggregate download rate over the
upload rate contributed by the server; the former equals the upload
rate of the server in a client-server distribution. We plot that ratio
in Fig. 5(left). We observe that the server saved about one order of
magnitude in egress bandwidth and, hence, in monetary costs. This
is a significant benefit, even for our medium sized trial, and will
increase as the number of users increases.

Fig. 5(right) plots server’s fair share ratio over time. To com-
pute the fair share we divide server’s upload rate by the rate that

1Often using the95th percentile of the maximum rate over a period
of time.

Table 2: Average download efficiency over time

Time period Average St. Dev

10-20hr 0.49 0.13
20-40hr 0.5 0.16
40-60hr 0.52 0.13
Overall 0.5 0.15

the server would have to contribute if all nodes were uploading to
their maximum capacity (so that the aggregate download rate stays
constant). If some nodes do not contribute with upload capacity,
then, more load will be put in by the server and thus, its share
would increase. Ideally the fair share should be100% indicating
that users contribute enough resources and, hence, the system could
scale indefinitely. We observe that the average load on the server
is ≈ 100% of its fair share. The high values of fair share towards
the end of the trial indicate a slightly higher usage of the server’s
resources, which are due to the presence of very few nodes being
served mostly from the server.

4.5 Peer’s Performance
We now focus on the performance seen by a typical peer. In Fig. 6
(left), we plot the actual and maximum download and upload rates
for a cable modem user that has a2.2Mbps downlink capacity and
a300Kbps uplink capacity. We observe that the average download
rate is≈ 1.4Mbps and at times reaches the maximum possible rate.
The fluctuations are due to changes in the aggregate upload capac-
ity in the system. The upload rate, on the other hand, is consistently
close to its maximum value.

After the download period ended at time 34.5hr, the peer started
decoding the file. Decoding finished at time 35hr, and then the peer
become a seed. The upload rate increased slightly while seeding
since there is no signaling in the reverse (download) direction. The
zero upload rate while decoding is an artifact of the implementation
and will be removed in future versions.

In Fig. 6(right) we plot the percentage of time spent by a repre-
sentative sample of peers on downloading, decoding, and seeding.
Observe that the time spent in decoding is less than6% of the total
download time; this time can be improved by using on-the-fly de-
coding and exploiting parallelization. It is also worth noting that,
although some users stopped their application immediately after
decoding, other stayed in the system and served other people. The
average seeding time was around42% of the total time.

4.6 Resource Consumption
We now study the resources used by our network coding imple-
mentation on a typical machine (Pentium IV @2GHz and 512MB
RAM). In Fig. 7(left) we plot CPU usage during the lifetime of the
user. The download period started at time 2hr and ended at time
7.2hr; during that period the CPU overhead was less than20%.
The dip in CPU’s usage at time 4hr corresponds to a re-start of the
application. The increase of the CPU utilization to40% after the
end of the download is due to decoding. The CPU activity droped
to less than10% after decoding and while the node was seeding.

In Fig. 7(right) we show the disk activity over the download.
The spike at time≈ 7.2hr is due to decoding. (The smaller spikes
while downloading are due to activities unrelated to our P2P ap-
plication.) During the experiment, we used interactive applications
(e.g. word editing and WWW browsing) and did not observe any
decrease in responsiveness. Overall, these results indicate that the
network coding overhead in terms of end-system’s resource con-
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sumption are minimal. We expect the overheads to become negli-
gible as we implement more sophisticated encoding and decoding
techniques.

4.7 Server Efficiency
Minimizing the download time, especially of the early nodes, re-
quires optimal utilization of the server resources. Indeed, no down-
load can finish before the server serves each byte of the file at least
once, which is equivalent to eliminating duplicate transmissions
(until, of course, a full copy of the file has been served). Network
coding ensures optimal resource utilization since every block gen-
erated by the server can be used (with high probability) in place of
any other block to reconstruct the original file.

However, combining the entire file to construct a single encoded
block is impractical due to high encoding and decoding costs. In-
stead, in our implementation, we divide the blocks of the file into
groups (similar to the generations in [6]) and we perform coding
only inside the groups. Typically, each group is composed of 50-
100 blocks. By restricting the number of blocks required to pro-
duce an encoded block reduces the encoding operations, and, also,
results in sparse matrices that can be decoded efficiently. The dis-
advantage of our approach is that some segments may become un-
popular. This problem is similar to the optimal scheduling of the
block propagation. In the following, we argue experimentally that
segment scheduling is a much easier problem than block schedul-
ing and that the penalty of group coding is small.

To study the effect of group coding, we define server efficiency
as the number of useful (i.e. unique) blocks that are served by the
server in time sufficient to serve one full copy of the file (under opti-
mal scheduling). We measure server efficiency as a ratio and notice
that the efficiency of network coding is1.0; similarly, the efficiency
of an ideal block propagation scheme is also1.0. We estimate the
efficiency ratio of group network coding and of unencoded trans-
fers using the traces we have collected in our experiments.

We concentrate on the block transfers that took place from the
beginning of the download until the server has transmitted a num-
ber of blocks equal to the number of blocks in the file (e.g. 1500
blocks in Trial-4). Observe that we also include block transfers
between nodes. We assume that the underlying topology and peer
matching remains the same as we evaluate different block schedul-
ing techniques. We measure the number of unique blocks trans-
mitted by the server. In the case of group network coding, the first
b blocks from a particular segment are unique, whereb equals the
number of blocks per group; the rest blocks transmitted in that seg-
ment are redundant. We have performed5 runs per instance and we

Table 3: Utilization of server resources.

Method Efficiency
Group coding (50 blocks per group) 0.9552
Group coding (100 blocks per group) 0.9598
No coding, Local rarest, 4 neighbors 0.8863
No coding, Local rarest, 8 neighbors 0.9445
No coding, Random 0.7625
Optimal network coding 1.0000

report the average efficiency results in Table 3.
First it is interesting to node that the efficiency of the system

did not suffer when restricting coding over a segment of size 50-
100 blocks. We used network coding inside a given segment, but
scheduling decisions across different segments were made at ran-
dom. In fact, the efficiency was very close to1; that of an optimal
coding scheme spanning the whole file.

For the case of local rarest with no coding we have varied the size
of the neighborhood used to calculate the rarest first block from 4 to
8 nodes. From Table 3, we observe that a random block choice pol-
icy performs very poorly; almost24% of the tranmissions are redu-
dant. We also observe that group coding incurs a penalty of 4.5%,
compared to an optimal network coding system, however, it still
performs better than no coding. In the case of no coding, improving
the nodes’ knwoledge about blocks in other parts of the network,
improves the efficiency of the server. If the number of neighbors
is large enough (8 in our example), then unencoded block transfers
result in similar efficiency as group coding. This is due to the lim-
ited number of participants in our experiments. We expect that in
larger networks, the local rarest heuristic will be a poor estimator
of the state of the network (in the same spirit that local rarest with
4 neighbors performed worse than local rarest with 8 neighbors).

We conjecture that the number of neighbors that need to be sam-
pled to get a reliable estimate of the state of the network is not con-
stant with the size of the network. Hence, without encoding, we
may need a large number of connections to guarantee efficient uti-
lization of the server resources. On the other hand, group network
coding results in good performance even if the average node degree
is small (in the case of group network coding in our experiments,
the peers could not see the state of their neighbors).
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Figure 8: Amount of time spent at each stage of the download.

4.8 Download Progress
Anecdotal evidence suggests that downloaders in current peer-to-
peer systems perceive slow performance in the beginning of the
download, because they do not have anything to offer (or whatever
they have is already popular in the system),2 and toward the end of
the download, because they cannot find the last missing blocks. In
fact, [30] shows that if one plots the number of users downloading
a given portion of the file (e.g. the first5%, the next5%, etc),
it follows a U-shape, with users spending a large amount of time
to obtain the first and last portions of the file. This problem is
more acute when the number of seeds is small, or when the size of
the cloud is very large. Network coding can be used to solve this
problem.

In Fig.8 we plot the average time spent obtaining each1% of
file for all users in Trial-4. For example, the50th column is the
elapsed time it took to go from49% of the file downloaded to50%
of the file. The height of the column shows how much of the overall
download time was spent getting that each one percent. Observe the
absence of a U-shape in the graph by using Network Coding. The
reason is that each encoded block isuniqueand useful toanynode.
Thus, newly arriving nodes can easily obtain useful blocks that in
turn they can exchange with other nodes, and nodes at the end of
the download do not need to wait long periods before finding their
missing blocks.

5. TOPOLOGY CONSTRUCTION
Topology construction and maintenance are critical components of
any mesh network. Topologies with poor connectivity and connec-
tivity algorithms that bias the connections result in low network
efficiency and may raise some fairness issues (if only some nodes
monopolize the resources of the fast peers and/or the server).

During our four trials, we have experimented with a variety of
topology construction algorithms. The first two trials used a sim-
ple random construction algorithm, where each new node picks a
random subset of nodes out of those in the system (registered at the
tracker) and connect to them. Upload and download connections
were treated separately, and the set of uploading nodes could be
different than the set of downloading nodes. Each node attempts to
open new connections until their number reaches a certain target (6
for upload, and 8 for download). The maximum number of allowed
download connections is higher than the maximum for upload con-

2Recall that many P2P systems implement tit-for-tat algorithms to
discourage free-riders.
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Figure 9: Evolution of the second eigenvalueλ2 for the (overlay)
topologies of Trials 1 and 4.

nections to account for the bandwidth asymmetry. Compared to
current p2p systems, our system treats upload and download con-
nections separately.

A standard metric for measuring the global connectivity proper-
ties of a graph is the second eigenvalueλ2 of the stochastic normal-
ization of the adjacency metric of the graph [7, 16]. Unlike other
connectivity metrics, such as the clustering coefficient,λ2 mea-
sures global connectivity properties and has been associated with
various good properties of the graph (such as conductance and scal-
ing [13], efficient sampling [14], and others). Topologies with good
connectivity have second eigenvalue bounded away from 1.

In Figure 9, we plot the changes inλ2 for Trials 1&4. Note that
values above0.85 indicate graphs with poor connectivity charac-
teristics.

From this figure we can see that Trial 1 had consistently bad con-
nectivity properties due to the peer matching algorithm used. We
observe that this algorithm creates clusters of nodes, with few inter-
cluster connections, and, hence, graphs with poor connectivity. A
closer examination of the data also revealed bad fairness properties
since fast links were monopolized by a few peers in the system.

In Trials 3&4, the topology construction algorithm periodically
dropped one of its peers at random. We experimented with various
values of the frequency of dropping connections and with various
policies for choosing the connections to be dropped. We will now
show the results for the case where we drop one peer after five
blocks are uploaded (assuming that the peer-set was at its max-
imum). We also tested preferentially dropping slow peers, and
got similar results. Our motivation is to force rewiring of connec-
tions and, hence, construct overlay topologies with better proper-
ties [14, 15, 25, 31]. However, even doing so, we still observed
cluster formation. This can be seen in table 4 where we show the
breakdown of the connection statistics for Trial 3 and Trial 4. Ob-
serve, that during Trial 3 there are a large number of connections
established that do not result in any block transfer since they are
immediately terminated with a ’too busy’ message. The reason be-
ing that peers that were just dropped in one part of the network try
to contact other peers in other parts of the network, however, they
get continuously rejected since other nodes have their connection
budget used and are not accepting more connections.



Trial 3 Trial 4

Total Connect Attempts 88,179 42,218
Failed (e.g. NATs) 72,371 35,233

Established 32,033 14,960
Downloaded Block 12,687 12,131
Too Busy (cluster) 14,905 0

Table 4: Connection Statistics

To avoid this problem, in the Trial 4 we allowed a given peer’s
peer-setto grow temporarily by some threshold (e.g.max-peer-set
+ 2), creating an “elastic” maximum. This enabled dropped peers to
get immediately accepted by peers in other pars of the network. The
accepting peer would then be in a situation where he would have
more peers than the maximum allowedmax-peer-set, and would try
to come back to the max value by randomly dropping other excess
peers.

Figure 9 shows the connectivity graph in this scenario. We can
see that compared to Trial 1, Trial 4 resulted in very well connected
graphs with lowλ2, and this was achieved at the cost of slightly
higher churn. Similarly, from Table 4, we can also observe that
compared to Trial 3, Trial 4 ensures that peers can find other ac-
cepting peers in the network much easier (note the zero ’too busy’
messages).

6. CONNECTIVITY
The wide deployment of Network Address Translation (NAT) de-
vices and firewalls reduces peer-to-peer network performance. Peers
behind NATs and firewalls, which we shall collectively callun-
reachablepeers, cannot receive inbound connections. (We exclude
from our definition peers behind NATs and firewalls configured to
allow incoming connections.) Unreachable peers cannot exchange
content with each other, and, hence, cannot take advantage of the
network capacity that exists between them.3 Both their download
performance and the overall system throughput is reduced as a re-
sult.

Based on the observed peer performance and the percentage of
unreachable nodes, we calculate a) the optimal throughput of the
system assuming all nodes are reachable, and b) the optimal through-
put of the system taking into consideration the set of unreachable
peers. The optimal throughput at timet is computed as the sum
of the peak upload rate of all active peers at timet. To com-
pute the system throughput taking into consideration unreachable
nodes, we replayed the traces collected during the trials, calcu-
lating the optimal throughput given the existing connectivity con-
straints. To this extend, for each timet we first saturate the upload
(or, download capacities) of the plausible connections between un-
reachable nodes and reachable nodes. Then, we saturate the re-
maining upload/download capacities of reachable nodes by match-
ing them with each other. This matching is optimal. Our compu-
tation of the optimal throughput does not assume an upper limit on
the number of connections per node, which can overestimate the
computed optimal throughput.

In Fig. 10 we plot the optimal throughput with full node con-
nectivity and with the actual connectivity seen during two different
trials. During the first trial considered (Fig. 10(left)), the average
number of unreachable peers was quite high, more than 75%; the

3NAT traversal techniques can solve the connectivity problem [17];
in this work we are interested in investigating the throughput poten-
tial in the absence of such techniques

second trial had less than 60% unreachable peers, possible due to
our efforts to educate the users of the performance benefits of con-
figuring their NAT boxes and firewalls.

Observe the large discrepancy between the maximum system
throughput with and without considering the unreachable peers in
the first trial around time30hr. After examining the connectiv-
ity pattern of users, we realized that at this specific time, the sys-
tem reached high percentages of unreachable peers (more than 85-
90%).

In Fig. 10(right), we present the results for Trial 4 (with less than
60% unreachable nodes). We observe that the throughput under
partial connectivity is fairly close to that achieved with full con-
nectivity, which implies that the system performs surprisingly well
even with a large number of unreachable peers. We attribute the
resilience of the network to two factors: a) the aggregate upload
capacity of the high-capacitated, globally-reachable nodes can be
saturated by the aggregate download capacity of the unreachable
nodes, and b) the aggregate upload capacity of the unreachable
nodes can be saturated by the very high download capacity of the
few well-connected and fast nodes.4 We have validated both as-
sumptions analytically and experimentally, but, due to space con-
straints, we omit the details.

7. SECURITY
A common concern about network coding is the protection against
malicious users. Unlike unencoded transmission, where the server
knows and can digitally sign each block, in network coding each in-
termediate node produces “new” blocks. Homomorphic hash func-
tions can be used to verify the encoded blocks using the hashes
of the original blocks, however, such functions are computation-
ally expensive [24]. Our scheme is based on the use of random
masks and mask-based hashes, which we refer to as Secure Ran-
dom Checksums (SRCs). SRCs provide signatures capable of ver-
ifying the integrity of encoded blocks on-the-fly at a low computa-
tion cost. SRCs also have the nice property that they work well with
Galois Fields (and not just with modular fields, which are known
to be produce more expensive operations, as is the case with homo-
morphic hash functions).

We now give a high-level explanation of how SRCs work. To
produce an SRC, the server creates a vectorr = [r1 . . . rm] of ran-
dom elements inZq (oftenq = 16 digits). The size of the vector
m is the number ofsymbolsper block (for a block of 2 MBytesm
is 2 ∗ 10242). Then, the server performs pairwise multiplication
of the vector of random elements with the vector of symbols of a
particular block and adds the results inGF (2q). For example, as-
sume that the symbols of blocki arebi = [bi,1 . . . bi,m] and the
random numbers arer = [r1 . . . rm], then the SRC of blocki isPm

j=1 rjbi,j . The same process is repeated for alln file blocks.
Together with the SRCs, the random element vector is transmitted
(note that the set of random elements can be replaced with the seed
used for the random number generator). Because of the linearity
of the computation, it is easy to show that the SRC of an encoded
block can be computed from the SRCs of the original blocks. In
particular, assume an encoded blocke =

Pn
i=1 cibi, correspond-

ing to coefficient vector~c. To verify whether encoded blocke is
corrupted or not, a node applies the random vector to thee block
and checks whether the following equation holds:

4 In our system, (unreachable) nodes periodically attempt to initi-
ate upload connections to other nodes in order to fully utilize their
upload capacity.



Figure 10: The effect of unreachable peers on the overall performance for two trials (left: Trial-1, right: Trial-4). The top curves are
computed assuming all nodes are reachable; the lower curves take into consideration the set of unreachable peers over time.

Pm
j=1 rjej =

Pm
j=1 rj(

Pn
i=1 cibi,j)

=
Pn

i=1 ci(
Pm

j=1 rjbi,j)

The size of each random elementrj is q bits. Rather than sending
the random mask vector, in our implementation, each node down-
loads the seed used by the server to generate the random mask.
Based on the seed, nodes can reproduce the random mask vector
~r locally. The size of the seed is128 bits, which is negligible. In
addition to the seed, each node also downloads the per-block SRC
value. The size of the SRCs for all blocks in the file isn · q bits,
which results in2 KBytes for a 1000 block file.

When a new client joins the system, it first contacts the server
which computes a new set of SRCs for that client and communi-
cates the SRCs to the client over a secure channel. The client keeps
the SRCs secret, since if they are revealed, a malicious node can
efficiently fabricate corrupted blocks. A malicious node that does
not know the SRCs can trick a node only by pure luck. If the client
receives many SRCs,5 then it is computational infeasible for an at-
tacker to construct corrupted encoded blocks without the corruption
being detected.

The SRCs are linear operations and can be computed very effi-
ciently. In our current implementation running on a 3.0 GHz Pen-
tium 4 with 1GB of RAM, SRC generation takes 1 sec/SRC for file
of 2 GBytes, which is close to the cost of reading the file once. In
the current implementation, the cost of producing SRCs increases
linearly with the size of the file. However, more efficient imple-
mentations are possible. Note that for a smaller file size (e.g. 200
MBytes), one single server can produce SRCs to serve peers at a
rate of 10 peers/sec, or 864,000 users/day. Also, the rate of genera-
tion of SRCs at the server is not that critical since it is a process that
can happen in the background before the download commences.
The rate of SRC verification is close to 1.6 Gbps, which is much
faster than the rate at which encoded blocks can be generated. In
general, we have observed a negligable impact caused by SRC ver-
ification on the nodes performance.

8. RELATED WORK
Understanding and evaluating swarming protocols has been an im-
portant topic in the recent years. For instance, [3] compares differ-
ent swarming strategies and discusses the impact of the number of
blocks and the number of simultaneous uploads. They show that

5In our implementation each symbol is 16 bits long, and hence 10
SRCs result in 160 random bits

the number of chunks should be large and that the number of si-
multaneous uploads should be between 3 and 5 in order to have
good efficiency. Qiu and Srikant [29] provided an analytical solu-
tion to a fluid model of BitTorrent with global information. Felber
et al. [9] compared different peer and piece selection strategies in
static scenarios using simulations. Bharambe et al. [2] presented a
simulation-based study of BitTorrent using a discrete-event simula-
tor that supports up to 5000 peers and found different inefficiencies
using peer sets lower than 15 peers. Izal et al. [21] provided insights
into BitTorrent based on data collected from a popular tracker log
from a local peer perspective. Our work differs in that it provides
detailed experimental results of a live P2P distribution system from
a variety of novel angles by monitoring all its components. In ad-
dition, our paper provides details of our experiences with network
coding in a P2P environment.

A number of cooperative architectures [23] [4] have proposed the
use of Erasure Codes [28] (e.g. Digital Fountain [5]) to efficiently
transfer bulk data. However, in such systems the set of symbols
acquired by nodes is likely to overlap substantially, and care must
be taken to enable nodes to collaborate effectively. This makes co-
operation and reconciliation among nodes more difficult than when
no content is encoded. Network coding can be seen as an extension
or generalization of the Digital Fountain approach since both the
server and the end-system nodes perform information encoding.

Most of the previous work on network coding is largely based
on theoretical calculations that assume a detailed knowledge of the
topology, a centralized knowledge point for computing the distrib-
ution scheme and focus on multicast environments. However, little
effort has been made to build and evaluate the feasibility of net-
work coding on a real setting. In [11] we provided a comparison
of different swarming algorithms and evaluated via simulations the
performance of a network coding in P2P systems. However, it was
believed that network coding could not be made practical in real
settings due to its computational complexity and the difficulties
protecting against block pollution attacks. Our work focuses on
the study of a live network coding P2P system. In a similar spirit,
recent work by Katti et al. [22] provides the first implementation
results of network coding in Wireless networks. The authors imple-
mented and tested network coding in a mesh wireless network and
showed important benefits when multiple unicast flows are mixed.

9. SUMMARY
In this paper we have described our experiences with a P2P system
that uses network coding. Based on a prototype implementation of
our system and the result of several live distributions, we show that



network coding overhead is relatively small, both in terms of CPU
processing and I/O activity. We also describe a scheme for effi-
cient verification of encoded blocks and show that the verification
process is very efficient.

Moreover, we measure a high utilization of the system resources
and large savings for the content provider even duringflash-crowd
events. We also observed a smooth file download progress (i.e.
users do not spend much time in the beginning or the end of the
download), and very efficient utilization of the server capacity.

While coding obviates the need for fancy block selection algo-
rithms, the system’s efficiency still depends largely on how peers
are connected. We provide an initial description of the impact that
unreachable nodes can have and show that surprisingly the system
is highly resilient to very large number of unreachable peers (e.g.
as high as 70%). We also show that the topology construction al-
gorithms can have a significant impact in the overall system perfor-
mance. However, a deeper analysis is required to better understand
the impact of peer-matching algorithms in the system’s efficiency
(e.g. algorithms that take into account connectivity or access rates
to pair nodes).
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