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ABSTRACT

Transform or subband audio coders can deliver high quality
reconstruction at rates around two bits per sample. Most quanti-
zation strategies take into account masking properties of the
human ear to make the quantization noise less noticeable. In this
paper we describe a new coder in which we extend such quanti-
zation strategies by incorporating run-length and arithmetic
encoders. They lead to improved performance for quasi-periodic
signals, including speech. The quantization tables are computed
from only a few parameters, allowing for a high degree of
adaptability without increasing quantization table storage. To
improve the performance for transient signals, the coder uses a
nonuniform modulated lapped biorthogonal transform with vari-
able resolution without input window switching. Experimental
results show that the coder can be used for good quality signal
reproduction at rates close to one bit per sample, and quasi-
transparent reproduction at two bits per sample.

1. INTRODUCTION

Transform or subband coders are employed in many modern
audio coding standards [1], usually at bit rates of 32 kbps and
above, and at 2 bits/sample or more. At low rates, around and
below 1 bit/sample, speech codecs such as G.729 and G.723.1
are used in teleconferencing applications. Such codecs rely on
explicit speech production models, and so their performance
degrades rapidly with other signals such as multiple speakers,
noisy environments and specially music signals [2].

With modem speeds having increased by almost a factor of
two over the last few years, many applications may afford as
much as 8–12 kbps for narrowband (3.4 kHz bandwidth) audio,
and maybe higher rates for higher fidelity material. That raises
and interest on coders that are more robust to signal variations,
at rates similar to or a bit higher than G.729, for example.

In this paper we present a transform coder that can operate at
rates down to 1 bit/sample (e.g. 8 kbps at 8kHz sampling) with
reasonable quality. To improve the performance under clean
speech conditions, we use a run-length and arithmetic encoder,
which improves the encoding of the periodic spectral structure
of voiced speech.

2. CODER STRUCTURE

A simplified block diagram of the proposed encoder is shown in
Figure 1. Overlapping blocks of the input signal x(n) are trans-
formed into the frequency domain via a nonuniform modulated
lapped biorthogonal transform (NMLBT) [1]. The NMLBT is
essentially a modulated lapped transform (MLT) [4] with differ-
ent analysis and synthesis windows, in which the high-frequency

subbands are combined for better time resolution. Depending on
the signal spectrum, the combination of high-frequency sub-
bands may be switched on or off, and a one-bit flag is sent as
side information to the decoder. The NMLBT analysis window
is not modified, as discussed in Section 5.

The transform coefficients X(k) are quantized by uniform
quantizers, as shown in Figure 1. Uniform quantizers are very
close to being optimal, in a rate-distortion sense, if their outputs
are entropy coded. Vector quantization (VQ) could be employed,
as proposed in [5], but the gains in performance are minor,
compared to our adaptive run-length & arithmetic encoder. Al-
though the TwinVQ of [5] has a reduced complexity, it is still
significantly more complex than scalar quantization.

Figure 1. Simplified block diagram of the proposed
speech and audio encoder.

An optimal rate allocation rule for minimum distortion at any
given bit rate would assign the same step size for the sub-
band/transform coefficients, generating white quantization
noise. This leads to a maximum signal-to-noise ratio (SNR), but
not the best perceptual quality [6]. The “weighting function
computation” block in Figure 1 replaces X(k) by X(k)/w(k), prior
to quantization, for k = 0, 1, …, M–1, where M is the number of
subbands, usually a power of two between 256 and 1024. At the
decoder we weigh the reconstructed transform coefficients
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by $ ( ) $ ( ) ( )X k X k w k← . Thus, the quantization noise will follow

the spectrum defined by the weighting function w(k). In the next
section we address the computation of w(k). The quantized
transform coefficients are entropy encoded by run-length and
arithmetic coders, as described in Section 4.

The operation of the decoder can be easily inferred from
Figure 1. Besides the encoded bits corresponding to the quan-
tized transform coefficients, the decoder needs the side infor-
mation shown in Figure 1, so it can determine the entropy de-
coding tables, the quantization step size, the weighting function
w(k), and the single/multi-resolution flag for the inverse
NMLBT.

3. SPECTRAL WEIGHTING

Ideally, the weighting function w(k) should follow the auditory
masking threshold curve for a given input spectrum {X(k)}. The
masking threshold can be computed in a Bark scale (a quasi-
logarithmic scale that approximates the critical bands of the
human ear) as described in [8],[9]. At high coding rates, e.g. 3
bits per sample, the resulting quantization noise can be below
the quantization threshold for all Bark subbands, resulting in a
perceptually transparent reconstruction, i.e., the decoded signal
is indistinguishable from the original.

At lower rates, e.g. 1 bit/sample, it is not possible to hide all
quantization noise under the masking thresholds. In that case,
we may not want to raise the quantization noise above the
masking threshold by the same dB amount in all subbands, since
low-frequency unmasked noise is usually more objectionable.
Therefore, assuming w kMT ( )  is the weighting determined from

the masking thresholds, our coder uses the weights

w k w kMT( ) ( )= α
(1)

where α  is a parameter that can be varied from 0.5 at low rates
to 1 at high rates. This is similar to the noise spectral coloring
used for determining the excitation in CELP coders, except that
they use a fractional power of the input spectrum, whereas we
use a fractional power of the masking thresholds.

The amount of side information for representing the w(k)’s
depends on the sampling frequency, fS. For fS = 8 kHz, we need
17 Bark spectrum values, and for fS = 44.1 kHz we need 25.
Assuming an inter-band spreading into higher subbands of  –10
dB per Bark [9] and differential encoding with 2.5 dB precision,
we need about 2 bits per Bark coefficient.

4. RUN-LENGTH & ARITHMETIC CODING

Transform coders usually perform better with complex signals
such as music, because of the higher masking levels associated
with such signals. With clean speech, transform coders operat-
ing at low bit rates may not be able to reproduce the fine har-
monic structure. With voiced speech and at rates around 1
bit/sample, the quantization step size is large enough that most
transform coefficients are quantized to zero, except for the har-
monics of the fundamental vocal tract frequency. Therefore, we
can achieve better rates than those predicted by first-order en-
tropy by simply using run-length coding.

Calling q(k) the quantization index corresponding to each

X(k), i.e. $ ( ) ( )X k q k= δ , where δ  is the quantization step size,

our entropy encoder uses the following alphabet:

Quantized value q(k) Symbol

–A, –A+1, …,  A 0,1, …, 2A

Run of  Rmin zeros 2A+1

Run of  Rmin+1 zeros 2A+2

      : :

Run of  Rmax zeros 2A+1+Rmax–Rmin

Table 1. Codewords for the entropy encoder.

A is the maximum quantized index, which varies for each block.
The symbols are encoded via an arithmetic encoder, which uses
the following parametric probability distribution:
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where A, dL and dR are parameters, and β1 and β2 are computed
such that the probabilities in (2) add to one.

The probability distribution function (PDF) above is close to
a two-sided exponential (Laplacian) for the quantized values
part, except that Pr(s = A) (i.e.  q = 0) is reduced to 0.25, and
close to exponential for the run lengths, but with a plateau on
the first three points. The decaying parameters are usually set to
dL = 0.4 and dR = 0.3, and the run-length range parameters are

set to Rmin = 4 and Rmax = M/4. We found that the model in (2)
leads to bit rates within about 5% of the optimal ones (corre-
sponding to the measured PDFs) for a large variety of speech
and audio signals.

For a given quantized transform block X(k), the parameter A
is computed as  A = max{q(k)}, and that parameter is sent to the
decoder as side information (A can be coarsely quantized, e.g.
32 values in a nonlinear scale). The decoder can then compute
the PDF to be used in the arithmetic decoder, since all other
parameters are fixed. When a constant bit rate is desired, the
block “step adjustment” in Figure 1 adjusts the step size itera-
tively until the bit budget for the block is attained.

5. SWITCHING TIME RESOLUTIONS WITHOUT
SWITCHING WINDOWS

The run-length and arithmetic encoder of the previous section
helps to alleviate one of the problems of transform/subband
coders: the reproduction of voiced speech. Another well-known
problem with transform coders is that the number of subbands
M  has to be large enough to provide adequate frequency reso-
lution, which usually leads to block sizes in the 30–60 ms range.
That leads to a poor response to transient signals, with noise
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patterns that last the entire block, including the so-called pre-
echo [7].

During such transient signals a fine frequency resolution is
not needed, and therefore one way to alleviate the problem is to
use a smaller M for such sounds [5],[8]. Switching the block
size for a modulated lapped transform is not difficult but may
introduce additional encoding delay. An alternative approach is
to use a hierarchical transform [4] or a tree-structured filter
bank, similar to a discrete wavelet transform. Such decomposi-
tion achieves a nonuniform subband structure, with small block
sizes for the high-frequency subbands and large block sizes for
the low-frequency subbands. Hierarchical (or cascaded) trans-
forms have a perfect time-domain separation across blocks, but
a poor frequency-domain separation. For example, if a QMF
filter bank is followed by a MLTs on the subbands, the sub-
bands residing near the QMF transition bands may have stop-
band rejections as low as 10 dB, a problem that also happens
with tree-structured transforms [4].

One alternative is to increase the time-domain resolution by
merging subbands, leading to new subbands with the same fre-
quency but different time localizations [3]. That is the idea be-
hind the frequency-varying MLTs suggested in [10]. The con-
struction in [10], cascading MLTs with smaller IMLTs, does not
lead as much time-domain separation as constructions based on
the biorthogonal MLTs, as described in [3].  By simply adding
and subtracting two consecutive subbands, it is possible to gen-
erate two news subbands whose filters have effectively half the
time width, in the form

′ = + +
′ + = − +
X r X r X r

X r X r X r

( ) ( ) ( )

( ) ( ) ( )

2 2 2 1

2 1 2 2 1
(3)

The main advantage of this approach is that new subbands
signals with narrower time resolution can be computed after the
MLT of the input signal has been computed. Therefore, there is
no need to switch the MLT window functions or block size. To
improve the time resolution by a factor of four, i.e., to generate
impulse responses with effective widths of a quarter block size,
we can use the construction
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where a b c a r M M= = = = +0 5412 1 2 12
0 0. , , , , ,... , and M0

usually set to M/16. Figure 2 shows plots of the synthesis basis
functions corresponding to the construction in (4); we see that
the time separation is not perfect, but it does lead to a reduction
of error spreading for transient signals [3].

Automatic switching of the subband combination matrix in  
(4) can be done at the encoder by analyzing the input block
waveform: if the power levels within the block vary considera-
bly, the combination matrix is turned on. The switching flag is
sent to the receiver as side information, so it can use the inverse
4x4 operator to recover the MLT coefficients. An alternative
switching strategy that we used in our experiments is to analyze
the power distribution among the MLT coefficients X(k) and to

switch the combination matrix on when a high-frequency noise-
like pattern is detected.

Figure 2. Some of the NMLBT synthesis functions
when the combination matrix is switched on. Hori-
zontal scale = block length.

6. EXAMPLES

We have tested the coder describe here with a variety of
speech and music signals, with sampling rates varying from 8 to
32 kHz, and bit rates varying from 1 to 2 bits per sample. In one
experiment, we used signals sampled at 8 kHz and compared
our coder operating 10 kbps (1.25 bits/sample) to the ITU-T
standard G.729, which operates at 8 kbps (1bit/sample). We set
α = 0.5 in (1) and used M = 256 subbands, corresponding to a
block size of 32 ms and an algorithmic delay of 64 ms.

Simple objective performance measurements for low-rate
coders may not necessarily correlate well with subjective meas-
urements, specially at low bit rates. The well-known segmental
SNR [6] can be useful in comparing the relative performances of
two waveform coders, or as a tool for parameter optimization.
However, it can be misleading when applied to a hybrid para-
metric/waveform coder such as G.729 [2]. So, besides the SNR
we also used the segmental noise-to-masking ratio (NMR) [9] as
an objective performance measurement.

The NMR measures how many dBs the coding noise is above
the auditory masking threshold. NMRs of a few negative dBs
means perceptually transparent or near-transparent reproduc-
tion, whereas a few positive dBs mean noticeable distortion. We
computed the NMR as suggested in [9], by subtracting the
power spectra of the original and decoded signals, and compar-
ing it to the masking thresholds. Instead of averaging the NMR
over all Bark subbands to compute the NMR for each signal
block, we computed the NMR as the worst-case ratio among all
Bark subbands, because our ears can easily spot errors that are
above the threshold in just a few Bark bands. So, we will refer
to it as a peak NMR (PNMR). The segmental PNMR is then
computed the average of the block PNMRs.

Table 2 shows the segmental SNR and PNMR for the two
coders. The SNR numbers for G.729 indicate that it does not do
a good job of preserving the signal waveform, as expected. The
SNR numbers for our coder indicate that it still reconstructs
reasonably the signal the waveforms, even with the auditory
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error weighting. The PNMR numbers correlate much better with
informal listening tests. For G.729, they indicate a drop in per-
formance (higher PNMRs) for the singing voice and violin sig-
nals. For our coder, the PNMR improves considerably for the
violin signal; that is consistent with listening tests.

Seg. SNR, dB Seg. PNMR, dB
Signal G.729

8 kbps
Proposed
10 kbps

G.729
8 kbps

Proposed
10 kbps

Music – violin 4.0 13 4.2 1.9

Singing voice 3.7 15 2.2 4.7

Clean speech 3.8 13 1.8 4.3

Noisy speech 0.2 10 3.1 4.6

Hands-free speech 2.1 11 2.7 4.8

Table 2. Performance comparison for narrowband coders.

The PNMR values in Table 2 show that our coder operating at
10 kbps has a similar level of quality for music signals as G.729
for speech. The 1.5–2.5 dB difference for clean speech shows
that G.729 is better in that case, but the difference is less no-
ticeable in loudspeaker playback with average office noise con-
ditions.

If we remove the run-length encoding component in our
coder, the SNRs decrease by as much as 2 dB and the NMRs
increase by as much as 1 dB, with a noticeable degradation in
quality. For a fixed quantization step size (constant fidelity,
variable bit rate), the run-length encoder can reduce the bit rate
by about 10% for music signals, and 25% for speech. Therefore,
the run-length encoder is quite efficient in encoding the perio-
dicity in voiced speech. That is also indicated in Table 2, where
the clean speech signal has a slightly better PSNR than the other
speech signals.

In another experiment, we used music signals sampled at 32
kHz to compare the performance of our coder operating at 56
kbps (1.75 bits/sample) to that of the MPEG-2 Layer III stan-
dard operating at the same 56 kbps rate. We set α = 0.5 in (1)
and used M = 1024 subbands, corresponding to a block size of
32 ms and an algorithmic delay of 64 ms. The objective per-
formance results for that experiment are shown in Table 3.

Seg. SNR, dB Seg. PNMR, dB

Signal MPEG-2
Layer III
56 kbps

Proposed
56 kbps

MPEG-2
Layer III
56 kbps

Proposed
56 kbps

Singer + guitar 23 16 1.6 2.4

Soft rock 22 11 1.9 2.7

Mix: classic + soft
rock + speech

19 13 1.1 2.6

Table 3. Performance comparison for music coders.

We see that our coder approaches the performance of MPEG-
2 Layer III, with PNMRs that are only about 0.5–1.5 dB higher.
For both coders the quality of the reconstructed signal is very

high; most people under common listening conditions would not
distinguish the originals from the encoded ones.

For signals sampled at 16 kHz, we tested our coder at 24 kbps
with M = 512 (still a block size of 32 ms). The resulting seg-
mental SNRs and PNMRs were around 12–18 dB and PNMRs
around 2–3 dB. The PNMR numbers and subjective quality are
close to the ITU-T standard G.722 operating at 48 or 56 kbps.

7. CONCLUSION

We presented a subband/transform coder with three distin-
guishing characteristics: 1) a signal-dependent subband decom-
position via a biorthogonal MLT without window switching; 2)
encoding via uniform scalar quantization with run-length and
arithmetic encoding; and 3) spectral noise shaping via weighted
auditory masking functions. Although the run-length encoding
improved the performance for clean speech, the encoder still has
a better performance with music signals. The main advantage of
the encoder is its robustness; it can operate with signals ranging
from narrowband speech to high-fidelity music and rates from
10 kbps and above. Another advantage is the robustness to
packet losses, because a missing block will affect the recon-
struction up to the next block only, i.e., the coder recovers
within a one block period. A disadvantage of the coder is a rela-
tively large algorithmic delay of 64 ms (for the block sizes we
reported), which may not be an issue for applications such as
videoconferencing and Internet audio streaming.
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