
Unleash Stranded Power in Data Centers with Rack Packing

Abstract

Data center infrastructures are highly underutilized on average. Typically, a data center manager computes

the number of servers his facility can host by dividing the total power capacity of each rack by an assigned “peak

power rating” for each server. However, this scheme suffersfrom the weakness of all static provisioning schemes

– it does not account for the variability of load on the servers. We propose an algorithm that studies the power

consumption behavior of the servers over time and suggests optimal ways to combine them in racks to maximize

rack power utilization. The server placement problem is a version of vector bin packing [2], and our solution –

RackPacker – approximates a near-optimal solution efficiently using a number of domain-specific optimizations.

One of the central insights we use is that the different servers hosting a single application typically show strongly

correlated, but often somewhat time-shifted, power consumption behavior. Hence, we find servers that show anti-

correlated, or strongly time-shifted behavior and pack them together to maximize rack utilization. Our initial

experiments with RackPacker show substantially superior results than static packing.

1 Introduction

The explosion of on-line services we are witnessing today isthe result of a paradigm shift – a move to the

Internet as a computing platform. Most commonly used applications – email, document editors, collaboration

and organization tools, media, and games – are now offered asservices. On-line service providers maintain data

centers with tens – or even hundreds – of thousands of serversin order to host these applications. Modern data
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center infrastructure, excluding the IT equipment they host, can cost hundreds of millions of dollars. A majority

of this cost can be attributed to the electrical and mechanical infrastructure, which distributes power and cooling

to servers, storage, and network devices. Designing data centers to maximally utilize their capacities is therefore

a crucial architectural concern for the growth of the so-called “Cloud Computing” paradigm.

The capacity of a data center is defined in many dimensions: power, cooling, space, water, network bandwidth,

etc. Running out of resources in any of these dimensions means that the service provider needs to build or rent

another data center to facilitate business growth. Among these resources, power is usually the first to be exhausted

because of the load limitation on the power grid and the increasing power density of computing1 . However, recent

studies [9, 6] have found that the average data center’s power resources are highly underutilized.

In this paper, we look at ways to optimize the power utilization in data centers by addressing the following

question:How many servers can a facility with a given power capacity host? In common practice, this number is

arrived at by dividing the provisioned power capacity by thepower rating of each server. This rating might either

be the nameplate rating of the server (which is usually a substantial over-estimate), or – which is slightly better

– the server’s experimentally measured peak power consumption. However, both these schemes suffer from the

weakness of all static provisioning solutions – they do not account for the variability of load on the servers and the

resulting dynamics of their power consumption.

We propose an algorithm that studies the power consumption behavior of the servers over time, and suggests

optimal ways to combine them in racks to maximize power utilization. At the heart of such a dynamic provisioning

scheme is the following intuition: the actual power consumption of each server is not always (and often very rarely)

equal to its peak; hence, by intelligentover-subscriptionof the provisioned power, we can unleash the stranded

power to host more servers. In other words, if we employed this scheme to populate our facility, we would exceed

its power capacity if all of the servers were running at peak load; however, since the probability of such an event

is vanishingly small, we are (with very high probability) fine.

1defined as the amount of power consumed by a rack of servers occupying a unit space (e.g. square foot)
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Our solution takes advantage of two technology trends in data center computing: 1)virtualization: the use of

virtual machines (VM) to consolidate services and ease software migration; and 2)power capping: the ability

to adjust the power state of a server to prevent it from exceeding a given power cap. With VMs, it is easy to

move services among physical servers, so that “matching” servers can be placed together to reduce the probability

of exceeding a power budget. With power capping, the rare events of exceeding power limits can be mitigated

by reduction in performance. Although we still aim at minimizing the power capping probability, reaching or

temporarily exceeding power capacity will not cause catastrophic failures.

With these assumptions, our algorithm – RackPacker – solveswhat we term theserver placementproblem:

Given actual power consumption profiles over a period of timefor a set of servers, what is the least number of

racks that they can be packed into without exceeding any rack’s power cap?A brute force optimization formulation

can reduce this problem tovector bin packing[2], whered time instances of interest ared dimensions of an object

and the bin size in each of thed-dimension is the rack power cap. However, in this formulation, d could be

several thousands if the provisioning cycle is a day and power samples are collected every 30 seconds. Since

this vector bin packing formulation leads to an NP-hard problem with prohibitively large dimensions, we use a

number of domain-specific optimizations to arrive at a near-optimal solution efficiently. One of the central insights

we use is that some, but not all, servers’ power consumption can be strongly correlated due to their application

dependencies or load balancing designs. Hence, it is desirable to find servers that show anti-correlated, or strongly

time-shifted behavior and pack them together to minimize power capping probability. Our experiments with

RackPacker show from 15-30% improved efficiency in packing servers in racks. Note, however, that RackPacker

provides a probabilistic solution – should server power consumption diverge significantly from the norm, rack

capacity can be exceeded.

In Section 2, we describe the background and common practiceon rack power provisioning and show the

opportunity for unleashing stranded power. We then describe our algorithm – RackPacker – in Section 3. We

discuss the evaluation of RackPacker in Section 4 and present related work in Section 5. Finally, Section 6
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presents some key discussion points and concludes.

2 Stranded Power

To understand the rack packing challenges and opportunities, we first describe the power distribution and pro-

visioning architecture in a typical data center. Power consumed by a data center is usually divided intocritical

power, which is UPS backed up and used by IT equipment, andnon-critical power, which is used by cooling and

other parts of the facility that do not require UPS backup. Inthis paper, we only consider critical power utilization.

Critical power in a data center is delivered to remote power panels (RPP) in each server room (usually called

server co-locations or colos), split into many circuits there, and then distributed to server racks in that colo. Every

circuit has a defined capacity, and is regulated by a circuit breaker, which is the physical defense for catastrophic

power failures. For redundancy purposes, a rack usually hasmultiple circuits, each in the form of a power strip.

Servers, typically dual corded, spread their power load across the power strips they plug into. Figure 1 shows the

power provisioning chart for a rack with 3 circuits, with power load evenly distributed over the circuits, (i.e. each

server is plugged into two of the three power strips). There are two overheads that limit the amount of power usable

by the servers:spike protectionand failover protection. Assume each circuit is rated at single phased 30Amps

and 208V, then the total available power at each circuit is 6.24KW2. However,10% to 20% of the total power is

reserved to handle spikes in the power grid or load (10% is shown in this plot). Furthermore, in order to support

failover – in the sense that when one of the three power stripsfails, all servers can safely use the remaining two

power strips– another30% of the total power has to be set aside. Thus, theusable powerto the servers is only up

to 60% of the total power — 3.74 KW per circuit, or 11.2KW for the entire rack. In fact, this rather conservative

power provisioning baseline encourages probabilistic over-subscription, since temporarily exceeding the power

cap is likely to be safe.

The common practice of power provisioning, however, does not even fully utilize the60% usable power. Server

2Technically, it is 6.34KVA. For ease of discussion, we ignore the power factor and treat W and VA interchangeably.

4



3.672 3.672 3.672

1.836 1.836 1.836

0.612 0.612 0.612

0

1

2

3

4

5

6

7

1 2 3

KW

Spike reserve
Failover reserve
Usable power

Circuit
(30Amps@204V each)

Figure 1. An illustration of power provisioning at the rack l evel. About 40% of available power is
reserved for handling spikes and failover.
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Figure 2. A real power consumption trace of a production serv er.

vendors usually give an estimatednameplatepower consumption indicating the maximum possible power con-

sumption of the server. For example, the power calculator tool from HP [5] rates 395W for a ProLiant DL360

G5 server, with two Xeon E5410 2.33GHz quad-core CPUs, four 2GB DIMM, and two 146.8GB SAS HDD. In

other words, a 11.2KW rack can host at most 28 such servers, even though each server only occupies one unit in a

typical 44 unit rack.

In reality, the nameplate power allocated to a server is never fully used. Using server profiling, one can arrive

at a discounted power rating, which is lower than the nameplate power rating. For example, if the DL 360 server

has never consumed more than 300W, using the discounted power rating, a rack can host 37 such servers.

Static power provisioning, even with discounted power rating, can still leave a large amount of power stranded.

Figure 2 shows a power consumption trace over a day of a production server accessed by millions of users. We have
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two observations. First, server power consumptions changedue to the load fluctuation. Slow and quasi-periodic

load fluctuation has been observed in a lot of web traffic, including web sites [1] and instant messaging [3].

This fluctuation can become even more significant as idle power consumption is decreasing for newer servers.

Secondly, in addition to the slow fluctuation, there are spikes, caused by short term load variation such as scheduled

processing intensive tasks or flash crowd visitors. The discounted power rating – being a worst case estimate –

must include both the peak of the fluctuation and the highest spikes; thus it can be overly conservative.

Power over-subscription can take advantage of two dynamic properties of actual server power traces:

• Not all servers fluctuate to the peak at the same time. The usage patterns of on-line services can be diverse.

For example, websites for financial news and services may reach their peak around late morning when both

east and west coast customers are on-line and the stock market is open. However, home entertainment sites

may reach their peak in the evening. If we can bundle servicesthat are maximally out of phase, then the

peak of the sum is less than the sum of the peaks.

• Servers that are managed by the same load balancer or have close dependencies can have strong correlations

among their spikes. Statistically, placing services that are anti-correlatedwill lead to smaller probability of

their seeing simultaneous spikes.

These observations motivate us to design RackPacker, whichstatistically guarantees that over-subscribed sets

of servers do not exceed rack level power caps.

3 The RackPacker Approach

3.1 A Running Example

Throughout the rest of the paper, we use 831 servers from a popular on-line service as a running example for

our discussion. Functionality-wise, these servers largely belong to three categories, which we call Types 1, 2, and

3. They are divided into several clusters, where each cluster is managed by a load balancer. Server workloads
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Figure 3. The flow of the RackPacker algorithm.

show strong correlations, because of both functionality dependencies and load balancing effects. For example,

when there is a flash crowd, servers behind the same load balancer experience a power spike at the same time,

while servers across load balancers are less correlated. Due to the nature of the application, we also observe that

about 2 hours after servers of type 1 reach their peak workload, servers of type 3 reach their peak. In addition to

the tight coupling among server tiers, the relatively high CPU utilization, reaching over 75% at peak load, make

this a challenging set of servers for rack packing.

These servers have a nameplate power rating of 350W; based onthis number, a 11.2KW rack can host 32

servers. In other words, we need 26 racks to host these servers in the most conservative situation.

3.2 Rackpacker Overview

RackPacker takes a data-driven approach that uses collected power consumption traces to support server place-

ment decisions. We assume that services are hosted by virtual machines, even though there may be only one VM

per physical server. VMs enable fast re-positioning of services without moving the servers physically. This allows

the server placement decisions to be made frequently – at a weekly or even daily basis– and aggressively. The

RackPacker algorithm, thus, only needs to predict short term traffic growth. In the rest of the paper, we use the

terms server and service interchangeably. That is, a serverof type 1 refers to a VM hosting service type 1 running

on a physical server. We only consider homogeneous server hardware.

Figure 3 shows the key components in the RackPacker algorithm.

By profiling or monitoring a server operation, we model the server power consumption with a time series (rather
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than a single number). The time series is first filtered to obtain the low frequency power consumption baseline, and

the high-frequency noise that captures spikes. The noise signal has zero mean. Its variance represents how “spiky”

the transient power consumption can be. The goal of obtaining the low-frequency components is to identify the

baseline fluctuations reflecting workload trends, specifically their phase. Using this phase information, we can

sift through the servers and bundle those that are most out ofphase. The bundles are then treated as the unit for

rack packing. The high-frequency noise goes through a covariance analysis that measures the likelihood that two

bundles may have spikes at the same time. This statistical measure, together with the baseline of the bundles is

used in a statistical bin packing algorithm to find a (sub-)optimal server placement solution.

Thus, RackPacker has three major steps: filtering, bundling, and packing. In the rest of this section, we describe

each of these steps in detail.

3.3 Filtering and Classification

The goal of filtering is to separate workload trends from noisy transients. A typical approach is to compute

a moving average with a sliding window on the power traces, which is equivalent to low-pass filtering. LetS

be the set of servers of interest,Ps be the power profile time series of servers ∈ S with M samples, andT

be the sliding window size to compute the moving average. Then, the baselineBs is computed asBs(i) =

1
T

∑i
j=(i−T+1) Ps(j), i = {1...M} (with patching zeros wheni ≤ T ), and noiseNs = Ps−Bs. Figure 4 presents

the results of filtering the time series shown in Figure 2. Figure 4(a) is the baseline signal obtained by a 30 minutes

moving average. The residual noise signal and its histogramare shown in Figure 4(c) and Figure 4(d). We useσs

to represent the standard deviation of the noise.

To obtain and compare the relative times at which different servers peak, we perform discrete Fourier transform

(FFT) on the baseline signal. In particular, since the most significant fluctuation has the period of a day, we expect

that the second FFT coefficient has the largest magnitude. Indeed, for the power profile in Figure 2, the normalized

magnitude of the first 10 FFT coefficients are[0, 4.2790, 0.2240, 0.7166, 0.4953, 0.1057, 0.1303, 0.0738, 0.0393, 0.0609].
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Figure 4. Fitering and approximation of the power consumpti on time series.

It is clear that the second component is at least an order of magnitude greater than other components, indicating

that it is a good approximation of the overall shape of the power profile.

We denote the second FFT coefficient of the baseline power profile by fs. Note thatfs is a complex number that

represents a sine wave that can be written as|fs|Sin(ωt + φs), where|fs| is the magnitude andφs is the phase.

In a slight abuse of terminology, we callφs theprimary phaseof the service. For example, Figure 4(b) compares

the signal reconstructed by the second Fourier coefficient with the original signal. We clearly see that the second

coefficient captures well the overall shape of the original power profile.

Based on the relative magnitudes of the noise level and the fluctuation|fs|, the servers can be classified asflat

or fluctuating. Intuitively, a fluctuating server shows substantial load variation above and beyond its noise. In our

9



example, we consider servers whose power profile has|fs| < 3σs to be flat. By this definition, 830 out of the 831

servers fluctuate. Fluctuating servers that show significant phase difference will potentially pack well together,

and deserve special attention. This brings us to the bundling step.

3.4 Bundling

The goal of bundling is to find small sets of servers whose primary phases “match”. Ideally, if the average offs

across all servers is 0, then the fluctuations cancel each other out . However, in real data centers, this may not be

possible. Therefore, the total power load fluctuates at the data center level. Let̄φ be the average phase of allfs.

Then the best packing approach should spread the data centerpeak load evenly to all racks. Hence, the target for

the bundling process is to make the average phase of each bundle as close tōφ as possible.

Another benefit of a common phase for all bundles is dimensionreduction. As stated earlier, given a set of

power profile time series, we need to verify that at each time instance the total power consumption at each rack

does not exceed the power cap with high probability. When server power profiles show distinct phases, we need to

perform this verification at the peak time of every power profile. By bundling servers into common phase groups,

we only need to verify the time instance when the common phasesine wave reaches the peak.

The bundling process can be explained using complex vectors. The complex coefficientfs of servers can be

viewed as a vector in the complex coordinates, as can the average vectorf̄ with phaseφ̄. Then each vector can be

decomposed by projecting it to the direction off̄ and to the direction that is orthogonal tōf . Figure 5(a) illustrates

this projection. Letf1 be the2nd FFT coefficient of server 1, and̄f be the average vector across all servers. Then

we projectf1 on f̄s to obtainf̄1, and thenf̃1 = f1 − f̄1. If there existsf2, whose projectioñf2 on the direction

that is orthogonal tofs satisfies,f̃2 + f̃1 = 0, then bundling server 1 and server 2 together achieves the common

phase. Once common phase bundles are created, further bundling can be performed along thēf direction so that

positive and negative magnitudes cancel each other out .

Algorithm 1 shows the pseudocode for this bundling step. There are two parameters that affect bundling per-
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Algorithm 1 Pseudocode for Bundling phase of RackPacker
RackPacker: Bundling

1: Compute the mean̄f of {fs} for all fluctuating servers. Compute the angleφ̄ of f̄ .
2: For each vectorfs with magnitude|fs| and angleφs, projectfs to the direction of̄φ andφ̄ + π/2:
3: f̄s = |fs|cos(φ̄ − φs)
4: f̃s = −|fs|sin(φ̄ − φs)
5: Sort f̃s in a descent order.
6: Select the unbundled servers with the largest|f̃s|, and place it in a bundleb.
7: Compute the size of|b| andb̃, the length ofb along theφ̄ + π/2 direction.
8: if |b̃| < εB then
9: Finish with current bundle and repeat 6.

10: else
11: if There is no unbundled serverthen
12: Finish.
13: else
14: Select unbundled servers′ such that|f̃s′ + f̃b| is minimized.
15: if the size ofb + s′ > BundleCap then
16: Finish current bundle without puttings′ in b
17: else
18: Add s′ in b, and repeat 7.
19: end if
20: end if
21: end if
22: Treat each bundle as flat. For every bundleb, compute its baselineBb =

∑

s∈b Bs + maxt∈T |fb|, and its
varianceσb from the variance and covariance of the noise vectors of the servers in the bundle.

formance: the max bundle sizeBundleCap and the cancellation thresholdεB . Intuitively, the smaller we make

εB, the closer the bundled vectors get to thef̄s direction. However, one cannot bundle too many servers together

since they could then exceed the power cap. As we will discusslater, the packing performance is also affected by

the correlation of the noise factors. Since noise is not considered in the bundling process, we want to limit the

bundling size to give flexibility to the packing step.

Figure 5 shows the results of bundling the 830 fluctuating servers in our running example. Figure 5(b) shows

the original vectors with ‘+’ markers, and their decomposition to the mean and its orthogonal directions with ‘.’

markers. The vectors in the orthogonal directions are canceled out by the bundling process, and Figure 5(c) shows

the vectors after bundling. The maximum bundle size is 3, when we set the bundle power cap to be one-tenth of

the rack power cap.
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3.5 Packing

Once bundles are created with the same phase, the packing process uses a modified bin packing algorithm for

the final placement. A particular challenge that the packingstep addresses is the correlations among the spikes.

The goal of the packing phase is to assign bundles to racks in such a manner as to minimize the probability

of exceeding the rack power cap. In order to minimize this probability, the packing phase packs together bundles

that show minimal correlation in their spikes (noise). Correlated bundles spike in lockstep; this can result in a

heightened likelihood of exceeding the rack cap in the eventof load spikes such as flash crowds.

In order to compute sets of bundles that show minimal noise correlation, the packing phase proceeds as follows.

First, the bundles are ordered in descending order of size. Bundle size for a bundleb is computed as
∑

s∈b Bs +

CF ∗σb, whereσb is the standard deviation of the bundle noise, and CF stands for confidence factor, a configuration

parameter (3, here).

We then iterate through this ordered list of bundles and assign them to racks one by one. A bundleb is deemed

to fit into a rackr if
∑

b′∈r Bb′ + Bb + CF ∗ σr,b < Cr, whereσr,b is the standard deviation of the rack noise (=

sum of the noise of each bundle in that rack) combined with thenoise of bundleb, andCr is the rack cap. Given a

non-empty rackr, to arrive at the next bundle that we’ll attempt to pack intor, we order the unassigned bundles in

ascending order of their covariance with the current contents of r. We then try to find a bundle from this ordered
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list that will fit into r. If no such bundle is found, we create a new rack and repeat theprocess. Algorithm 2

presents the pseudocode for this phase.

Algorithm 2 Pseudocode for Packing phase of RackPacker
RackPacker: Packing

1: Sort the bundles in descending order byBb+CF ∗σb, where CF = confidence factor, a configuration parameter.
Call this listL.

2: Pick a bundleb from the top of the listL and assign it to rack R.

3: For all bundles inR, computeBR =
∑

b∈R Bb, andσR =
√

∑

b∈R σ2
b + 2

∑

b1,b2∈R covariance(b1, b2).

4: while list L non-emptydo
5: Pick a bundleb′ from L that is most uncorrelated with all the bundles inR, and add it toR.
6: For all bundles inR, computeBR andσR as above. IfBR + CF ∗ σR > CR, remove the last bundle from

R.
7: end while
8: Repeat from 2 with a new rack.

4 Evaluation

Parameter Value
Rack Cap 11200 W

Bundle Cap 1120 W
εB 20

Confidence Factor (CF) 3

(a) RackPacker Configuration Parameters
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Figure 6. Simulation parameter choices.

We have implemented RackPacker in MATLAB. Figure 6 shows ourchoice of parameters for the implementa-

tion. The choice of the parameter “Confidence Factor (CF)” isillustrated in figure 6. Here assignment confidence

is computed as the percentage of racks that fail to stay within the rack cap over a week’s trace of data. We see that

the choice of the CF value results in a tradeoff between assignment confidence and packing efficiency.

In evaluating RackPacker, we wish to answer the following questions:

1. How does RackPacker compare with the prevalent server assignment algorithms?We wish to see if there is

a strong argument for using RackPacker in place of existing solutions.
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2. What kinds of workloads is RackPacker best suited for? Conversely, are there workloads for which Rack-

Packer is not suitable?We wish to know what kinds of applications benefit the most from RackPacker.

We tackle each of these questions in order in this section.

4.1 RackPacker: Comparative Performance

To compare the efficacy of RackPacker against current solutions, we use the following metrics:

• Stranded Power: This is the difference between provisioned power and actualpower consumed per rack.

Minimizing stranded resources is the goal of a good provisioning scheme. Hence, the less the stranded

power per rack, the better the server assignment algorithm.

• Packing Efficiency: This is the number of racks needed to host the given set of servers. We wish to

minimize this number in order to improve the utilization of the data center.

Algorithm 3 Psuedocode for Static Assignment. Note that power(s) can bethe nameplate rating of s, or the peak
measured power for s.
Static Assignment Pseudocode

1: Order the servers randomly. Call this list serverlist.
2: Remove the first server s from serverlist and assign it to the first rack. Compute this rack’s power consumption

as: rackpower(1) = power(s)
3: while serverlist is not emptydo
4: Remove server s (of type t, say)from top of serverlist
5: if Fit Criterion: rackpower(currrack)+power(s)< rack power capthen
6: Assign server s to current rack and update its rackpower
7: else
8: Create a new rack, and assign s to it.
9: end if

10: end while

We compare RackPacker with two flavors of static assignment:(1) Nameplate Rating-Based assignment, and

(2) Peak Power-Based assignment. Both these schemes employstriping, where each type of server is distributed

uniformly across all the racks. This results in each rack containing approximately the same relative proportion

of each type of server. Thenameplate rating-based schemeuses the power rating on the server as a measure of
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Number of server types 3

Number of servers

Type 1 329
Type 2 283
Type 3 219
Total 831

Average power consumed
Type 1 199.4 W
Type 2 194.7 W
Type 3 210.1 W

Peak power consumed
Type 1 268.8 W
Type 2 262.6 W
Type 3 270 W

Data timespan 1 week

Table 1. Description of data against which RackPacker and ot her solutions are evaluated

its power consumption. Since this number is usually a substantial over-estimate, we also provide a comparison

point called thepeak power-based scheme, which uses the measured peak power consumption of the server in

place of the nameplate rating. This is the most aggressive static power provisioning approach, which assumes that

the peak in the future does not exceed the peak in the past. Algorithm 3 presents the pseudocode for both these

static assignment schemes. In this section we present analytical results for the nameplate rating-based scheme, and

simulated results for the peak power-based scheme, and the RackPacker algorithm. In the graphs that we present,

the algorithm labelled “Static” refers to the peak power-based scheme.
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Figure 7. Average Power Consumption Behavior For The Differ ent Server Types
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We evaluate each of these three server assignment algorithms on real power consumption data obtained from a

production data center. The data spans 831 servers for a production application. These servers belong to one of

three types, corresponding to different tiers of the application. Table 1, and figure 7 describe the data. The data

spans a week, but we train the various algorithms on one day’sdata, and validate the computed assignment against

the remaining days.

(a) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.
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(b) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.

Figure 8. Server assignment results from a realistic worklo ad trace.

Figure 8(a) is a pictorial representation of the server assignments computed by RackPacker, and the peak power-

based scheme. We find that RackPacker results in 14% more efficient assignment, using only 18 racks against 21

for the peak power-based static assignment. Further, figure8(b) shows the power consumed per rack, averaged

over all racks for each of these assignments. The rack cap wasassumed to be 11,200 W. We see that RackPacker

results in much less stranded power. RackPacker does much better when compared with the nameplate rating-

based scheme. Recall that using nameplate numbers, we need 26 racks to host these servers. Thus here we see a

30% improvement in packing efficiency.

4.2 RackPacker: Workload Exploration

In the previous section we showed that RackPacker can improve utilization substantially for a real data center

scenario. Now we will explore what kinds of workloads RackPacker is best suited to.
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The workload presented in figure 7 represents a single-application hosting center. The three types of servers

represent three tiers of the application; we see that these tiers operate essentially in lockstep, with load variation

being consistent across the tiers. Here we will explore two other data center scenarios. The data for these scenarios

is generated through controlled modification of the real data from table 1.
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Figure 9. Average Power Consumption Behavior For The Differ ent Server Types

(a) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.
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(b) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.

Figure 10. Server assignment results from a workload trace w ith shifted phases.

Dedicated Multi-Application Hosting Center: Here we consider data centers that host a small number of

applications (more than one). Figure 9 shows the data we generated to represent this scenario. Again, there are

three types of servers, but Types 2 and 3 belong to a differentapplication than Type 1 – they are thus phase shifted.

Figure 10(a) shows the server assignment computed by RackPacker and the peak power-based static scheme.
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Again, we find that RackPacker achieves 19% better packing efficiency, using 17 racks against 21 for the static

scheme. Figure 10(b) shows the corresponding reduction in stranded power. The nameplate rating-based scheme

needs 26 racks (as computed above); RackPacker is now 34% more efficient. In general, we expect that phase

shifted servers will benefit more from RackPacker.
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Figure 11. Average Power Consumption Behavior For The Diffe rent Server Types

(a) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.
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(b) Server Assignments Computed by RackPacker and Peak Power-
Based Static Assignment Algorithms.

Figure 12. Server assignment results from a workload trace w ith randomized phases.

Mixed Hosting Center: Here we consider data centers that host a very large number ofapplications; this

represents the cloud computing scenario, where the serversare leased out to various companies that host differ-

ent applications on them. Figure 11 shows the data we generated to represent this scenario. Here we see that

there are numerous types of servers, and their correlationsare less obvious. Figure 12(a) shows the server as-
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signment computed by RackPacker and the peak power-based static scheme. Figure 12(b) shows the average rack

power utilization for each of these assignments. Again, we find that RackPacker outperforms the static schemes

substantially.

5 Related Work

In this paper, we present a scheme for intelligent oversubscription of data center power. The idea of power

oversubscription is not new, and has been explored in the literature in numerous ways. The common theme in

prior work, however, is that power tracking/capping are themeans used to achieve this oversubscription. To the

best of our knowledge, server placement – which sets of servers are placed in which racks – has not been studied as

a means of improving data center utilization. Thus, RackPacker is intended to supplement prior work by intelligent

server placement that reduces the need for rack-level powercapping.

Fan et al [6] study the aggregate power usage characteristics of large collections of servers for different classes

of applications over a period of six months and conclude thatcluster-level power capping is a feasible and practical

means of improving data center utilization. Their conclusion is based on the intuition that even if power utilization

is high at server and rack levels, it is unlikely to be too highat cluster level (since a large number of servers

would need to be simultaneously heavily loaded, for this to happen). However, they offer no other insights to

implementing power capping.

Muse [1] is a game-theoretic, distributed power managementarchitecture. The goal is to reduce the power

consumption of hosted applications by allocating only as many servers as are needed to serve the arriving requests.

Muse uses a load prediction model called “flop-flip” which combines two exponentially weighted moving averages

of observed load to achieve stable and reasonably agile loadestimations. Game theory is used to translate these

load estimates to the number of active servers needed per application. Idle servers are shut down to save power.

Chen et al [4] use two control knobs to restrict application power usage: the number of active servers, as well

as their performance states. They use queueing theory to compute request arrival rate over some epoch, and a
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feedback control loop to correct the predictions over a sub-epoch. Their controller then solves the following

optimization problem: given the predicted throughput, what is the optimal number of servers to allocate for each

epoch, and what is the frequency they should each be run at, for each sub-epoch.

Lefurgy et al [8] use CPU throttle states to implement power capping. CPU throttling reduces the clock speed,

with power consumption dropping proportionally. The solution employs a control feedback loop running at each

server. The server’s power consumption is monitored periodically, and its CPU speed is set to target this load for

the next epoch. The authors show how to make this model stable, with bounded settling time.

Heath et al [7] add a degree of sophistication to their controller by taking into account the heterogeity of the

servers in the data center. Given the bandwidths of all the different resources, the controller’s optimization problem

is to find the request distribution from clients to servers, and among servers, in such a way that the demand for

each resource is not higher than its bandwidth, and we minimize the ratio of cluster-wide power consumption over

throughput.

Finally, our idea of translating the server placement problem into a form of multi-dimensional bin packing is

inspired by Chekuri et al [2]. They present an approximate algorithm to pack d-dimensional vectors (servers) into

d-dimensional bins (racks) to minimize the maximum load on any dimension. This algorithm, which represents

the theoretical best solution for this problem, does not scale well in practice since it requiresd to be much less

than the average number of servers per rack.

6 Discussion and Conclusion

Efficient use of data center infrastructure is a pressing issue for the scalability of the IT industry. Due to con-

servative and static estimation of server power consumption, traditional approaches for power provisioning leave

large amounts of provisioned power stranded. RackPacker isa data driven approach for power provisioning. By

analyzing real power traces from servers, we obtain the baseline, fluctuation phase, and noise levels for each server.

Leveraging this information, we can find sets of anti-correlated servers, in term of both fluctuation phase and noise
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covariance, that are best candidates for sharing the same rack. Our simulation results from real workload traces

show that even with tightly coupled and high utilization services, we can achieve over 30% better packing perfor-

mance compared to the nameplate rating-based provisioningmechanism. We can save 14% space in comparison

to even the most aggressive static assignment approach.

RackPacker works the best when there are significant fluctuations on workload and power consumption. There

are two reasons that strong fluctuations are increasingly common in server workloads. On-line services are getting

more and more geo-focused. That is, many services are designed for users from particular countries or geo-

locations. As a result, the workload on these servers reflects usage patterns and the peak load is concentrated in a

small time span. Another trend is that the server hardware and software are becoming increasingly power aware.

Server idle power is decreasing, while the peak power consumption stays relatively flat. This implies that the

power consumption of servers, under variable workload willshow fluctuating patterns.

There are several practical concerns when applying RackPacker to real data center operations. We did not

consider the rack height constraints when evaluating RackPacker. It is easy to apply rack packing to reduce the

power capping if rack height is a constraint. In this case, a data center can add more racks with smaller total power

per rack. Sometimes, administrative advantages and security regulations can limit the flexibility of moving services

within or across data centers. In addition, current data center networking architecture is hierarchical. Servers are

divided into subnets and those in the same rack can only be in the same subnet (VLAN). However, many data

centers are dominated by a relatively small number of services each employing a huge number of servers on the

same VLAN. Solving the power provisioning problem for theseservices brings immediate benefits. We did not

explicitly address in this paper how to proportionally provision cooling with server assignment. Cooling should

not be a big concern in this context, since data centers’ cooling capacities are designed to match their peak power

consumptions.

As a data driven approach for resource management, RackPacker algorithm can be applied to other scenarios,

in particular service consolidation via virtualization. Similar to the problem of finding “matching” servers for a

21



rack, one would like to find matching services that can share the same physical server. The difference is that power

is an additive resource, ignoring the power factor, but other resources in a physical server may not be additive. For

example, depending on cache misses, the time delays of retrieving data from storage can differ significantly when

multiple services share the same hardware. Modeling multi-modality resources and optimizing their utilization is

challenging future work.
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