
Strongly-Typed Language Support for Internet-

Scale Information Sources

Don Syme, Keith Battocchi, Kenji Takeda
1
, Donna Malayeri, Jomo Fisher, Jack

Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo Taveggia, Wonseok Chae,

Uladzimir Matsveyeu
2
, Tomas Petricek

3

1
 Microsoft Research, Cambridge, United Kingdom

2
 Microsoft Corporation, Redmond WA, USA

3
 University of Cambridge, United Kingdom

Abstract. A growing trend in both the theory and practice of

programming is the interaction between programming and rich

information spaces. From databases to web services to the semantic web

to cloud-based data, the need to integrate programming with

heterogeneous, connected, richly structured, streaming and evolving

information sources is ever-increasing. Most modern applications

incorporate one or more external information sources as integral

components. Providing strongly typed access to these sources is a key

consideration for strongly-typed programming languages, to insure low

impedance mismatch in information access. At this scale, information

integration strategies based on library design and code generation are

manual, clumsy, and do not handle the internet-scale information

sources now encountered in enterprise, web and cloud environments. In

this report we describe the design and implementation of the type

provider mechanism in F# 3.0 and its applications to typed programming

with web ontologies, web-services, systems management information,

database mappings, data markets, content management systems,

economic data and hosted scripting. Type soundness becomes relative

to the soundness of the type providers and the schema change in

information sources, but the role of types in information-rich

programming tasks is massively expanded, especially through tooling

that benefits from rich types in explorative programming.

1 Introduction

A key direction for the future evolution of programming is to allow strongly

typed programming to “escape the box” of type structures defined in hand-

written or tool-generated code, and to systematically bridge the gap between

2 D. Syme, et al

the language and the schematized information found in external information

systems. In this report

 We describe the design and implementation of a novel type-bridging

mechanism, the type provider mechanism in F# 3.0.

 We describe its applications to strongly typed programming with web

ontologies, web-services, database mappings, directory navigation,

content management systems, scientific data sets and hosted scripting.

 We consider the tradeoffs of these mechanisms, including the relative

soundness properties of the different systems that may be designed and

implemented.

 We describe how type-bridging both radically expands the role for names

and types, but also challenges existing, comfortable assumptions about

what types are, how they are selected and what properties they should

have.

 We illustrate the relative ease-of-use of the type provider mechanism as

compared to alternate technologies, in addition to its performance and

scaling benefits.

While we have made valuable initial progress for supporting information-rich

applications, we believe that this area is an excellent opportunity for future

language and tooling research, information-space modeling, schematization

techniques, and language usability efforts.

This report is structured as follows. In Section 2, we consider the problem of

information-rich programming, especially in the context of strongly-typed

languages. Section 3 presents the type provider mechanism and explains its

role in addressing information-rich programming problems, and Section 4

looks at specific examples of using the mechanism to integrate “internet-

scale” information sources. Section 5 looks at themes that arise when using

the type provider mechanism in practice, many of which raise interesting

future R&D directions. In Section 6, we briefly describe how information-rich

programming can affect our view of the logical characteristics usually

associated with programming languages such as type-soundness. In Section 7

we describe other applications we have explored with the type provider

mechanism, and in Section 8 we summarize, describe related work and future

directions.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 3

2 The Problem

As most of us know and experience every day, the world is now enormously

information rich. It is now common wisdom that we are witnessing an

explosion of digital data and information. Further, that information is

increasingly available through high reliability, well-organized, curated services.

For example, Figure 1 shows the rise in availability of “open APIs”, i.e. web-

based APIs delivering digital information and services, as recorded on the

catalog programmableweb.com.

Programmed services and applications can now be viewed as components

that consume, filter, transform and re-republish information within a larger

connected and reactive system. Modern applications (both enterprise and

“apps”) increasingly integrate one or more external information sources as an

integral component within the application.

Despite this, few strongly-typed programming languages and tools are able to

seamlessly integrate external information sources as if they were strongly-

typed components from a programmer’s perspective. We believe that in

coming years, we will continue to see more and more applications that are

information-focused (as opposed to code-focused), and as a result this is an

area of programming language design that requires more attention.

Practically, speaking, interacting with external information systems from

strongly-typed programming languages has reached an impasse.

The size and number of information spaces is growing rapidly, with

respect to both data and metadata. Stable, organized information spaces of

enormous size are now available through networked services (and thus for use

Figure 1 - The Growth of the Open Digital Information Context,

with API counts

4 D. Syme, et al

from programming languages). Importantly, these spaces are both huge in

terms of absolute amounts of data (e.g. total number of data points or tuples),

and in absolute amounts of metadata (e.g. total size of organized schemas,

names and documentation associated with the data).

There will never be a single universal schema language or protocol.

Schematization and protocols for organized information are a rapidly

developing milieu of overlapping technologies and standards. Our natural

instinct as computer scientists is to seek a single, unifying standard language

for describing schematized data sources. The history of software is littered

with such attempts: SQL, XML, Web Services, CORBA, COM, Linked Data,

OData, GData, Atom, REST, RSS, JSON, RDF, schema.org: the list is daunting

and always growing. Both the “data format wars” and “protocol wars” show no

sign of ceasing, and are often driven by commercial interests and economic

network effects resistant to arguments based on technical merits. As a result

technologies often trend towards lowest-common-denominator approaches.

Our programming languages must rise above this milieu and adopt

information integration architectures that are open, rather than tied to

particular standards.

Traditional typed bridging mechanisms don’t scale. Three techniques are

traditionally used to bridge programming languages to information sources:

 hand-written static libraries,

 generated static libraries,

 dynamically-typed information representation.

We discuss specific examples of these techniques as related work in Section 8.

In short, hand-written libraries do not scale to information spaces with large

metadata-size, e.g. with hundreds or thousands of different “types” in the

information space. Generated static libraries scale better, but have other

problems: workflows involving code generation are clumsy and do not

integrate well with explorative programming; schemas are read eagerly

instead of on-demand; code-bloat can arise; the generated code can be

fragile; and the technique generally doesn’t scale to information spaces with

thousands or millions of types.

For instance, one might wish to build an application that uses data from

Freebase [BEP+08], a Creative Commons-licensed repository containing nearly

22 million structured data entities—ranging from the periodic table (e.g., the

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 5

atomic mass of hydrogen), to information on Hollywood celebrities (e.g. their

legal entanglements and rehab facilities). Clearly, it would be impossible to

use code generation techniques to access Freebase’s schema and metadata:

the amount of generated code would just be too big. Due to the

interconnectedness of the entity graph, trying to generate types for just a

small subset can still end up pulling in the entire graph.

Likewise, consider the problem of language-integration of the Azure Data

Market [Mic12b], an online directory and hosting service containing hundreds

of information sources, all of them schematized to some degree, and each

with a Service-level agreement (SLA) to provide schema stability. Using code-

generation to access this data store is unappealing, and using dynamic

information representation techniques clearly sub-optimal except where using

a typed language is not an option.

We expect that in the future we will continue to see more data sources like

Freebase and Azure Data Market, where the “internet-scale” of these

information services alone makes code generation unworkable. Further

examples are considered in Section 4.

Dynamically-typed bridging mechanisms discard the benefits of

strongly-typed programming. Using dynamically-typed information

representation scales well but is a last-resort that discards the benefits of

strongly-typed programming. The use of dynamic representation techniques

is particularly disturbing when working against schematized information

sources that come equipped with fully stable, high-value schemas – in this

situation there seems no reason, per se, why strong typing should not be

applicable. It also loses the performance, tooling, correctness and cross-

component interoperability benefits associated with strong types. However, if

strongly-typed languages don’t have any understanding of the schemas of the

external data that programmers are actually using then a strongly-typed

language becomes an ever-less-appealing option. Strongly-typed languages

are left out in the cold, even when they contain expressive mechanisms for

manipulating structured and remote data.

2.1 Some Definitions

Before we go further, we offer some definitions to aid discussion.

An information space is a loose notion that captures data sources, external to

the programming language, optionally annotated with meta-data. Information

6 D. Syme, et al

spaces include SQL databases (with database schema as meta-data), XML files

(without meta-data or with XSD schema), semantic web with rich meta-data or

unstructured data.

Information-rich programming is programming where one or more

information spaces are integral to the operation of the programs being

constructed. These may be as simple as textual DSLs embedded as strings in

the program itself, as familiar as SQL databases, or as massive as a service

exposing Wikipedia data, or the world-wide-web of HTML documents itself.

An information space schema is a (often formal) structure that characterizes

the common names, shapes, operations and constraints for an external

information space. For some information spaces, schematization has been

performed as an integral part of the design methodology of the information

space. In others, schematization is more arbitrary and the optimal

schematization depends on the pattern of use. The schematization is chosen

to minimize the complexity of accurately working with the residual

information. A schematization does not typically fully define the data space

(e.g. does not contain specific leaf values).

A (strongly-typed) information-rich programming language is a language that

allows the integration of external information sources, where the schema and

content of these sources are presented in a (strongly-typed) idiomatic form.

Such idiomatic must reflect the information space schema of the information

space in the strongly-typed representation on the programming language

side.1

A component signature is the signature of software component or information

space when considered as a component in the host programming language.

The signature typically will contain types, methods and properties and

additional metadata such as documentation.

A type-bridging technique is a mechanism and/or methodology to take

specified information spaces and produce programming language projections

of those, including both a component signature and a component

implementation.

1 For example, an object-oriented language which presents all external data acquired

through an HTTP connection as strings would not be considered information-rich,

since the information is not presented in idiomatic form.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 7

A language integrated query mechanism is a way of writing queries in the host

programming language which are then passed to external information

sources. This frequently involves authoring the queries using some form of

meta-programming.

3 The Technique: Type Providers

We now describe the novel language and tooling construct we have

implemented to help address the problem of integrating internet-scale

information services into F# 3.0. We call this mechanism F# 3.0 type providers,

or just type providers for short.

A type provider is a compile-time component that, given optional static

parameters identifying an external information space and a way of accessing

that information space, provides two things to the host F# compiler/tooling:

(1) A provided component signature that acts as the programming interface to

that information space, and which is computed on-demand as needed by

the F# compiler. For F#, the component signature contains provided

namespaces, types, methods, properties, events, attributes, and literals

that give a .NET object-oriented characterization of the information space.

(2) A provided component implementation of the component signature. This is

given by either an actual .NET assembly that implements the component

signature (the generative model for the provided types), or, a pair of

erasure functions giving representation types and representation

Figure 2 – Core relationships in information-rich programming.

8 D. Syme, et al

expressions for the provided types and provided methods respectively (the

erasure model for the provided types).

Put simply, type providers are about using a provider model for the “type

import” logic of the host language compiler or tooling. Essentially, a type

provider is an adapter component that reads schematized data and services

and transforms them into types in the target programming language. This

allows programmers to quickly leverage rich, schematized information sources

without an explicit transcription process (be it code generation or a manually

created ontology). The provided types can then be leveraged by not only the

type-checker and runtime, but also tools that rely on the type-checker, such as

IDE auto-completion. Additionally, if the data source contains additional

descriptive metadata (such a description of various columns in a database),

this can be transformed by the type provider into information that is visible to

the programmer within the IDE (such as documentation contained in tooltips).

A type provider does not necessarily contain any types itself; rather, it is a

component for generating descriptions of types, methods and their

implementations. A type provider is thus a form of compile-time meta-

programming, a compiler plugin with access to the external world that

augments the set of types that are known to the type-checker and compiler.

Importantly, a type provider provides types and methods on-demand, i.e.

lazily, as the information is required by the host tool such as the F# compiler.

This allows the provided type space to be very large or even infinite. We

consider this further in Section 6.

As mentioned above, the implementation of a provided component is given

either by generation or by erasure. If the erasure is used, then it is described

through a type erasure function mapping provided types to representations (in

F#, this is the first non-erased super type of the type), and a member erasure

function that gives an expression which replaces each use of a provided

member (see GetInvokerExpression in Appendix A). When using erasure,

unnecessary code bloat in the corresponding compilation artifact is avoided.

When using type-generation, existing code generation tools can be wrapped

and presented as type providers, and exact .NET runtime type information is

preserved.

A mini-formalization of a calculus related to type providers is described in

Section 6. The low-level API for a type provider is described in Appendix A.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 9

An example of implementing a type provider using a higher-level API is

described in Appendix B.

4 Integrating Internet-Scale Information Services

4.1 Example: OData

We now describe the use of F# 3.0 type providers to integrate an example

internet data protocol into F# programming. We use OData [COP12] as our

example. OData is a protocol for querying data sources over HTTP and is

ultimately implemented by REST requests. In traditional use, a programmer

uses a code generator to access a particular service within her programming

language of choice. Alternatively, accessing an OData service requires

manually building up URLs with embedded strings to represent queries and

retrieving the response as text. The former is clumsy, the latter is both error-

prone and gives an untyped view of the data.

open Microsoft.FSharp.Data.TypeProviders

type NetFlix = ODataService<"http://odata.netflix.com/Catalog/">

let netflix = NetFlix.GetDataContext()

let avatarTitles =

 query { for t in netflix.Titles do

 where (t.Name.Contains "Avatar")

 sortBy t.Name

 take 100 }

Figure 3. Accessing the NetFlix data source using the OData type provider

Figure 4 - Choosing the OData type provider

10 D. Syme, et al

In contrast, F# 3.0 includes an “in-the-box” implementation of an OData type

provider, which utilizes the built-in .NET code generator for OData and side-

steps these issues. A programmer uses this type provider as follows:

 Reference the OData type provider, similar to any assembly reference

(Figure 3, line 1). Auto-completion helps the programmer select the

correct type provider (Figure 4).

 Fill in the parameters for the connection (Figure 3, line 5).

 Get a data context (line 7), which acts as an object to encapsulate

additional runtime parameters such as credentials. Figure 5 shows auto-

completion.

 Write a query against the data source (lines 9–13). Figure 6 shows the

programmer exploring the provided services with the help of strong-

typing and auto-completion.

Figure 6 - Exploring the Information Service

Figure 5 - Getting a Data Context

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 11

The alternative would be to use a code generation approach, which does not

provide such a clean integration with the user’s scripting and programming

environment.

The Provided Types and Representation Functions

Under the hood, the F# 3.0 OData provider generates a type space for the

schema using the “datasvcutil.exe” code generator available in the .NET

Framework, augmented with a thin veneer of “wrapper” types to simplify the

view of the presented information space. This is an example where an existing

code generator is used in the type provider framework. Because the provided

assembly is generated, the type representation function is a 1:1

correspondence with generated .NET types.

The main advantage that F# type providers brings is that it allows a totally

code-focused and scripting-friendly programming experience of the data

(which contrasts with the need to switch to another application, manually

invoke an external tool and import the generated code). For example, multiple

OData sources can be mashed up within a single script file.

4.2 Example: Freebase

Traditional web services can feature reasonably large metadata descriptions

involving hundreds of types. However, in practice, data sources and data

directories are now appearing that feature much larger quantities of metadata

and types. Importantly, the F# 3.0 type provider mechanism can scale to these

services. To illustrate this, we discuss a type provider that integrates the entity

graph Freebase [BEP+08] into F# in a strongly-typed way.

Freebase is self-described as “an entity graph of people, places and things,

built by a community that loves open data”. It contains a great deal of

interesting and useful structured data highly suited for integration into

programming applications. Much of the information is drawn from open

sources such as Wikipedia.

Consider the problem of constructing a strongly-typed API for the Chemical

Elements using the data and schema from www.freebase.com. The core

chemistry schema in Freebase in question has 10s of types (Elements, Isotopes,

People who Discovered Elements, Discovering Countries, …), each with 100s of

methods and properties (Atomic Number, Atomic Radius, …). It is, in fact,

embedded and linked to other entities in the much larger overall schema. At

http://www.freebase.com/

12 D. Syme, et al

the time of writing, Freebase featured 23,000 types, 61,000 properties and

millions of entities. Using traditional library-authoring techniques, a subset of

this API would take weeks to isolate, construct, document, populate with data

and test.

This begs the question: why can’t we use this web database directly, as if it

were “part of our program”? After all, Freebase is well-schematized, and that

schema appears to be quite stable for most practical purposes. It also

provides a REST service endpoint to query both data and schema through a

bespoke query language called MQL, which can be exercised directly via HTTP

GET operations supported in all modern languages, returning data in a JSON

format. However, using these results is awkward, especially when using a

strongly typed language, and error-prone. Using the REST service requires

considerable skills and manual coding.

From the traditional programming languages perspective, Freebase is, like

many information sources, an example of an external information source that

happens to have a “type-like” system. Faced with the above task in a

traditional strongly-typed language, programmers would be forced to either

eschew strong typing, or turn to either meta-programming or code

generation.

 In the former case, the programmer manually writes strongly-typed record

(or class) types to represent the information space. If the language

supports a form of code annotations (.NET attributes or Java annotations),

they can be used to indicate how these types correspond to the external

information space. The programmer then constructs a meta-model

mapping tool that correlates these annotations with the external

information space [SGC07].

 When using code generation, they would write a tool which automatically

generates API code based on the Freebase schema. However, in this case

the API designer would still have to carve out a “boundary” of the

information source, since the generated API would otherwise be too big.

This leads to an impasse which is impossible to solve in traditional approaches

to strongly typed language design and implementation.

Instead, consider how we address this problem with an F# 3.0 type provider

specifically designed for Freebase. First we describe how the information

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 13

space appears to the F# programmer when using this type provider. From a

script, the F# 3.0 type provider is referenced in the same way as a library:

#r "Samples.DataStore.Freebase.dll"

Likewise, you can reference the library in a command-line invocation:

fsc -r:Samples.DataStore.Freebase.dll ChemistryProgram.fs

Once referenced, the provided data space can be explored by first getting a

data context and then using auto-completion, see Figure 7.

Figure 7 - Exploring Freebase with the F# Freebase Type Provider

Once a domain category such as “Sports” is selected, the individual domains

can now be examined:

14 D. Syme, et al

Figure 8 - Exploring the Sports domain category in Freebase

For a given domain such as Sports.Baseball, queryable collections of objects

for all individual types associated with the domain are then shown:

Figure 9 - Exploring the Baseball Domain on Freebase

The data sets (organized by type) can now be visualized, for example the

Amino Acids

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 15

Figure 10 - Visualizing a Data Set Selected by Freebase Type

Finally, data sets can be enumerated, compositionally analyzed using

functional programming combinators, or queried using LINQ queries.

Visualizing the results of the queries is shown in Figure 11.

Figure 11 - Querying Computer Scientists with the Freebase Type Provider

The Provided Types and Representation Functions

The provider component is used by the F# compiler to resolve type names in

the F# source code to provided types and members. The provider resolves the

name “Samples.DataStore.Freebase” (abbreviated to S.F.D) to the following

information:

Samples.DataStore.Freebase
 // ...maps to a provided space of names containing...

 static member GetDataContext : unit -> S.F.D.FreebaseContext

16 D. Syme, et al

and further names such as “S.F.D.FreebaseContext” resolve as follows:

S.F.D.FreebaseContext
 // ...maps to a provided type containing the property...
 ``Science and Technology`` : S.F.D.Categories.``Science and Technology``

S.F.D.Categories.``Science and Technology``

 // ...maps to a provided type containing the property...
 Chemistry : S.F.D.Domains.Chemistry

S.F.D.Domains.Chemistry
 // ...maps to a provided type containing the property...
 ChemicalElements : seq<S.F.D.Types.ChemicalElement>

S.F.D.Types.ChemicalElement
 // ...maps to a provided type corresponding to the Freebase
 // type /type/chemistry/chemical_element containing the properties:
 Name : string
 AtomicNumber : string
 Istotopes : seq<S.F.D.Types.ChemicalIsotope>

S.F.D.Types.ChemicalIsotope

 // ...maps to provided type corresponding to the Freebase
 // type /type/chemistry/isotope containing the properties:
 Name : string
 Element : ChemicalElement

This information is automatically computed from the schema information

provided by the Freebase metadata service API, on-demand, as needed by the

F# compiler. The following program then typechecks:

let main() =
 let ctxt = Samples.DataStore.Freebase.GetDataContext()
 let chemistry = ctxt.``Science and Technology``.Chemistry.ChemicalElements
 for elem in elements do
 printfn "element %s has %d isotopes" elem.Name (elem.Isotopes.Count())

As described in Section 3, the Freebase type provider specifies a type

representation function for the provided types. This is very simple: provided

types map to library types FreebaseContext and FreebaseObject, for example:

Samples.DataStore.Freebase FreebaseContext
Samples.DataStore.Freebase.``Science and Technology``
 .Chemistry.ChemicalElement FreebaseObject
 .Chemistry.ChemicalIsotope FreebaseObject

The provider also specifies a member representation function for the

operations on these types. This is also simple – accessing a collection of all

objects of a particular type maps to a call to a library helper method

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 17

GetObjects, passing the unique Freebase identifier for the type, and all

property accesses maps to a library helper method GetProperty, again passing

the unique Freebase identifier for the property:

Samples.DataStore.Freebase.GetDataContext()
 new FreebaseContext()

ctxt.``Science and Technology``.Chemistry.ChemicalElements
 ctxt.GetObjects("/chemistry/chemical_element")

elem.``Atomic Number``
 elem.GetProperty("/chemistry/chemical_element/atomic_number")

elem.Isotopes

 elem.GetProperty("/chemistry/chemical_element/isotope")

isotope.``Half-life``

 isotope.GetProperty("/chemistry/isotope/half_life")

isotope.``Isotope of``

 isotope.GetProperty("/chemistry/isotope/isotope_of")

GetObjects and GetProperty communicate with the Freebase service using

HTTP, extracting the requested data.

The program above then compiles to the equivalent of the following once the

given representation functions are applied:

let main() =
 let ctxt = new FreebaseContext()
 let elements = ctxt.GetObjects("/chemistry/chemical_element")
 for elem in elements do
 printfn "element %s has %d isotopes"
 (elem.GetProperty("/chemistry/chemical_element/atomic_number"))
 (elem.GetProperty("/chemistry/chemical_element/isotope").Count())

All the provided types and operations have been erased.

In practice, the experimental Freebase provider implemented by the F# team

differs from the outline given here in a number of ways:

 Freebase types are mapped to .NET interface types that support multiple

inheritance.

 Freebase objects are represented as property bags.

 Properties may be empty, so the .NET Nullable types are used to represent

potential absence of information.

 Numeric data is, where possible, given a unit-of-measure based on the

unit metadata available in Freebase. The details of unit-of-measure

projection are beyond the scope of this report.

18 D. Syme, et al

 The collections returned support LINQ IQueryable [MBB06], meaning

composite query operations built from these collections are translated

into Freebase MQL queries. The details of this query translation are

beyond the scope of this report.

4.3 Example: Azure Data Market

The Windows Azure Marketplace is a web-hosted directory and store for

applications, data and information services. At the time of writing the data

sets include 170 data sets (60 free, 80 paid and 30 free trial) in areas from UN

and World Bank data sets to Sports information databases, with more being

added weekly. Many are very large, with trillions of data points in total, and

all are suitable for implementing data mashups, web applications or as

backing data for mobile application development. Users have an account with

the data market and subscribe to data sets (subscription is required for free

data sets). Paid data sets are billed based on the transaction volumes. The

data subscriptions come with SLA guarantees, for example some guarantee

that the schema of the data source will be stable for 1 year. Schemas for all

data sets are available without subscription or log-on.

We have created a prototype F# type provider that embeds the entire data

market within the name and type space of F#. Figure 12 shows the use of the

initial navigation of the data market, revealing that the data market

embedding includes both “all” data sets (all data sets with their schemas) and

“my” data sets (ones the user is subscribed to).

Figure 12 - Navigating the Data Market

When the user first uses “MyData” types in an IDE environment, the user is

prompted to create a data market account and/or log on to that account.

Figure 13 shows a dialog for this. An access token for the account is then

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 19

stored. (If using the F# command-line compiler or the F# REPL, the stored

access token is used).

Figure 13 - Signing into the Data Market when accessing "MyData" from IDE

After sign-in, the data sets we are subscribed to are under MyData, shown in

Figure 14.

Figure 14 - Subscribed data sests

If the user navigates “AllData”, then all data sets are shown, see Figure 15.

Figure 15 - Navigating All Financial Data Sets and Services

If a GetDataContext() call occurs in the source code for a data set which the

user is not subscribed to, a UI sequence is initiated for the user to choose a

subscription level for the data set, shown in Figure 16.

20 D. Syme, et al

Figure 16 - Subscribing to a Data Service

Once a data set or service is chosen, the user can use it through the OData

protocol. For example, shows the use of the Microsoft Translator service to

translate German to English

Figure 17 – Code for Using a Data Market Service

4.4 Example: World Bank

One of the major data sets hosted on the Azure Data Market and also

available through the Web API api.worldbank.org is the World Bank’s

aggregation of statistical data sets about countries and regions of the world.

http://www.worldbank.org/

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 21

These are time series data covering a vast range of statistical indicators, from

finance to health to immigration. The data is organized around the key

entities of country, region, indicator and source. The individual indicator time

series themselves are not small (monthly, quarterly or yearly figures for each

indicator for each country or region) but the overall metadata is large – for

example, thousands of indicators.

We have implemented a type provider for the World Bank. Figure 18 shows

the first exploration of the data space using the type provider in an IDE:

Figure 18 - The World Bank Type Provider

Interestingly, the type provider schematizes the data to the level of individual

countries, regions and indicators. For example, Figure 19 shows that each

individual country can be “strongly named” and completion lists are available

for the full country list. This is immensely useful when scoping in to examine

particular countries or regions of interest.

Figure 19 - Countries as Provided Names

Further, the individual indicators can also be strong named and searched. For

example, Figure 20 shows the completion list for all indicators for the United

States filtered to “Population”.

22 D. Syme, et al

Figure 20 – Strong naming for Individual Indicators

The combination of F# 3.0, F# Interactive, the World Bank Type provider (with

strong naming and assistance for countries and indicators) and the

FSharpChart charting library together make for a “super-console” for

exploring statistical information about our global world. For example, Figure

21 shows the complete, strongly-typed code used to chart the growth in total

population of 10 countries from 1960 to 2012.

Figure 21 - Charting the Population Growth of Ten Countries with the F# 3.0 and the

World Bank Type Provider

5 Themes

In Section 4 we have seen four examples of internet-scale information services

or protocols integrated into F# via F# type providers. In this section we look at

a number of themes in strongly-typed information rich programming,

especially when applied to internet-scale information services. These are

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 23

themes which we have found arise when using the F# type provider

mechanism in practice.

5.1 Theme: Design-time Assistance

During the late 1990s and 2000s, the role of type systems has progressed

steadily to encompass not only the traditional goals of reduced error rates

(through static checking), memory safety (through soundness of low-level

memory access operations) and performance (through elimination of runtime

checks) but also code assistance. Modern development environments use

types to simplify the implementation of the following:

 Interactive type checking during development (“red squigglies”)

 Provision of context-sensitive declaration lists (“auto-completion”)

 Type-directed information on gestures such as mouse-hover (“quick info”)

 Type and name-directed help systems (“F1 help”)

 Name-directed, type-directed or type-safe refactorings

Collectively these are known as the “design-time experience” or “tooling” for

typed languages, and the design of any modern programming language must

be done with this kind of tooling in mind. Attempts to retrofit a compelling

and reliable design-time experience for dynamically typed languages are

common but are generally incomplete, unsatisfactory and distort the idiomatic

use of the dynamic language.

Some design choices of F# type providers are very much driven with the

design-time experience in mind. For example, consider the following

completion list shown when using the Freebase type provider mentioned in

the previous section – the value of F# type providers lies very much in being

able to use design-time tooling to navigate and explore information spaces.

 Figure 22 - Type providers are designed with tooling in mind

24 D. Syme, et al

Practicing software designers are very aware that design-time assistance has a

strong influence on library design [CA08]. Likewise, design-time tooling has a

strong influence on information-space design. Much of the time in developing

a type provider is spent in improving the usability of the completion lists in

the Human-computer Interaction (HCI) sense of the word, i.e. simple,

discoverable and intuitive for a range of expected tasks.

Design-time tooling raises further questions: what other devices and assists

could be provided when working with information spaces from programming

languages? For example:

 Should the development environment provide search functionality for

the provided metadata space, e.g. from completion windows? If so, would

this affect the provider architecture?

 Should the development environment provide recommendations based

on the information space?

 Should the development environment display sample data for selected

elements in the information space? For example, the Freebase provider

provides an “Individuals” property for each collection type, which contains

named individual entities for easy access through IntelliSense.

 Should the development environment provide edit functionality for the

metadata itself, on the assumption that the underlying information source

allows updates to the metadata?

F# type providers do not implement these specifically. However, individual

providers sometimes show sample data in provided documentation, and

completion-list filtering provides a simple search mechanism.

Design-time tooling also impacts the technical design of the type provider

mechanism. For instance, in addition to checking if a member of a provided

type can be resolved we also need a way to list all members of a provided

type for IntelliSense completion lists. However, since the graph of provided

types can be extremely large (as in the case of Freebase), we want to ensure

that these member lists can be calculated lazily as needed by a language

service, rather than eagerly. For the same reason, the set of interfaces

implemented by a provided type should also be able to be computed on

demand.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 25

Finally, this theme raises an interesting question: are type providers a

language feature or a tooling feature? Our position is that it is both. From an

end-user’s perspective, there may not be a difference between the two: where

does a language end and a tool begin? For simplicity, we will continue to refer

to type providers as a language feature, but this is not meant to downplay the

critical role that tooling plays with regard to usability.

5.2 Theme: Schema Change

One of the most important questions when working with rich information

spaces is that of schema change. From the perspective of the F# type provider

mechanism, schema change manifests itself as:

 changes in the information space schema and thus the provided

component signature, and

 changes in the provided implementations of methods supporting the

execution of provided type implementations (i.e. changes in the erasure

functions or the provided assemblies)

Before we address this issue, however, we note that there is a strong trend to

towards stable, rich information sources delivered through the internet.2

Further, in typical enterprises there are many information sources with

relatively stable schemas that make up the “information base” of the

enterprise. This trend is partly based on basic economics: stability attracts

developers, developers are crucial for information providers, and so

information providers are increasingly in the business of providing schema-

stability guarantees in order to attract and satisfy developers.3 So, while

information sources change, in practice a growing number of information

sources don’t change quite as much as one might think.

The changes mentioned above can happen

 during coding, or

 between coding and execution, or

 during execution.

2 http://www.programmableweb.com/

3 For example, for-pay data providers on the Azure Data Market (http:

//datamarket.azure.com/) will guarantee a period of time during which the schema

will not change.

26 D. Syme, et al

The first and second are only distinct for compiled code, and are conflated for

scripting. Type providers address aspects of these changes in three ways:

 When the space of provided types logically changes through the coding

process itself, a provider may raise an invalidation signal which resets

type-checking for client tools.

 When the space of provided types changes between coding sessions, the

strong types and immediate IntelliSense offered by type providers gives

good feedback on how to correct the program.

 The (optional) use of type erasure for a type provider can reduce and

clarify the set of assumptions baked into provided code, making compiled

code more resilient to changes at runtime

We also advocate that type providers come with a schema change

specification, i.e. how their behavior is affected by schema change, particularly

w.r.t. source compatibility and binary compatibility. For example, a schema

change specification for a database provider may state:

Binary Compatibility: The table and column names of database tables are persisted in

compiled code. As a result, if any of the following changes occur, then a runtime error

occurs when a column C is accessed at runtime

 - the column names changes in the database

 - the column is removed from the database

 - the column changes its SQL data type

Reordering columns in the database or adding new columns or tables to the database

is not a breaking change.

The view that a space of provided types is “just like a library” can be helpful

here. We are already familiar with how changing libraries (versioning) exposes

the developer to source compatibility and binary compatibility issues both

practically and theoretically, and how to factor this into formalisms for

software upgrades e.g. [DWE98, ES01, BPN08]. Viewing information sources

through the lens of type providers allow us to use the same, common

vocabulary when talking about provided spaces of types: we can now

meaningfully talk about the source compatibility and binary compatibility

properties of a space of provided types under change, just as we would do the

same for versions of a library. A good type provider implementation will

document these properties clearly, just as a good language, runtime and

library will document source and binary compatibility properties. Perhaps one

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 27

day we may even be able to verify these properties of a type provider

implementation.

The F# 3.0 type provider mechanism does not itself provide any means to

adjust program execution state based on schema change. This means we

normally assume we are working with information sources where there is no

schema change during program execution, or in scripting environments where

restarting or reloading data is reasonable once schema change occurs.

Alternative, extended architectures that adjust program execution state are

imaginable, though they would depend greatly on the underlying execution

techniques being used. The literature on hot-swapping and dynamic software

update is in some ways relevant here e.g. [VBAM09, SHB+07].

5.3 Theme: Connected Programming

Connectivity to the web can be assumed during program development and

execution. This means that type providers can typically access the live data

sources themselves at design-time, giving the developer an up-to-date

schematization during development.

However, in most cases it also makes sense to provide off-line support. For

instance, a developer working from home may wish to work with a type

provider configured to target an inaccessible corporate database server.

Likewise, even the most reliable web services still have occasional downtime.

To support a range of realistic scenarios, type providers are frequently

designed to locally cache schema information when accessing a live service

and to rely on that information if the service is unavailable. Often, the type

provider uses a configurable caching policy (e.g. “always connect to the

server” vs. “use a cached schema if the service is unavailable”) since some

developers may prefer not to rely on a potentially stale local cache even when

a connection can’t be made.

Connected programming also introduces the themes of security and

authentication when accessing both schema (at design-time) and data (At

runtime). In this report we generally assume that schemas are freely available

to all parties at design-time, and that a provider gives a way of specifying

credentials for authentication at runtime.

28 D. Syme, et al

5.4 Theme: Queries

Many information-rich data sources provide special query languages (e.g. SQL

for relational databases). Frequently, it is more efficient to use such queries to

execute filters, joins, or projections on the server before retrieving data as

opposed to executing equivalent logic on the client side. Therefore, it will

often be beneficial for type providers to include mechanisms for creating and

executing queries over provided types. In some cases, this can be achieved

using the standard .NET LINQ IQueryable abstraction [MBB06], but in other

cases provider authors may wish to use different abstractions (e.g. if the set of

supported query operators differs greatly from those provided by IQueryable

sources). Orthogonal to type providers, F# 3.0 also includes a mechanism for

embedding arbitrary query languages, which gives type provider authors

more flexibility when addressing these concerns.

5.5 Theme: Simplicity and Consistency across Information Spaces

One aim of F# type providers is that that data/information programming

experience is consistent. Users can work with disparate sources of data

without learning each tool or web API individually. As more type providers

are created, we expect that certain patterns and conventions that apply across

a wide variety of type providers will emerge. Some design patterns for type

providers are provided by Microsoft [SB12].

A preliminary usability study found that users appreciated the ability to access

different data sources with different access protocols in a uniform manner,

and that they found the IDE integration to be a productivity benefit.

One important aspect to consistency is the way in which different schema

elements are mapped into the F# type system. If this is done consistently by

different providers, then techniques and code can be reused across

information spaces. For example:

 When the information space provides information about units-of-

measure, this is usually mapped to the F# type, because units do not add

runtime overhead and they provide more precise view of the data.

 When the data source supports inheritance, this can be mapped to .NET

class inheritance (provided that it is single-inheritance or that there is a

notion of “most important” base class), or to .NET interface inheritance (if

there is multiple inheritance).

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 29

 If operations of a type provider are I/O intensive, we do not currently map

them to asynchronous computations in F# [SPL11]. Avoiding async

simplifies explorative programming. Long-running operations must be

converted to be asynchronous through the use of a background task or

thread. However, if a provider distinguished between long-running

operations and operations that can be performed using a local cache,

exposing the long-running operations as asynchronous would be a good

design choice. Likewise, it is reasonable for a provider to accept a static

parameter which optionally allows for the generation of asynchronous

calls.

5.6 Theme: Completeness of Providers with respect to Services

The operational characteristics provided by the service should be respected.

For example, if the service provides a query language allowing efficient server-

side execution of logical operations, the projection of the service into the

programming language should also provide a query service.

5.7 Theme: Completeness of the Provider Mechanism with respect to

Host Language Constructs

The F# 3.0 type provider mechanism allows for the provision of most, but not

all .NET object-model constructs, including classes, interfaces, methods,

properties, fields, events and attributes. However, there are some restrictions:

for example, F#-specific constructs such as modules, union types and active

patterns may not be provided. Also, generic type definitions may not be

provided, though instantiations of existing generic type definitions may be,

including instantiations with units-of-measure.

One reason for this was simple resourcing: adjusting the compiler for type

provision required work and testing for each of these different constructs.

Further, to some extent we wished to avoid an eco-system of type providers

that relied on F#-specifics, because the type providers themselves may be

more generally useful in other contexts. However, over time we expect to lift

the remaining restrictions.

Certainly, our experience indicates completeness of possible provided

elements w.r.t. the host language (F#) is not a firm requirement for provider

mechanisms: one can proceed without it, and in some situations there may be

social or interoperability reasons for doing so.

30 D. Syme, et al

5.8 Theme: Granularity of Schematization

A common theme in embedding data in a strongly-typed way relates to the

granularity of the schematization of the data. Section 4 showed, for example,

a type provider for World Bank data, where schematization is at the

granularity of individual countries and indicators, so the question is not just

one of granularity of type but also of name. Further, the question is not just

“schematized” v. “unschematized” but rather “how much schema”?

For example, consider the following two ways of accessing the same

information, one via the World Bank provider, and the other via the Azure

Data Market presentation of the same World Bank data. First, accessing the

country and indicator via strong names:

 #r "Samples.WorldBank.dll"

 let data = Samples.WorldBank.GetDataContext()

 data.Countries.Australia.Indicators.``Population, total``

Next, accessing via a Data Market API that uses strings for country names:

 #r "Samples.WindowsAzure.DataMarket.dll"

 open Samples.WindowsAzure.Marketplace

 type T =

 MyData.Business_and_Finance.World_Development_Indicators.ODataService

 let ctxtWB = T.GetDataContext()

 ctxtWB.GetData("en", "AUS", "SP.POP.TOTL")

For the latter, the code is more error-prone, strings such as AUS must be

discovered by hand, but the approach is of course correct if these strings are

dynamically known values.

Individual providers can, of course, provide multiple granularities over the

same data sources – indeed this is very common and supports the transitions

between “production” programming over whole sets of data and

“investigative” programming against individual items. However, the initial

decision of how much schematization to expose is a non-trivial one that

requires careful though and design. This is true for all data-space design, but

especially true given the new power of scalable type spaces that type

providers introduce.

The type provider may also provide different perspective for accessing the

data. For example, the World Bank provider makes it possible to access

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 31

indicators by country (returning a list of year, value pairs). Another useful

perspective would be to access indicators by years, in which case the result

would be a list of country * value pairs.

5.9 Theme: Providing Additional Metadata (units)

Many schematized data sources include data that is described in terms of

physical units of measure (e.g. time in seconds, or mass in kilograms). F#

contains unit-of-measure support within its type system [Ken08], so it makes

sense to propagate this information in the types provided by a type provider.

Provider authors need to determine whether quantities should be exposed

using the raw units from the schematized data source, or whether it is better

to convert them to common units (e.g. the SI units contained in the F#

standard library). While the latter option may result in better interoperability

with data from other sources, conversions can cause a loss of precision.

Furthermore, there are occasions where the schema’s descriptions contain

references to the units used, which might get out of sync with the values if

conversion takes place.

6 Some Formal Considerations

In this section, we discuss the properties and criteria that may be of interest

when analyzing a programming language formalization of a type provider

mechanism.

We will do this in a way that will seem unusual (and disturbingly informal) to

those of a formal dispensation. This is deliberate: a full formalization of F#

type providers is not the focus of this work, and we feel many of the most

interesting aspects of type providers (notably, their demonstrated ability to

cope with internet-scale information services, and their practical relevance to

modern, real-world problems) can easily get lost in a traditional formal

treatment of the mechanism. So, in this technical report, we discuss “broader”

questions of the assumptions we make as we formalize programming

language systems.

6.1 Gamma, The Forgotten

If we consider the basic judgment of typed programming languages:

Γ |- e : τ

32 D. Syme, et al

In this relation, the traditional research focus has been on e (programs) and τ

(representing the types and/or analyses of programs). Relatively little

attention is given to Γ, which only takes on interesting structure due to

declarations in e and τ. There are some notable and important exceptions,

such as work on upgrading software components, dynamic configuration and

linking [BPN08]. However because of the general tenancy to focus on

expressions and types rather than context, we sometimes jokingly call Γ the

“neglected child” or “the forgotten one”.

One approach to formalization of F# type providers is to begin to represent

the novel aspects of the system in the formal structures. For example, a formal

system which captures ones of the key insights of F# type providers (on-

demand computation of Γ) is as follows:

NamespaceName – N

ClassName – C

PropertyName – P

Γ = VariableContext ProvidedNamespaces -- environment

VariableContext =

 var : type … var : type -- value list

ProvidedNamespaces =

 | N { Classes } … N { Classes } -- namespace list

Classes =

 | Delay(Classes) -- delayed provided class list

 | C : Class, … ,C: Class -- class list

Class =

 | Delay(Class) -- delayed provided class description

 | P: Type … P: Type -- class description

type =

 | N.C -- nominal type

 | type type -- function type

expr =

 | new N.C

 | expr.P

 | expr expr

 | \Lambda var. expr

With type checking judgments of the form

Γ |- e : τ Γ’

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 33

Type checking both analyzes e and “evaluates” Γ, by reducing the delays

present in Γ and its substructures, through name-lookup like the following:

Γ’(N) = Classes‘, else Γ

Γ |- new N.C : N.C Γ’

Γ(N) = Classes

Classes |- C Classes’

Γ’(N) = Classes‘, else Γ

Γ |- N.C Γ’

Clases |- C Classes’

Delay(Classes) |- C Classes’

Classes = { … C : Class … }

Classes |- C Classes

That is, delays in the substructures of Γ are eliminated as necessary to allow

type-checking or name-checking to proceed. Other rules are either standard

or straight-forward generalizations of the above.

Then, given Γ |- e : τ Γ’ , it is trivial to show that Γ’ is the same Γ with some

delays removed, and that the number of delay chains removed is at most O(n)

where n is the size of e.

For example, consider an environment of logical size 10million (ignoring

delays), and an input program of size 10. The number of delays removed from

the resulting environment is at most small – if delays are correctly present

throughout the initial environment, then only the parts of the environment

actually needed by the program are accessed. If each delay-reduction

corresponds to a network access to fetch metadata for an information service,

then we may have reduced compilation times (and generated code size) by a

factor of 100,000 through using delayed environment accesses. Likewise, if

each delay represents the generation of some stub code, we may have

reduced generated code size by an equally large factor. Computing the

environment on-demand can give big wins.

In the formal system above, delays are present throughout the descriptions of

namespaces, type definitions (classes) and even individual types. This is also

the cases with F# type providers, where every element can be provided on-

demand, even to the granularity of metadata such as documentation and

34 D. Syme, et al

definition locations.4 This is important in practice, where even the added

overhead of downloading documentation for each element in a large

information space may be prohibitive.

However, the real point is that most formal systems don’t need environments

of size O(millions) since Γ only arises from declarations in the program itself.

That is, adding delayed computations to Γ is not normally useful because

program declarations don’t include corresponding definitional forms that

exploit this power (an exception is the template meta-programming systems

discussed in Section 8). As a result, we know of few existing formal systems

which use on-demand computation of Γ.

So where did these really big Γ’s suddenly come from? Most formal systems

make an assumption which is, in certain light, somewhat breathtaking. It is

usually written like this:

Γ0 =

That is, most formal systems assume that the initial environment in which

programs are checked is empty. Some formal systems like the definition of

Standard ML [MTM97] admit a small “initial basis” which is used to interact

with the outside world. For many PL researchers, programs exist in a vacuum,

and Γ0 is of literally zero interest.

An empty initial environment is, of course, an immensely useful simplifying

assumption for theoretical purposes. However, from a practical point of view

(e.g., for those interested in the integration of arbitrary, external information

sources), this assumption also represents a somewhat complete denial of the

existence of the rich digital world in which modern programs are authored.5

The core proposition of F# type providers is that the best strategy we have (at

the moment) for taming Γ0 is based on a two-pronged approach

(a) Rely on the world’s information providers to organize Γ0 into useful

networked services, and

4 There are some small exceptions: for example, the list of (otherwise delayed) types in

a namespace is computed eagerly when required for intellisense lists.

5 Like space, Γ0 is big. Really big. You just won't believe how vastly, hugely, mind-

bogglingly big it is. With apologies to [Ada79]

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 35

(b) Simultaneously deploy the full computational power of typed functional

languages (and, in particular, ML-like languages) to project those services

into the type discipline of those same languages.

Hence the use of a provider model for Γ0.6

6.2 Soundness, Correctness, Contracts and Libraries

It is quickly evident that usual strong notions of “soundness” are weakened by

a type provider mechanism. For example:

 A provider may provide component signatures which violate the well-

formedness rules of the host language type system. For example, a

provider might provider a type hierarchy that contains loops in its

inheritance graph, or a component signature that refers to types that

do not exist.

 A provider may provide component implementations which do not

match their compile-time signatures.

 A provider might provide methods and properties which always fail or

go into an infinite loop at runtime

 A provider might rely on external schema information which changes,

giving exceptions at runtime when the corresponding provided

methods and properties are accessed

 Soundness is also weakened through the use of type-erasure for

provided types. Like other .NET languages, F# permits runtime type

tests and casts, normally used for interoperability purposes in F#

programming. These casts are with respect to erased types, not

precise types. Warnings are emitted by the F# compiler in some

simple detectable situations where casts are in-exact due to erasure.

Before panic ensues, observe first that memory safety remains a strong

guarantee. In the case of the .NET implementation of F# 3.0, type providers

6 We sometimes jokingly refer to F# type providers as the “the cult of Γ0”. That is, F#

type providers represent a point of view in PL research that taming Γ0 and making it

useful is where the biggest productivity boosts lie. We seek to tame the messiness

and complexities of those oceans of data and metadata in the digital environment,

which are both our greatest enemies (when they are not schematized, rapidly

changing or not amenable to computational projection) and our trusted companions

(when tamed).

36 D. Syme, et al

describe a component implementations through expression trees of the .NET

platform (CIL), which is verified prior to execution in partial-trust scenarios to

preserve memory safety and other core properties. Whatever bad things can

happen, they aren’t that bad. Further, the F# 3.0 compiler implements

additional checks that verify well-formedness and typing properties of the F#

language. However, these well-formedness checks are only performed on-

demand by the F# 3.0 compiler.

This means that type soundness is maintained, in the strict technical sense

that “the worst that can happen is an exception”. Traditional descriptions of

type soundness rely on operational semantics which ascribe a “stuck” or

“error” state to execution. No new “stuck” states arise, though a provider can

be “bad”, for example by providing bad component signatures and

implementations, and these give rise to compile-time errors. This means that

for type providers it seems reasonable to talk about conditional type

soundness – that is, a program is sound up to the behavior of the provider,

and in particular the soundness of the component signatures and

implementations that are provided. The IL-level type soundness of generated

code becomes conditional on the soundness of the erasure functions and

assembly implementations provided by individual type providers used in a

compilation. Assuming the provided expressions are valid, the generated code

is sound. The F# compiler checks some type correctness conditions of the

provided expressions, and additional checks are provided by the helper code

used to implement individual type providers.

However, soundness (or, if you like, correctness) of language-integrated

information sources clearly goes beyond mere memory and type safety. Type

providers are effectively providing on-demand implementations of library

implementations (often based on external schemas), so soundness for a type

provider is closely related to soundness for a traditional library, a topic which

is largely unexplored in the academic literature (there are endless papers on

the soundness of languages, but few papers on the soundness of libraries).

For the specific application examples shown in this paper, some of the notions

of soundness we’re interested are:

 For all providers using remote data sources, no “deserialization”

exceptions occur while the schema remains unchanged; and no

“wrong type of data” exceptions occur when writing in-memory

objects back to external data sources through provided types.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 37

 For a database provider, no “database property not found”

exception occurs unless the table column is removed.

 For the World Bank provider, no “country not found” exception

occurs (even if a geopolitical schema change occurs, old country

codes remain valid).

 For the Azure Data Market provider, no “service not found”

exception occurs, unless the Data Market providers withdraw a

service.

 For the Freebase provider, no “chemical elements don’t have an

atomic number” exception occurs.

 For the Azure Data Market provider, no “service expects 3

parameters not 2” exception ever occurs (because the service

schema is guaranteed not to change shape).

 For the R provider (section 7), no “R package not found” exception

occurs if the R package is installed on the machine at runtime

That is, we do not expect “WebData.Chemistry.ChemicalElements” to fail at

runtime with a “ChemicalElements not found” exception. However, the

provider may specify that it is possible to fail with a “No Web Connection

Exception”. This kind of correctness property is again conditional on individual

type providers and is thus hard to characterize in a general way – it depends

on the specification of each provider.

This means the behavior of the provided types, properties and methods must

be specified with respect to schema change. In particular we recommend that

provider writers specify the binary-compatibility and source-compatibility

properties induced by schema change in the external information store, as

discussed in previous sections. We have discussed this in Section 5.

7 Further Applications

In the course of our experiments with type providers, we have mainly explored

information spaces which fit into a few broad categories:

1. Remote data sources such as databases and web-based services.

2. Structured file formats: such as Excel, CSV, TSV or netCDF.

38 D. Syme, et al

3. DSL texts, such as regular expressions (where named groups provide the

structure) or printf-style format strings (where placeholders provide the

structure).

4. Code providers such as providers for interoperating with R or Python.

In the remainder of this section we will highlight some interesting aspects of a

few particular examples of type providers that we have built.

7.1 SQL + LINQ + Type Providers

Databases are among the most commonly accessed data sources in the

programming world. The release of .NET 3.5 included LINQ-to-SQL for

accessing SQL Server databases from .NET code, which combined a code-

generator and runtime libraries for data access as well as complementary

extensions to VB.NET and C# to make in-language query writing more fluent.

Since then, other persistence technologies (such as the Entity Framework)

have been integrated with the .NET platform using a similar approach.

To streamline the process of using these technologies from F# we have built a

family of type providers and a query implementation. These generative type

providers run the respective code generators, producing .NET assemblies

containing types that are embedded into the assembly that use them. The

query implementation is part of F# 3.0’s standard library, and provided a

query DSL for querying any .NET IEnumerable or IQueryable data source. The

query DSL includes both the standard projection and filtering operations (as

exposed by C# and VB.NET’s LINQ implementations) and other built-in

IQueryable features such as aggregation.

By using these type providers, F# developers can write code that manipulates

strongly typed database entities from a single F# script, without ever having

to explicitly generate code or interrupt their normal workflows.

This family of providers touches on many of the themes from Section 5:

 The type providers optionally cache schema data locally in case the user

wants to code against the type provider when there’s not a live

connection to the database.

 A query DSL exposes database queries in language-integrated fashion

while ensuring that queries are performed on the database when possible.

 The family of providers uses a consistent set of naming conventions and

data representations, giving users a familiar experience as they move from

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 39

one provider to another. The same conventions are also used in our type

providers for accessing web services, where applicable.

 Authentication can be performed using credentials stored in configuration

files or with integrated authentication

 The providers cover the complete set of ad-hoc options used by the

wrapped code generators, such as name pluralization options.

 The user can choose between type providers that connect directly to the

database (for DB-first development), or that use separate metadata files

(.dbml or .edmx files) to convey the schema.

 When using separate metadata files, the providers react to schema

changes by invalidating stale type information.

7.2 Example: Windows Management Interface

In this section we discuss the use of F# type providers to give strongly-typed

language integration for the “management” information made available by a

modern operating system. In this case we look at the Windows Management

Instrumentation (WMI) information provided by Windows machines, a

superset of the industry-standard CMI machine management information.

WMI provides an operating system interface through which instrumented

components provide information and notification. WMI also supports a query

language (WQL), a subset of the standard ANSI SQL with minor semantic

changes. WMI is usually accessed via PowerShell or via the

System.Management .NET API. WMI is often accessed from scripting

languages such as PowerShell, since it is hard to give a strongly typed and

navigable API to WMI information from a typed language. Thus, even when

using C# to program against WMI, the benefits of strong typing are lost.

Figure 23 shows such an example. Not only is the code longer than necessary,

the programmer also loses the benefit of IDE autocompletion. Furthermore,

the programmer must be well-versed in WQL in order to even get started. In

contrast, writing a WMI type provider for F# is relatively simple, and using it is

simpler still. Note the simplicity and strong typing in the F# code in Figure 24

as compared to the C# code in Figure 23.

40 D. Syme, et al

using System;

using System.Management;

public class Connect

{

 public static void Main()

 {

 var scope = new ManagementScope("\\\\localhost\\root\\cimv2");

 scope.Connect();

 //Query system for Operating System information

 var query = new ObjectQuery("SELECT * FROM Win32_OperatingSystem");

 var searcher = new ManagementObjectSearcher(scope,query);

 var queryCollection = searcher.Get();

 foreach (ManagementObject m in queryCollection)

 {

 // Display the computer information

 Console.WriteLine("Computer Name: {0}", m["csname"]);

 Console.WriteLine("Windows Directory: {0}",

 m["WindowsDirectory"]);

 Console.WriteLine("Operating System: {0}", m["Caption"]);

 Console.WriteLine("Version: {0}", m["Version"]);

 Console.WriteLine("Manufacturer: {0}", m["Manufacturer"]);

 }

 }

}

Figure 23. Using the Windows Management Interface directly in C# using a SQL-like

query language with embedded strings and without type information.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 41

open System

open System.Management

open Microsoft.Management.TypeProvider // this is the WMI provider

// Display the computer information

for m in LocalMachine.Win32_OperatingSystem do

 printfn "Computer Name: %s" m.CSName

 printfn "Windows Directory: %s" m.WindowsDirectory

 printfn "Operating System: %s" m.Caption

 printfn "Version: %s" m.Version

 printfn "Manufacturer: %s" m.Manufacturer

Figure 24. The same operations as in Figure 23, but using the WMI type provider

7.3 SharePoint: A Language-Integrated Content Management System

SharePoint is a popular platform for content and document management and

corporate intranet development [Mic12a]. SharePoint 2010 includes a new

“Client Object Model” which makes it possible to programmatically access

SharePoint sites from managed code written in .NET languages. In particular,

the APIs provide access to a SharePoint site’s structured lists, which contain

most of the interesting content for the site. However, because the structure of

those lists is dynamically configured from within the SharePoint site itself, the

APIs require the programmer to select lists and fields using names stored in

strings and to unbox field values from objects to the appropriate types. For

more advanced use cases, list entries can accessed by writing queries in

SharePoint’s CAML query language[Mic10], but this typically requires creating

the query by hand. Furthermore, CAML’s semantics are also somewhat

unique, making the standard .NET IQueryable abstraction a poor fit.

We have written an F# type provider for accessing SharePoint sites which

wraps the standard .NET client object model libraries and alleviates most of

these issues. This provider exposes each SharePoint list as a provided type,

with a statically typed provided property wrapping each of the list’s fields. We

have also created a SharePoint query DSL to make it easy to write and execute

CAML queries over those lists in a statically typed, safe manner:

42 D. Syme, et al

In addition to those domain-specific aspects, the SharePoint type provider

also deals with common concerns:

 The provider supports integrated authentication and password-

based authentication.

 The provider supports lazy loading (that is, delaying the retrieval of

unused fields from lists).

7.4 CsvFileProvider: Strongly Typed Tabluar Data

Tabular data formats are common in many scientific and financial

programming contexts. Accessing the data in these files is often made

cumbersome by the inability of the programming language to take advantage

of schema information that is present in the headers of these files (e.g. column

names), forcing programmers to either create and populate one-off data

types on a per-file basis or to access the data in columns ordinally.

We have created a type provider for reading tabular data from delimited files

(typically comma- or tab-separated files). This provider includes features such

as producing unit-of-measure-annotated data, which provides important

safety benefits for scientific and financial programmers.

One interesting question that arises when building such a type provider is

how the schema for a file should be obtained (since that information is not

always present in the file itself). There are several alternatives, each of which

may be most appropriate in some contexts:

1. Give the option for the type information to be added to the header row

(e.g. following the column name). This is an invasive requirement, but

Figure 25 - Accessing SharePoint using a type provider

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 43

forces the user to be explicit and keeps the metadata close to the data

that it describes.

2. Give the option to attempt to infer the types from the data (c.f. the Rows

to Scan option for the ODBC Excel reader). Using this approach, users do

not need to make changes to their files but it’s possible that the data that

is currently available is not wholly representative (e.g. an optional column

may happen to have values for each row, or a column of text data may

happen to contain only values that could be interpreted as integers) and

therefore will be inferred incorrectly.

3. Give the option for the user of the type provider to specify the type

information in the static arguments to the type provider. This does not

place any additional burden on the creator of the data, but does require

some effort from the provider’s user. Furthermore, since the type

information is external to the file itself, it is perhaps more likely that it will

become out of sync with the file’s data (e.g. a schema change may go

unnoticed by the type provider user), though the type provider can

statically check for some consistency properties.

7.5 RegexProvider: Strongly Typed Language-Integrated Regular

Expressions

As an example of how type providers scale down to even simple structured

data, we created a type provider for regular expressions. This provider takes a

regular expression as a static argument (using the standard .NET regular

expression format), and provides two benefits:

1. Syntactically invalid regular expressions produce errors at compile time,

not runtime.

2. Named groups in matches are accessible as properties of the match

object, allowing users to easily access them through IntelliSense and

alleviating users from having to use string literals which are only checked

at runtime.

44 D. Syme, et al

The provider itself is quite compact, totaling approximately 120 lines of code,

excluding a shared library of utility functions used by most of our type

providers.

7.6 Interop providers

In the course of our work on F# type providers we have implemented

experimental providers that are intended to ease interop with other

programming languages and environments:

1. COM provider: this provider allows COM components to be used directly

from F# without needing to go through an explicit conversion to CLR

types.

2. R provider: this provider allows R dataframes to be used directly from F#.

A more general R provider for F# is also now being developed

independently [Man12].

3. C provider (experimental!): this provider allows inline C code to be

included in an F# program, which is then compiled at design-time and can

be executed at runtime. In principle, this should make it possible to utilize

specific CPU instructions that aren’t supported by the CLR (such as certain

SSE extensions, for example).

A natural question then arises whether F#’s CLI/C#/.NET interoperability could

itself be ultimately built by using a type provider. In the limit, this would be

possible. However, F# has numerous typing rules that relate specifically to CLI

constructs and these would also need to be considered.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 45

8 Summary and Related Work

If the web and multi-core were the pervasive issues of programming in the

first decade 21
st
 century, the biggest challenge for the programming

landscape of the next 10 years is to integrate internet-scale information

services directly into programming languages in ways that improve

programmer productivity, performance, application robustness and

application maintainability. The work we have described here represents a

contribution (though by no means a final one) in that direction.

8.1 Summary

In this report, we have described the F# 3.0 type provider mechanism,

illustrating the following key points:

- The mechanism scales to information sources containing extremely large

quantities of metadata.

- The mechanism can be applied effectively to internet-scale information

services including web data protocols (OData), web ontologies (Freebase),

web-based data markets (Azure Data Market) and massive information

services (World Bank).

- The mechanism enables the use of code completion and interactive type

checking to increase programmer efficiency when working with rich

information sources.

- The mechanism interacts with strongly typed tooling such as

documentation assistance and completion lists and uses these as the

primary way of exploring and understanding the information sources

being used.

- The programming experience is code focused. Programmers need not

interrupt their coding tasks and switch to a design tool or a code

generator, or manually check whether the data schema has changed.

Because of this, type providers integrate well with strongly typed scripting

such as scripting with F# Interactive.

- The programming infrastructure is neutral with regard to the protocol and

data formats used. F# itself, as a language or toolset, has no specific

knowledge of OData, Excel, or Freebase.

- The mechanism uses an open architecture, so one can easily add new type

providers that consume a different kind of schematized data.

46 D. Syme, et al

- The mechanism can integrate with advanced features of typed

programming languages such as units of measure. They multiply the value

of these features because of the sheer quantity and importance of

unitized data available in external information sources.

8.2 Why a Strongly-Typed, Functional-First Language?

This report shows clearly the breadth and usefulnesss of the F# 3.0 type

provider mechanism. We now address a final question: why F#? Or, more

generally, why are type providers such a good fit for strongly-typed,

functional-first programming?

We have identified several reasons for this

 Type inference. F# and all strongly-typed functional languages use type-

inference extensively. Type providers fit extremely well with the highly

type-inferred languages. In none of the code samples shown have we

needed to write type names explicitly: they have always been inferred

from the data. F# type inference requires considerably fewer type

annotations than C#, C++ or Scala, and many fewer than Java. (Note, for

example, that type annotations are not needed on return types for F#

functions)

 The Best of OO, the Best of Functional. Type providers generally use a

mix of functional and OO mechanisms to represent provided information

spaces

o Individual provided entities are represented as object-oriented

types, making extensive use of “dot” property notation. OO

techniques are unrivalled for representing large library designs,

so it makes sense that they are used for this role in F#.

o Provided collections use “functional programming” types such as

sequences.

o Provided queryable collections use the LINQ “functional query”

paradigm of .NET [MBB06].

o Provided services sometimes make use of the .NET Task<T>

[LSB09] or F# Async<T> programming support [SPL11], both of

which interact well with compositional functional programming

techniques.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 47

 Interactive Execution. The combination of type providers with a REPL (in

our case F# Interactive) gives a code-focused, data-scripting experience.

 Prior data paucity. Functional programming languages have historically

been data-deficient, in the sense that accessing external data sources has

been hard and has broken the strong-typing paradigm of these

languages. The needy feel the benefit of type providers very strongly!

 Visual Tooling. The examples in this paper demonstrate the importance

of auto-completion as a way of navigating data spaces. F# 2.0

implemented quality “base-level” visual tooling for F#, including auto-

complete and some other coding assists. F# 3.0 builds on this to use these

mechanisms in conjunction with type providers. This indicates the growing

importance of coding assists in language/tool design, as discussed in

Section 7.

 Meta-programming foundations. At the API level, F# type providers

utilize several .NET and F# meta-programming idioms, including .NET

System.Type meta-programming and F# quotations [Sym06]. The pre-

existence of these facilities was an important factor in making the type

provider implementation possible within reasonable resource constraints.

8.3 Related Work

The topic of data access and the integration of data with programming

languages has given rise to a vast literature and a vast body of applied work.

In this section we review some of the work more closely related to integrating

data into strongly-typed programming languages.

8.3.1 Static Libraries and Code Generation

Section 2 mentioned three techniques that are traditionally used to bridge

programming languages to information sources:

(a) hand-written static libraries, and

(b) generated static libraries, and

(c) dynamically-typed information representation.

Most related work uses one of these approaches. First, some information

sources have relatively small, stable schemas and can be accessed through a

bespoke library. Twitter is a good example.

48 D. Syme, et al

Next, the industry standard technique for schematized data is to use a code

generator, often based on input from a “designer”. For example, LINQ

[MBB06] allows programmers to write SQL queries directly within a typed

framework. Programmers must use either a designer tool and/or a code

generator to map from the database schema to .NET types. Using a designer

tool is not an optimal experience for developers, who must learn to effectively

use yet another tool, context switch between the design tool and the code,

and keep the database schema in sync with the generated code. The second

option, code generation, is also problematic: it adds yet another step to the

build process, which means that automated builds must have the tool or its

artifacts, it interacts badly with source control, particularly when the generated

code is large and should be cached and shared among a development team,

and it leads to either code bloat or the need for (yet another!) tool for pruning

the compiled artifacts.7

8.3.2 Compile-time meta-programming

F# type providers are a novel form of compile-time meta-programming. Other

approaches to compile-time meta-programming are normally based on code

generation or macros, including CamlP4 and Template Haskell. These systems

are not generally used for information-integration – to quote [DP10]

"Static metaprogramming" is compile-time code analysis and synthesis. It has

many applications, such as (from simple to complex): defining abbreviations,

generating boilerplate from type definitions, extending the language syntax, and

embedding DSLs.

Further, these systems all require eager download of all metadata in order to

perform code generation. This means they can only be applied to a subset of

the internet-scale information services described in this report, at least

without further modification. In addition, these systems seem almost “too

powerful” for the specific tasks of information-integration, admitting a wide

range of extra macro-like capabilities into the normal use of the language. In

7 Note that this last point is not a hypothetical: the authors have been informed of

cases where the generated code for an enterprise system is so large that it cannot fit

within the limits of a .NET process!

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 49

contrast, F# type providers have been specifically limited to focus on

information service integration.

8.3.3 Open Type Systems

One language system that appears close in spirit to F# type providers is the

JVM-based language Gosu and its “open” type system [McK12], which is in

some ways similar in flavor to type providers. The system has been applied to

the language-integration of some enterprise data standards such as XML. To

our knowledge, Gosu has not yet been applied to the broad range of scalable

information services described in this report nor integrated with the type-

inference capabilities of a strongly-typed functional language. The Jolie

orchestration language [MGLZ07] also has adaptors for types from XML.

8.3.4 Query Programming

Language integration for internet-scale data sources relies heavily on

language-integrated query programming, especially LINQ [MBB06]. Recent

applied programming languages research in the area has looked at

“avalanche safety” [GRS10]. This can also be applied to LINQ [SBG+10] and

would thus also be applicable to the query implementations in this report.

Query integration into strongly-typed languages remains a challenging area

with many under-explored corners: for example, LINQ implementations are

still difficult to write, and do not cover many important query paradigms such

as OLAP in a strongly-typed way [NNT01]. Query programming based on

homogeneous meta-programming remains fragile and prone to runtime

failures when functions available on the client are not available on the server,

or are given a different semantic interpretation.

8.3.5 Pluggable Type Systems

Many researchers have investigated the idea of pluggable type systems

[PAC+08] and a variety of lightweight mechanisms in which new type systems

could be layered on top of existing ones. There is some similarity here: type

providers are “plug-ins” to the library-import logic of a language (loosely

speaking, the representation and rules covering Γ0 in a language

formalization), and pluggable type systems are “plug-ins” to the typing rules

of a language (loosely speaking, the representations and rules for τ in a

50 D. Syme, et al

formalized type system). In this sense, the approach taken by JavaCOP

[MME+10] is analogous to ours, in that it allows plugin writers to give a

declarative specification of an analysis, which is then utilized by the JavaCOP’s

main analysis framework. However, this approach has not been applied to the

language integration of internet-scale information services.

8.3.6 Highly Generic Type Systems

One way to approach information representation problems is by increasing

the power of type-level computations that can be performed allowing the

execution of full programs during compilation. For example, Ur [Chl10]

includes a powerful system of type-level computations over record types that

can be used to represent the schema transformations that occur in some

database and web programming.

These mechanisms are powerful extensions to type systems and highly suited

to playing a role in information-rich programming. Because they extend the

type system, they come with all the usual tradeoffs exhibited by such

additions (e.g. increased complexity v. increased expressivity). These

mechanisms would combine nicely with a provider model of the kind we have

described here. Further, a provider model of some kind is clearly necessary in

order to apply these techniques to the internet-scale information services we

have examined in this report.

8.3.7 Dependent Types

F# type providers are a manifestation of a “pseudo”-dependent type system,

where type schemas are dependent on information fully available at compile-

time. This is, however, only a passing similarity: the types provided by an F#

type provider do not depend on values computed at runtime, and pure

dependent type systems can’t base type-level computations on external

information such as schemas.

8.3.8 Staged Computation

F# type providers are a novel form of staged computation [TS97], where one

phase of computation can explicitly generate elements of the typing

environment for the next phase using a compositional plug-in model. In one

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 51

sense, this is exactly what is happening with F# type providers: the

environment is being computed by executing programs in the compilation

stage. However, the application areas we have explored in internet-scale

information sources are very, very different to traditional uses of staged

computation, and it is not clear that any of the staged computation

mechanisms so far designed or implemented could work effectively for these

kinds of application areas. Further the F# type provider mechanism is

deliberately weaker than full staged computation – it is for useful metadata

representation at compile-time, and adds no complexity to F# runtime

execution: it is a purely static mechanism. In contrast, traditional uses of

staged computation are for efficient code-generation at runtime.

Acknowledgements. Over the past 3 years we have discussed F# type

providers with just about everyone we could find: data experts, information

service providers, analytical programmers, statisticians, programming

language designers, PL researchers, tool developers, data scientists, family

members, children, people in coffee shops. Almost every one of these

conversations has led to interesting insights into what it would mean to

“embed the world of digital information” into a programming language. To

name and thank all these people would not be possible here. However, we

particularly thank Ralf Herbrich for his early help and advice on the design of

the F# 3.0 type provider mechanism and the fascinating and stimulating

conversations that resulted.

References

[1?] "DBLP:conf/ecoop/2008" not found in database

[Ada79] Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Pan Books,

1979.

[BEP
+
08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: a collaboratively created graph database for structuring

human knowledge. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, SIGMOD ’08, pages 1247–1250, New York,

NY, USA, 2008. ACM.

[BPN08] Gavin M. Bierman, Matthew J. Parkinson, and James Noble.

Upgradej: Incremental typechecking for class upgrades. In ECOOP, pages 235–

259, 2008.

52 D. Syme, et al

[CA08] K. Cwalina and B. Abrams. Framework Design Guidelines: Conventions,

Idioms, and Patterns for Reusable .Net Libraries. Microsoft .NET Development

Series. Addison-Wesley, 2008.

[Chl10] Adam Chlipala. Ur: statically-typed metaprogramming with type-level

record computation. SIGPLAN Not., 45(6):122–133, June 2010.

[COP12] Michael J. Carey, Nicola Onose, and Michalis Petropoulos. Data

services. Commun. ACM, 55(6):86–97, June 2012.

[DP10] Jake Donham and Nicolas Pouillard. Camlp4 and Template Haskell. In

ACM SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages

6:1–6:1, New York, NY, USA, 2010. ACM.

[DWE98] Sophia Drossopoulou, David Wragg, and Susan Eisenbach. What is

Java binary compatibility? In Proceedings of the 13th ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications,

OOPSLA ’98, pages 341–361, New York, NY, USA, 1998. ACM.

[ES01] S. Eisenbach and C. Sadler. Changing Java Programs. In IEEE

Conference in Software Maintenance (ICSM 2001), Florence, Italy, November

2001.

[fsh12] F# 3.0 Sample Pack, March 2012. http://fsharp3sample.codeplex.com/,

retrieved 1 August 2012.

[GRS10] Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-safe linq

compilation. Proc. VLDB Endow., 3(1-2):162–172, September 2010.

[Ken08] Andrew Kennedy. Types for units-of-measure in F#: invited talk. In

Proceedings of the 2008 ACM SIGPLAN workshop on ML, ML ’08, pages 1–2,

New York, NY, USA, 2008. ACM.

[LSB09] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of

a task parallel library. In Proceedings of the 24th ACM SIGPLAN conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA

’09, pages 227–242, New York, NY, USA, 2009. ACM.

[Man12] Howard Mansell. An F# type provider for R, 2012.

https://github.com/BlueMountainCapital/FSharpRProvider, retrieved 1 August

2012.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 53

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling

object, relations and XML in the .NET framework. In SIGMOD ’06: Int. ACM

Conf. on Mgmt. of Data. ACM, 2006.

[McK12] S. McKinney. Gosu’s secret sauce: The open type system, November

2012. http://guidewiredevelopment.wordpress.com/2010/11/18/gosus-secret-

sauce-the-open-type-system, retrieved 1 August 2012.

[MGLZ07] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi

Zavattaro. Jolie: a Java orchestration language interpreter engine. Electronic

Notes in Theoretical Computer Science, 181(0):19 – 33, 2007.

[Mic10] Microsoft. SharePoint Query Schema, May 2010.

http://msdn.microsoft.com/en-us/library/ms467521, retrieved 1 August 2012.

[Mic12a] Microsoft. Sharepoint - collaboration software for the enterprise,

2012. http://sharepoint.microsoft.com/, retrieved 1 August 2012.

[Mic12b] Microsoft. Windows Azure Marketplace: A one-stop shop for

premium data and applications, July 2012. https://datamarket.azure.com/,

retrieved 1 August 2012.

[MME
+
10] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd

Millstein, Chris Andreae, and James Noble. JavaCOP: Declarative pluggable

types for Java. ACM Trans. Program. Lang. Syst., 32(2):4:1–4:37, February 2010.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of

Standard ML. MIT Press, Cambridge, MA, USA, 1997.

[NNT01] Tapio Niemi, Jyrki Nummenmaa, and Peter Thanisch. Constructing

olap cubes based on queries. In Proceedings of the 4th ACM international

workshop on Data warehousing and OLAP, DOLAP ’01, pages 9–15, New York,

NY, USA, 2001. ACM.

[PAC
+
08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H.

Perkins, and Michael D. Ernst. Practical pluggable types for Java. In

Proceedings of the 2008 international symposium on Software testing and

analysis, ISSTA ’08, pages 201–212, New York, NY, USA, 2008. ACM.

[SB12] Don Syme and Keith Battocchi. Tutorial: Creating a type provider in F#,

January 2012. http://msdn.microsoft.com/en-

us/library/hh361034%28v=vs.110%29.aspx, retrieved 1 August 2012.

54 D. Syme, et al

[SBG
+
10] Tom Schreiber, Simone Bonetti, Torsten Grust, Manuel Mayr, and Jan

Rittinger. Thirteen new players in the team: a ferry-based linq to sql provider.

Proc. VLDB Endow., 3(1-2):1549–1552, September 2010.

[SGC07] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F#. Apress,

2007.

[SHB
+
07] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian

Neamtiu. Mutatis mutandis: Safe and predictable dynamic software updating.

ACM Trans. Program. Lang. Syst., 29(4), August 2007.

[SPL11] Don Syme, Tomas Petricek, and Dmitry Lomov. The F# asynchronous

programming model. In Proceedings of the 13th international conference on

Practical Aspects of Declarative Languages, PADL’11, pages 175–189, Berlin,

Heidelberg, 2011. Springer-Verlag.

[Sym06] Don Syme. Leveraging .net meta-programming components from f#:

integrated queries and interoperable heterogeneous execution. In Proceedings

of the 2006 workshop on ML, ML ’06, pages 43–54, New York, NY, USA, 2006.

ACM.

[TS97] Walid Taha and Tim Sheard. Multi-stage programming with explicit

annotations. In Proceedings of the 1997 ACM SIGPLAN symposium on Partial

evaluation and semantics-based program manipulation, PEPM ’97, pages 203–

217, New York, NY, USA, 1997. ACM.

[VBAM09] Alex Villazón, Walter Binder, Danilo Ansaloni, and Philippe Moret.

Advanced runtime adaptation for Java. SIGPLAN Not., 45(2):85–94, October

2009.

Appendix A. The Low-Level Type Provider API

An approximate C# view of the type provider interface is shown in Figure 26.

A type provider implementation must define a subclass conforming to this

interface and a metadata attribute (on the assembly and the subclass) to

denote its status as a type provider.

Appendix B. Implementing a Type Provider

Type provider implementations are typically 100–1000 lines of code.

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 55

Figure 27 shows a simple example of a provider that provides 100 types which

each expose a few constructors, properties, and methods. Note that this code

depends on a library which simplifies some aspects of writing a type provider

(see the F# 3.0 Sample Pack [fsh12]).

using System;
using System.Reflection;

interface IProvidedNamespace
{
 /// Get the namespace name the provider injects types into.
 string NamespaceName { get; set; }

 /// The sub-namespaces in this namespace.
 IProvidedNamespace[] GetNestedNamespaces();

 /// Get the types in the namespace.
 Type[] GetTypes();

 /// Resolve a type name in the namespace.
 Type ResolveTypeName(string typeName);
}

interface ITypeProvider
{
 /// Get the namespaces provided by this type provider.
 IProvidedNamespace[] GetNamespaces();

 /// Get the static parameters for a provided type.
 ParameterInfo[] GetStaticParameters(Type typeWithoutArguments);

 /// Apply static arguments to a provided type.
 Type ApplyStaticArguments(Type typeWithoutArguments,
 string[] typePathWithArguments,
 object[] staticArguments);

 /// Get the implementation of a call to a provided method.
 Expr GetInvokerExpression(MethodBase syntheticMethodBase,
 Expr[] parameters);

 /// A type provider may raise this event when an assumption
 /// changes that invalidates the resolutions so far reported
 /// by the provider
 event System.EventHandler Invalidate;

 /// Get the physical contents of the generated provided
 /// assembly.
 byte[] GetGeneratedAssemblyContents(Assembly assembly);

}

Figure 26. The type provider interface

56 D. Syme, et al

open System
open System.Reflection
open Samples.FSharp.ProvidedTypes
open Microsoft.FSharp.Core.CompilerServices
open Microsoft.FSharp.Quotations

[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this =
 inherit TypeProviderForNamespaces()

 let namespaceName = "Samples.HelloWorldTypeProvider"
 let thisAssembly = Assembly.GetExecutingAssembly()

 // Make one provided type, called TypeN
 let makeOneProvidedType (n:int) =

 // This is the provided type. It is an erased provided type, and
 // in compiled code will appear as type 'obj'.
 let t = ProvidedTypeDefinition(thisAssembly,namespaceName,
 "Type" + string n,
 baseType = Some typeof<obj>)

 // Add documentation to the provided type.
 t.AddXmlDocDelayed (fun () -> sprintf "This provided type %d" n)

 // This is a provided static property. A get of this property will
 // always evaluate to the string "Hello!".
 let staticProp =
 ProvidedProperty(propertyName = "StaticProperty",
 propertyType = typeof<string>,
 IsStatic=true,
 GetterCode=(fun args -> <@@"Hello!"@@>))

 // Add documentation to the provided static property.
 staticProp.AddXmlDocDelayed(fun () -> "This is a static property")

 // Add the static property to the type.
 t.AddMember staticProp

 // This is a provided constructor with no parameters.
 let ctor =
 ProvidedConstructor
 (parameters = [],
 InvokeCode= (fun args -> <@@ "The obj data" :> obj @@>))

 // Add documentation to the provided constructor.
 ctor.AddXmlDocDelayed(fun () -> "This is a constructor")

 // Add the provided constructor to the provided type.
 t.AddMember ctor

 // This is a provided constructor with one parameter.
 let ctor2 =
 ProvidedConstructor
 (parameters = [ProvidedParameter("data",typeof<string>)],
 InvokeCode= (fun args -> <@@ (%%(args.[0]) : string) :> obj @@>))

Strongly Typed Information Rich Programming in F# 3.0 and Beyond 57

 ctor2.AddXmlDocDelayed(fun () -> "This is a constructor")

 // Add the constructor to the type.
 t.AddMember ctor2

 // This is an instance property. Getting this property will get
 // the length of the string which is the representation object.
 let instanceProp =
 ProvidedProperty(propertyName = "InstanceProperty",
 propertyType = typeof<int>,
 GetterCode= (fun args ->
 <@@ ((%%(args.[0]) : obj) :?> string).Length @@>))

 instanceProp.AddXmlDocDelayed(fun () -> "This is an instance property")

 // Add the instance property to the type.
 t.AddMember instanceProp

 // This is an instance method with one parameter. This method will
 // get the character in the representation at the given index.
 let instanceMeth =
 ProvidedMethod(methodName = "InstanceMethod",
 parameters = [ProvidedParameter("x",typeof<int>)],
 returnType = typeof<char>,
 InvokeCode = (fun args ->
 <@@ ((%%(args.[0]) : obj) :?> string).Chars(%%(args.[1]) : int) @@>))

 instanceMeth.AddXmlDocDelayed(fun () -> "This is an instance method")

 // Add the instance method to the type.
 t.AddMember instanceMeth

 // Now generate 100 types
 let types = [for i in 1 .. 100 -> makeOneProvidedType i]

 // And add them to the namespace
 do this.AddNamespace(namespaceName, types)

[<assembly:TypeProviderAssembly>]
do()

Figure 27. Demonstration type provider

